
New Bounds on the Incidence Energy,
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Abstract

For a simple graph G and a real number α ( 6= 0, 1) the graph invariant

sα is equal to the sum of powers of signless Laplacian eigenvalues of G. In

this paper, we present some new bounds on sα of graphs and improve some

results which was obtained on bipartite graphs. As a result of these bounds,

we also obtain the some improved results on incidence energy. In addition, we

study on Randić energy (RE) and Randić Estrada index (REE) of (bipartite)

graphs.

1 Introduction

Let G be a finite, simple and undirected graph with n vertices. Let V (G) = {v1, v2, ..., vn}

be the vertex set of G.If any vertices vi and vj are adjacent, then we use the notation

vi ∼ vj. For vi ∈ V (G) , the degree of the vertex vi, denoted by di, is the number of the

vertices adjacent to vi.

The matrix L (G) = D (G) − A (G) (resp., Q (G) = D (G) + A (G)) is called the

Laplacian matrix [51, 52] (resp., the signless Laplacian matrix ( [13]- [16])) of G, where
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A (G) is the adjacency matrix and D (G) is the diagonal matrix of the vertex degrees.

Since A (G) , L (G) and Q (G) are all real symmetric matrices, their eigenvalues are real

numbers. So, we can assume that λ1 (G) ≥ λ2 (G) ≥ ... ≥ λn (G) (resp., µ1 (G) ≥

µ2 (G) ≥ ... ≥ µn (G) , q1 (G) ≥ q2 (G) ≥ ... ≥ qn (G)) are the adjacency (resp., Laplacian,

signless Laplacian) eigenvalues of G. It follows from the Geršgorin disc theorem that

L (G) and Q (G) are semidefinite. Therefore, all Laplacian (resp., signless Laplacian)

eigenvalues of G are nonnegative. If the graph G is a connected non-bipartite graph, then

µi (G) > 0 for i = 1, 2, ..., n [13]. Moreover, G is bipartite graph if and only if qn = 0 [12].

On one of the most remarkeble chemical applications of graph theory is based on

the close correspondence between the graph eigenvalues and the molecular orbital energy

levels of π−electrons in conjugated hydrocarbons. For the Hüchkel molecular orbital

approximation, the total π−electron energy in conjugated hydrocarbons is given by the

sum of absolute values of the eigenvalues corresponding to the molecular graph G in which

the maximum degree is not more than four in general. The energy of G was defined by

Gutman in [29] as

E (G) =
n∑
i=1

|λi (G)| .

Research on graph energy is nowadays very active, as seen from the recent papers (

[27,28,30,31,38,39,41,44,56,61]), monograph [42], the references quoted therein.

The singular values of a real matrix (not necessarily square) M are the square roots

of the eigenvalues of the matrix MMT , where MT denotes the transpose of M. Recently,

Nikiforov [53] extended the concept of graph energy to any matrix M by defining the

energy E (M) to be the sum of singular values of M. Obviously, E (G) = E (A (G)) .

Let I (G) be the (vertex-edge) incidence matrix of the graph G. For a graph G with

vertex set {v1, v2, ..., vn} and edge set {e1, e2, ..., en} , the (i, j)-entry of I (G) is 0 if vi

is not incident with ej and 1 if vi is incident with ej. Jooyandeh et al. [40] introduced

the incidence energy IE of G, which is defined as the sum of the singular values of the

incidence matrix of G. Gutman et al. [32] showed that

IE = IE (G) =
n∑
i=1

√
qi (G) .

Some basic properties of IE may be found in [32,33,40].

From (1), one can immediately get the incidence energy of a graph by computing the

signless Laplacian eigenvalues of the graph. However, even for special graphs, it is still
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complicated to find the signless Laplacian eigenvalues of them. Hence, it makes sense to

establish lower and upper bounds to estimate the invariant for some classes of graphs.

Zhou [59] obtained the upper bounds for the incidence energy using the first Zagreb index.

