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Abstract

The resolvent Estrada index of a (non-complete) graph G of order n is de-

fined as EEr =
∑n

i=1

(
1− λi

n−1

)−1
, where λ1, λ2, . . . , λn are the eigenvalues of G.

Combining computational and mathematical approaches, we establish a number of
properties of EEr . In particular, any tree has smaller EEr-value than any unicyclic
graph of the same order, and any unicyclic graph has smaller EEr-value than any
tricyclic graph of the same order. The trees, unicyclic, bicyclic, and tricyclic graphs
with smallest and greatest EEr are determined.

1 Introduction

In this paper we are concerned with simple graphs, that is graphs without directed,

multiple, or weighted edges, and without self–loops. Let G be such a graph, possessing

n vertices and m edges.

Let λ1, λ2, . . . , λn be the eigenvalues of G, that is the eigenvalues of the adjacency

matrix of G. These eigenvalues form the spectrum of G [4, 5].

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 74 (2015) 431-440 

                          
                                          ISSN 0340 - 6253  

 



The k-th spectral moment of the graph G is defined as

Mk = Mk(G) =
n∑
i=1

(λi)
k . (1)

As well known [4,5], M0 = n, M1 = 0, M2 = 2m, and Mk is equal to the number of closed

walks in G of length k.

Around year 2000, in order to model certain geometric characteristics of biologically

important molecules, Ernesto Estrada [6] introduced the quantity

EE = EE(G) =
∞∑
k=0

Mk(G)

k!
(2)

which eventually was named Estrada index . This graph–spectrum–based invariant found

noteworthy applications, both in biochemistry [6–8] and in the theory of complex networks

[9, 10, 12]. Its mathematical properties are nowadays well understood, see [14] and the

references cited therein. Here we only mention the formula

EE =
n∑
i=1

eλi (3)

which immediately follows from Eqs. (1) and (2).

Recently, Estrada and Higham [11] considered a new variant of the index EE, defined

as

EEr = EEr(G) =
∞∑
k=0

Mk(G)

(n− 1)k
(4)

which should be compared with Eq. (2). In the few hitherto published papers on EEr

[1–3,13] it is called resolvent Estrada index .

An equivalent way of expressing the resolvent Estrada index is

EEr =
n∑
i=1

1

1− λi
n−1

= (n− 1)
n∑
i=1

1

n− 1− λi
(5)

which should be compared with Eq. (3).

The spectrum of the complete graph Kn consists of the numbers n− 1 and −1 (with

multiplicity n− 1). All eigenvalues of all other n-vertex graphs are less than n− 1 [4,5].

Bearing this in mind, from Eq. (5) is seen that the definition (4) of the resolvent Estrada

index can be applied to all simple graphs, except to the complete graphs.

In what follows we state a few previously established results on the resolvent Estrada

index, which we will need in the present considerations.
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Lemma 1. [3] Let G − e be the graph obtained by deleting the edge from the graph G.

Then

EEr(G− e) < EEr(G) .

From Lemma 1 it immediately follows that among graphs of fixed order n, the edgeless

graph Kn has minimal, whereas the graph Kn − e has maximal resolvent Estrada index.

(Recall that the resolvent Estrada index of the complete graph Kn is not defined.) From

Lemma 1 it also follows that among connected graphs of fixed order n, the graph with

minimal EEr-value is a tree.

Let, as usual, Pn and Sn denote the path and star on n vertices. Denote by P ∗n the tree

obtained by attaching a pendent vertex to the second vertex of the path Pn−1 . Denote

by S∗n the tree obtained by attaching a pendent vertex to a pendent vertex of the star

Sn−1 .

Lemma 2. [13] Among trees of order n, the path Pn has smallest and the tree P ∗n second–

smallest resolvent Estrada index. Among trees of order n, the star Sn has greatest and

the tree S∗n second–greatest resolvent Estrada index.

Lemma 3. [2] Let G be a graph with n vertices and m edges. Then

EEr(G) ≥ n2 (n− 1)2

n(n− 1)2 − 2m
.

Equality is attained if and only if either G ∼= Kn or (provided n is even) G ∼= n
2
K2 .

Lemma 4. [2] Let G be a bipartite graph with n vertices (n ≥ 3) and m edges. Then

EEr(G) ≤ n+
2m

(n− 1)2 −m
. (6)

Equality is attained if and only if either G ∼= Kn or G ∼= Ka,b ∪Kn−a−b , where Ka,b is a

complete bipartite graph such that ab = m.

2 Computational studies

In order to gain a better insight into the properties of the resolvent Estrada index, we

have undertaken extensive computer–aided studies. The EEr-values of all trees and con-

nected unicyclic, bicyclic, and tricyclic graphs up to 15 vertices were computed, and the
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structure of the extremal members of these classes was established. Thus our examination

embraced over ten million graphs. The main conclusions gained within these studies are

the following.

First of all, the earlier known results stated as Lemma 2 were confirmed.