Gutman et al. [33] gave several lower and upper bounds for IE.

In [45] Liu and Lu introduced a new graph invariant based on Laplacian eigenvalues

LEL = LEL (G) =
n−1∑
i=1

√
µi

and called it Laplacian energy like invariant. At first it was considered that [45] LEL

shares similar properties with Laplacian energy [34]. Then it was shown that it is much

more similar to the ordinary graph energy [35]. For survey and details on LEL, see [46].

For a graph G with n vertices and a real number α, to avoid trivialities it may be

required that α 6= 0, 1, the sum of the αth powers of the non-zero Laplacian eigenvalues

is defined as [60]

σα = σα (G) =
n−1∑
i=1

µαi .

The cases α = 0 and α = 1 are trivial as σ0 = n − 1 and σ1 = 2m, where m is the

number of edges of G. Note that σ1/2 is equal to LEL. It is worth noting that nσ−1 is

also equal to the Kirchhoff index of G (one can refer to the papers [4, 36, 54] for its

definition and extensive applications in the theory of electric circuits, probabilistic theory

and chemistry). Recently, various properties and the estimates of σα have been well

studied in the literature. For details, see [17, 47,57,59,60].

Motivating the definitions of IE, LEL and σα, Akbari et al. [1] introduced the sum of

the αth powers of the signless Laplacian eigenvalues of G as

sα = sα (G) =
n∑
i=1

qαi (1)

and they also gave some relations between σα and sα. In this sum, the cases α = 0 and

α = 1 are trivial as s0 = n and s1 = 2m. Note that s1/2 is equal to the incidence

energy IE. Note further that Laplacian eigenvalues and signless Laplacian eigenvalues of

bipartite graphs coincide [13, 51, 52]. Therefore, for bipartite graphs σα is equal to sα [9]

and LEL is equal to IE [32]. Recently some properties and the lower and upper bounds

of sα have been established in [1, 9, 43, 48].
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The Randić matrix of G is the n× n matrix

R = R (G) =


1√
didj

, if vi∼ vj

0, otherwise.

The Randić eigenvalues ρ1, ρ2, ..., ρn of the graph G are the eigenvalues of its Randić

matrix. Since R (G) is real symmetric matrix, its eigenvalues are real number. So we can

order them so that ρ1 ≥ ρ2 ≥ ... ≥ ρn.

The Randić energy of the graph G is defined in [5, 6] as:

RE = RE (G) =
n∑
i=1

|ρi| . (2)

The Estrada index of the graph G is defined in [22]- [25] as:

EE = EE (G) =
n∑
i=1

eλi .

The Estrada index of graphs has an important role in Chemistry an Physics. For more

detailed information we refer to the reader [22]- [25]. In addition, there exist a vast

literature that studies Estrada index and its bounds. For detailed information we may

also refer to the reader [19], [21], [49], [55].

Then the Randić Estrada index of the graph G is defined in [7] as:

REE = REE (G) =
n∑
i=1

eρi . (3)

Research on graph energy is nowadays very active, as seen from the recent papers [39]-

[44], [53]- [61] monograph [42], the references quoted therein. Moreover properties of

Randić energy can be found in [5]- [7], [19], [26], [37].

At the outset we note that

REE = REE (G) =
∞∑
k=0

1

k!

n∑
i=1

ρki ,

where the standard notational convention that 00 = 1 is used.

Recall that the general Randić index of a graph G is defined in [3] as

Rα = Rα (G) =
∑
vi∼vj

(didj)
α ,

where the summation is over all edges vivj in G, and α 6= 0 is a fixed real number.
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The general Randić index when α = −1 is

R−1 = R−1 (G) =
∑
vi∼vj

1

didj
.

Some properties on R−1 (G) can be founded in [10].

Let a1,a2,..., ar be positive real numbers. For a positive number k among the values

1 ≤ k ≤ r, let us suppose that each Pk is defined as in the following:

P1 =
a1 + a2 + · · ·+ ar

r
,

P2 =
a1a2 + a1a3 + · · ·+ a1ar + a2a3 + · · ·+ ar−1ar

1
2
r(r − 1)

,

...