Observation 5. We refer to the graphs whose structure is depicted in Fig. 1. Among

connected unicyclic graphs of order n , n ≥ 4, the cycle Cn has smallest and the graph

C∗n second–smallest resolvent Estrada index. Among these graphs of order n , n ≥ 5,

the graphs Xn and X∗n have, respectively, greatest and second–greatest resolvent Estrada

index.

CC

X X

nn

n n

{{ n-4n-3

*

*

Fig. 1. Unicyclic graphs with extremal resolvent Estrada indices; for details see Obser-
vation 5.

Observation 6. We refer to the graphs whose structure is depicted in Fig. 2. Among

connected bicyclic graphs of order n, those with the smallest resolvent Estrada indices

are:
Bp−1,p−1,p if n = 3p , p ≥ 2

Bp−1,p,p if n = 3p+ 1 , p ≥ 1

Bp,p,p if n = 3p+ 2 , p ≥ 1 .

(7)

The graphs with second–smallest resolvent Estrada index are

Bp−2,p,p if n = 3p , p ≥ 2

Bp−1,p−1,p+1 if n = 3p+ 1 , p ≥ 2

Bp−1,p,p+1 if n = 3p+ 2 , p ≥ 1 .

Among these graphs of order n , n ≥ 5, the graph Yn has greatest resolvent Estrada

index. For n ≥ 9, the graph Y ∗n has second–greatest resolvent Estrada index, whereas

Y ∗5 , Y ∗6 , Y ∗7 , and Y ∗8 are exceptions.
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Fig. 2. Bicyclic graphs with extremal resolvent Estrada indices; for details see Obser-
vation 6.

Observation 7. We refer to the graphs whose structure is depicted in Fig. 3. Among

connected tricyclic graphs of order n , n ≥ 5, the graph Zn has greatest resolvent Estrada

index. For n ≥ 6, the graph Z∗n has second–greatest resolvent Estrada index, whereas Z∗5

is an exception.

Z Z Zn n 5

{ {n-5n-4

* *

Fig. 3. Tricyclic graphs with greatest resolvent Estrada indices; for details see Observa-
tion 7.

Observation 8. The structural regularity obeyed by the connected tricyclic graphs with

smallest EEr is not easy to envisage. These graphs of order n , 5 ≤ n ≤ 15, are depicted

in Fig. 4.

n=5 n=6 n=7 n=8

n=9 n=10 n=11 n=12

n=13 n=14 n=15

Fig. 4. Tricyclic graphs of order n , 5 ≤ n ≤ 15, with smallest resolvent Estrada indices.
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Observation 9. The inequality EEr(Sn) < EEr(Cn) holds for all n ≥ 4. Consequently,

any tree has smaller EEr-value than any unicyclic graph of the same order.

For Ba,b,c specified by Eq. (7), the inequality EEr(Xn) < EEr(Ba,b,c) holds only until

n = 6 and is violated for all n ≥ 7. Consequently, it is not true that any unicyclic graph

has smaller EEr-value than any bicyclic graph of the same order. The same applies also

to the relation between EEr of bicyclic and tricyclic graphs. On the other hand, any

unicyclic graph has smaller EEr-value than any connected tricyclic graph of the same

order.

Observation 10. Evidently, cospectral graphs have equal EEr-values. Until now, we did

not detect pairs of (connected) non-cospectral graphs with equal EEr-values. However,

there exist non-cospectral graphs whose EEr-values are different, but remarkably close.

For instance, EEr(B3,4,4) = 13.199203763 whereas EEr(B3,3,5) = 13.199203796, and

EEr(B4,4,5) = 15.16613306697 whereas EEr(B3,5,5) = 15.16613306703. These findings

resemble the existence of the earlier discovered almost–equienergetic graphs [15–17].

3 Mathematical studies

We first provide a partial proof of Observation 9.

Let G1 be a bipartite graph with n ≥ 3 vertices and m edges. Let G2 be a non-

complete graphs with n vertices and m+ k edges, k ≥ 1. Then in view of Lemmas 3 and

4, a sufficient (but not necessary) condition for the inequality EEr(G1) < EEr(G2) is

n+
2m

(n− 1)2 −m
<

n2 (n− 1)2

n(n− 1)2 − 2(m+ k)
. (8)

Because (n − 1)2 −m > 0 holds for all n ≥ 3, and because for non-complete graphs

with n vertices and m+ k edges, n(n− 1)2− 2(m+ k) > 0, inequality (8) is transformed

into

(n− 2)m2 <
[
n(n− 1)2 − (n− 2)m

]
k . (9)

Bearing in mind that m ≤ n(n− 1)/2, it is easy to verify that n(n− 1)2− (n− 2)m > 0,

and thus relation (9) yields

k >
(n− 2)m2

n(n− 1)2 − (n− 2)m
(10)

which will be the starting point for our analysis.