Pr−1 =
a1a2 · · · ar−1 + a1a2 · · · ar−2ar + · · ·+ a2a3 · · · ar−1ar

r
,

Pr = a1a2 · · · ar .

Hence the arithmetic mean is simply P1 while the geometric mean is P
1/r
r . In fact the

following famous lemma (see [2]) gives a relationship among them.

Lemma 1.1 (Maclaurin’s Symmetric Mean Inequality) For a1, a2, · · · , ar ∈ R+,

it is true that

P1 ≥ P
1/2
2 ≥ P

1/3
3 ≥ · · · ≥ P 1/r

r .

Equality among them holds if and only if a1 = a2 = · · · = ar.

We purpose to obtain some better bounds this fruitful inequality (in Lemma 1.1)

tecnique on our main results.

In this paper, we obtain some new bounds on sα of graphs and improve some results

which was obtained on bipartite graphs. As a result of these bounds, we also obtain the

some improved results on incidence energy. In addition, we study on RE and REE of

(bipartite) graphs, and get some bounds for RE and REE in term of the vertex number

(n), general Randić index (R−1), the maximum degree (∆) and the minimum degree (δ)

, and also find some inequalities between RE and REE.

2 New bounds for sα and IE

The following lemmas will be used later for our main results in this section.
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Let t = t (G) be the number of spanning trees of a graph G. Let G1 ×G2 denotes the

Cartesian product of the graphs G1 and G2 [12].

Now we introduce the following two auxiliary quantities for a graph G as

t1 = t1 (G) =
2t (G×K2)

t (G)
and T = T (G) =

∆ + δ +
√

(∆− δ)2 + 4∆

2
(4)

where ∆ and δ are the maximum and minimum vertex degree of G, respectively.

Lemma 2.1 [15] If G is a connected bipartite graph of order n, then
n−1∏
i=1

µi =
n−1∏
i=1

qi =

nt (G) . If G is a connected non-bipartite graph of order n, then
n∏
i=1

qi = t1.

Lemma 2.2 [11, 58] Let G be a connected graph with n ≥ 3 vertices and ∆ be the

maximum vertex degree of G. Then q1 ≥ T ≥ ∆ + 1 with either equalities if and only if

G is a star graph K1,n−1.

Lemma 2.3 [13,51,52]The spectra of L(G) and Q(G) coincide if and only if the graph G

is bipartite.

After all above material, we are ready to present our main results.

Theorem 2.4 Let G be a connected graph with n vertices and m edges. Thus we have

an upper bound IE ≤
√

2mn. Equality holds if and only if q1 = q2 = · · · = qn.

Proof. If we take r = n and ai =
√
qi for i = 1, 2, ..., n, by Lemma 1.1 , then we obtain

P1 ≥ P
1/2
2 such that

P1 =

n∑
i=1

√
qi

n
=
IE

n

and

P2 =
1

n (n− 1)

n∑
i=1

n∑
j=1, j 6=i

√
qiqj

=
1

n (n− 1)

( n∑
i=1

√
qi

)2

−
n∑
i=1

(
√
qi)

2


=

1

n (n− 1)

[
IE2 − 2m

]
as

n∑
i=1

√
qi = IE and

n∑
i=1

qi = 2m.

From this, we then get IE ≤
√

2mn.

From Lemma 1.1, the equality holds if and only if q1 = q2 = · · · = qn.
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Remark 2.5 Let us point out that in Theorem 2.4, we recover the same upper bound as

in Theorem 5 in the paper [40], throught a different approach and equality condition.

Theorem 2.6 Let G be a connected graph with n vertices and t1 be given by (4).

(i) If G is non-bipartite graph, then

sα = σα ≥
√
n (n− 1) t

2α/n
1 + s2α .

(ii) If G is bipartite graph, then

sα = σα ≥
√
s2α.

Equalities hold if and only if q1 = q2 = · · · = qn.

Proof. If we take r = n and ai = qαi for i = 1, 2, ..., n, by Lemma 1.1 , then we obtain

P
1/2
2 ≥ P

1/n
n such that

P2 =
1

n (n− 1)

n∑
i=1

n∑
j=1, j 6=i

qαi q
α
j

=
1

n (n− 1)

( n∑
i=1

qαi

)2

−
n∑
i=1

(qαi )2


=

1

n (n− 1)

[
s2α − s2α

]
and

Pn =
n∏
i=1

qαi = tα1

as sα =
n∑
i=1

qαi by (1). From this, we then get the result.

If G is bipartite graph, then it is well known that qn = 0 [12]. Thus, t1 = 0. As a

result, the inequality in (ii) is obvious.

By Lemma 2.3, sα = σα.

From Lemma 1.1, the equalities hold if and only if q1 = q2 = · · · = qn.

Taking α = 1/2 in Theorem 2.4, we actually improve the bounds (13) and (14) which

was obtained in [8] in the next corollary.

Corollary 2.7 Let G be a connected graph with n vertices and m edges. Let t1 be given

by (4).
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(i) If G is non-bipartite, then

IE ≥
√
n (n− 1) t

1/n
1 + 2m. (5)

(ii) If G is bipartite, then

LEL = IE ≥
√

2m. (6)

The equalities (5) and (6) hold if and only if q1 = q2 = · · · = qn.

Remark 2.8 By some basic elementary calculations, one may see that the bounds (5)

and (6) are better than the bounds (13) and (14) in [8].

In addition, for bipartite graphs, we know that nt =
n−1∏
i=1

qi where t is the number of

spanning trees of a graph G by Lemma 2.1.

Using Arithmetic-Geometric Mean inequality, we have

(nt)1/n−1 ≤


n−1∏
i=1

qi

n− 1


1/n−1

≤

n−1∑
i=1

qi

n− 1
=

2m

n− 1
.

From this, it is easily to see that the lower bound (6) is greater than the lower bound

(13). That is,

√
2m ≥

√(
n− 1

n− 2

)[
(n− 1)2 (nt)1/n−1 − 2m

]
.

Now we will present new and important a lower bound for sα.

Theorem 2.9 Let G be a connected graph with n vertices. Let t1 and T be given by (4).

(i) If G is non-bipartite graph, then

sα≥ Tα+ (n− 1)

(
t1
T

)α/(n−1)
(7)

(ii) If G is bipartite graph, then

sα = σα≥ Tα (8)

The equalities in (7) and (8) hold if and only if G is isomorphic to K1,n−1.

Proof. Now taking r = n− 1 and ai = q−αi for i = 2, ..., n, in Lemma 1.1, we have

P
1/(n−2)
n−2 ≥ P

1/(n−1)
n−1 , (9)
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where

Pn−1 =
n∏
i=2

1
√
qi

=

(
q1
t1

)α
and also

Pn−2 =

n∑
i=2

n∑
j=2

1
qαj

n− 1
=

n∏
j=2

1
qαj

n− 1
×

n∑
i=2

qαi .

We hence obtain

sα ≥ qα1 + (n− 1)

(
t1
q1

)α/(n−1)
, (10)

by (9).

Let us consider the function

f (x) = x+ (n− 1)

(
tα1
x

)1/(n−1)

,

where x = qα1 in (10).

One can see that f (x) is increasing for x > t
1/n
1 . By Lemma 2.2, we have q1 ≥ T ≥

∆ + 1 > ∆ ≥ 2m
n
. Using Arithmetic-Geometric Mean inequality and Lemma 2.1, we get

t
1/n
1 ≤

(
n∏
i=1

qi

)1/n

≤

n∑
i=1

qi

n
=

2m

n
.