-436-



It is obvious that if some integer k = k0 satisfies the condition (10), then also any

integer greater than k0 satisfies this condition. Therefore, we will be interested in the

smallest (integer) value of k, for which inequality (10) holds.

What next should be observed is that for any graph-theoretically meaningful values

of the parameter n, the expression

(n− 2)m2

n(n− 1)2 − (n− 2)m
(11)

is monotonically increasing in the variable m.

Consider now two special cases.

Case 1: m = n− 1. A connected graph with n− 1 edges is a tree and is thus necessarily

bipartite. Then
(n− 2)m2

n(n− 1)2 − (n− 2)m
=
n2 − 3n+ 2

n2 − 2n+ 2

which evidently is less than 1. Therefore, in this case, k = 1 satisfies inequality (10).

As a direct consequence, we obtain:

Theorem 11. The resolvent Estrada index of any tree is smaller than the resolvent

Estrada index of any connected unicyclic graph of the same order.

Theorem 12. The resolvent Estrada index of any tree is smaller than the resolvent

Estrada index of any connected graph of the same order, with cyclomatic number k , k >

1.

Case 2: m = n. Then

(n− 2)m2

n(n− 1)2 − (n− 2)m
=

n2 − 2n

n2 − 3n+ 2
.

It is easy to verify that for n ≥ 3,

1 <
n2 − 2n

n2 − 3n+ 2
< 2 .

Therefore, in this case, k = 1 does not satisfy inequality (10), but k = 2 does. From this

result we obtain:

Theorem 13. The resolvent Estrada index of any connected bipartite n-vertex unicyclic

graph is smaller than the resolvent Estrada index of any connected tricyclic graph.
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Theorem 14. The resolvent Estrada index of any connected bipartite n-vertex unicyclic

graph is smaller than the resolvent Estrada index of any connected graph of the same

order, with cyclomatic number k , k > 3.

Note that Theorems 11–14 fully agree with what above was stated as Observation 9,

but are somewhat weaker than what we established in our computational studies.

The upper bound (6), earlier obtained in [2], is restricted to bipartite graphs. We now

show how it can be modified so as to hold for all graphs.

Theorem 15. Let G be a non-complete graph with n vertices (n > 3) and m edges. Then

EEr(G) ≤ n+
4m

(n− 1)2 − 2m
. (12)

Proof. Start with Eq. (4) which can be rewritten as

EEr(G) =
∑
k≥0

M2k

(n− 1)2k
+
∑
k≥0

M2k+1

(n− 1)2k+1

= n+
∑
k≥1

M2k

(n− 1)2k
+
∑
k≥1

M2k+1

(n− 1)2k+1

in view of M0 = n and M1 = 0. Taking into account Eq. (1), we arrive at

EEr(G) = n+
∑
k≥1

n∑
i=1

λ2ki

(n− 1)2k
+
∑
k≥1

n∑
i=1

λ2k+1
i

(n− 1)2k+1

≤ n+
∑
k≥1

n∑
i=1

λ2ki

(n− 1)2k
+
∑
k≥1

n∑
i=1

|λi|2k+1

(n− 1)2k+1

≤ n+
∑
k≥1

n∑
i=1

λ2ki

(n− 1)2k
+
∑
k≥1

n∑
i=1

|λi|2k

(n− 1)2k

where we have used the fact that all eigenvalues of all non-complete graphs are less than

n− 1, and therefore |λi|2k+1 < (n− 1) |λi|2k = (n− 1)λ2ki . Thus,

EEr(G) ≤ n+ 2
∑
k≥1

n∑
i=1

λ2ki

(n− 1)2k
.

Using the well known analytical inequality
∑
i

api ≤
(∑

i

ai
)p

, we get

EEr(G) ≤ n+ 2
∑
k≥1


n∑
i=1

λ2i

(n− 1)2


k

= n+ 2
∑
k≥1

[
2m

(n− 1)2

]k

-438-



which now straightforwardly leads to inequality (12).

It is easy to see that equality in (12) holds if and only if λi = 0 for all i = 1, 2, . . . , n,

i.e., if and only if G is the edgeless graph Kn .

4 Summary and Conclusion

In this paper, we established a number of properties of the resolvent Estrada index

EEr . A few of these were proven by mathematical arguments and stated as Theorems

11–15. Most of our results, stated here as Observations 5–10, should be considered as

conjectures, awaiting to be verified or (what we deem to be less likely) refuted. We

believe that these will invite other colleagues to undertake additional research of this

newly conceived graph–spectrum–based structure descriptor.

Another topic that calls for investigation are the relations between the two Estrada

indices EE (Eqs. (2), (3)) and EER (Eqs. (4), (5)). Such relations certainly exist,

and earlier works [3,11] have revealed a great deal of parallelism between EE and EEr .

In order that EEr gets applications independent of EE (especially in network science),

of paramount importance would be to have cases in which its structure–dependence is

significantly different from that of EE. In our future studies, we intend to pay particular

attention on discovering and characterizing such properties of the resolvent Estrada index.
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