Therefore f (x) ≥ f (Tα) = Tα + (n− 1)
(
t1
T

)α/(n−1)
.

Combining this with (10), (7) is obtained.

If G is bipartite graph, then it is well known that qn = 0 [12]. Thus, t1 = 0. Hence,

the inequality in (ii) is obvious.

Now we assume that the equalities in (7) and (8) hold. Then all inequalities in the

corresponding arguments must be equalities. Then, q1 = T. By Lemma 2.2, we conclude

that G ∼= K1,n−1.

Remark 2.10 We should note that the bound (8) improves the results in [17, Theo. 3.4,

Cor. 3.5, Cor. 3.7, Lemma 3.8, Theo. 3.9, Theo. 3.11 ] for bipartite graphs.

Corollary 2.11 Let G be a connected graph of order n and t1 and T be as given in (4).

(i) If G is non-bipartite graph, then

IE ≥
√
T + (n− 1)

(
t1
T

)1/2(n−1)

(11)
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(ii) If G is bipartite graph, then

IE = LEL ≥
√
T (12)

The equalities in (11) and (12) hold if and only if G is isomorphic to K1,n−1.

Remark 2.12 We should note that the lower bound in (11) is the same with one which

was obtained in [9, Theorem 4.8]. Moreover, in the same paper, it was also stated that

it can not become an equality for the same bound. But, as seen in Theorem 2.9, using

different method, we gave this lower bound with an equality condition.

Morever, one can easily see that the lower bound in (12) is better than the results

in [8, Theo. 3.1 (i) and Theo. 3.3 (i)] and in [9, Theo. 4.8]. This bound also improves

the results in [18, Theo. 2.5 and Theo. 2.12 ] for bipartite graphs.

2.1 New bounds for RE and REE

Firstly, we select some basic properties on the Randi ć eigenvalues of G and the other

materials which will be used in this section.

Lemma 2.13 [5] Let G be a graph with n vertices and Randić matrix R. Then

tr (R) =
n∑
i=1

ρi = 0

and

tr
(
R2
)

=
n∑
i=1

ρ2i = 2
∑
vi∼vj

1

didj
= 2R−1.

Lemma 2.14 [50] The Randić spectral radius ρ1 = 1.

Lemma 2.15 [6] A simple connected graph G has two distinct Randić eigenvalues if and

only if G is complete.

Lemma 2.16 [10] Let G be a connected graph of order n with maximum degree ∆ and

minimum degree δ. Then
n

2∆
≤ R−1 ≤

n

2δ
.

Equality occurs in both bounds if and only if G is a regular graph.

The first result of this section is the following.
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Theorem 2.17 Let G be a connected graph with n vertices and P be the absolute value

of the determinant of the Randić matrix R. Thus we have

1 +
√

(n− 1) (n− 2)P 2/(n−1) + 2R−1 − 1 ≤ RE ≤ 1 +
√

(n− 1) (2R−1 − 1).

The equality occurs in both bounds if and only if G is a complete graph.

Proof. Now taking r = n− 1 and ai = |ρi| for i = 2, ..., n, in Lemma 1.1, we have

P1 ≥ P
1/2
2 , (13)

where

P1 =

n∑
i=2

|ρi|

n− 1
=
RE − 1

n− 1

and also

P2 =
1

(n− 1) (n− 2)

n∑
i=2

n∑
j=2, j 6=i

|ρi| |ρj|

=
1

(n− 1) (n− 2)

( n∑
i=2

|ρi|

)2

−
n∑
i=2

(ρi)
2


=

1

(n− 1) (n− 2)

[
(RE − 1)2 − (2R−1 − 1)

]
We hence obtain the right-hand side of inequality by (13).

Similarly setting r = n− 1 and ai = |ρi| for i = 2, ..., n, in Lemma 1.1, we get

P
1/2
2 ≥ P

1/(n−1)
n−1 , (14)

where

Pn−1 =
n∏
i=2

|ρi| = P.

and P2 is as given in above. From (14), we obtain the left-hand side of inequality.

The equalities hold in both bounds if and only if G is complete graph by Lemma 2.14,

2.15 and 1.1.

Remark 2.18 It can be easily to see that the lower bound in Theorem 2.17 is better

than (12) in [7] on many special examples. We consider the graph G = (V,E) with the

vertex set V = {v1, v2, v3, v4} and the edge set E = {v1v2, v2v3, v1v3, v3v4}. For this graph,

RE = 2.4574.While the lower bound in Theorem 2.17 gives RE ≥ 2.406, the lower bound

in (12) gives RE ≥ 2.301. But our upper bound in Theorem 2.17 is not better than (13)

in [7] for this graph.
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Using Lemma 2.16, we can give the following corollary for Theorem 2.17.

Corollary 2.19 Let G be a connected graph with n vertices. Then

1 +

√
(n− 1) (n− 2)P 2/(n−1) +

n−∆

∆
≤ RE ≤ 1 +

√
(n− 1)

(
n− δ
δ

)
with equaliy if and only if G is complete graph.

Remark 2.20 Let us point out that in Corollary 2.19, we recover the same lower and

upper bounds as in Theorem 3.5 and Theorem 4.1 in the paper [19].

Now we consider the bipartite graph case of the above theorem (Theorem 2.17).

Theorem 2.21 Let G be a connected bipartite graph and P be the absolute value of the

determinant of the Randić matrix R. Thus we have

2 +
√

(n− 2) (n− 3)P 2/(n−2) + 2R−1 − 2 ≤ RE ≤ 2 +
√

(n− 2) (2R−1 − 2).

The equality occurs in both bounds if and only if G is a complete bipartite graph.

Proof. Since G is a bipartite graph, we have ρ1 = −ρn , that is, ρ1 = 1 and ρn = −1,

from [12, p.109] and Lemma 2.16. The rest of the proof is similar to the proof of Theorem

2.17, taking r = n− 2.

Corollary 2.22 Let G be a connected bipartite graph with n vertices. Then

2 +

√
(n− 2) (n− 3)P 2/(n−2) +

n− 2∆

∆
≤ RE ≤ 2 +

√
(n− 2)

(
n− 2δ

δ

)
.

with equaliy if and only if G is complete bipartite regular graph.

For REE, we give the important result in the following.

Theorem 2.23 Let G be a connected graph of order n.Then

REE ≥ e+
n− 1

e1/(n−1)
. (15)

Moreover, the equality holds if and only if G is complete graph.
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Proof. Recall that ρ1 = 1. Directly from (3), we have

REE = e1 + eρ2 + ...+ eρn

≥ e+ (n− 1)

[
n∏
i=2

eρi

]1/(n−1)

= e+
n− 1

e1/(n−1)
as

n∑
i=1

ρi = 0.

Suppose that the equality in (15) holds. Then all inequalities in the above argument must

be equalities, i. e., ρ2 = ... = ρn. Hence by Lemma 2.15, we have G is complete graph.

Conversely, it is easy to check that the equality in (15) holds for complete graph, which

completes the proof.

If G is a bipartite graph, it is known that ρ1 = −ρn. Using the same way as in

Theorem 2.23, we then have the following bound.

Theorem 2.24 Let G be a connected bipartite graph of order n.Then

REE ≥ e+
1

e
.

Moreover, the equality holds if and only if G is a complete bipartite graph.

Remark 2.25 In fact, Theorem 2.23 concludes that among all graphs of order n, the

complete graph Kn with minimum Randić Estrada index; and Theorem 2.24 concludes

that among all bipartite graphs of order n, the complete bipartite graphs with minimum

Randić Estrada index.

Moreover, the result in (15) is better than the lower bound (15) which was obtained

for REE in [7]. While (15) in [7] was obtained taking the lower bound of ρ1,we obtain

the result (15) taking ρ1 = 1.

We now deduce some bounds for the Randić Estrada index of a (bipartite) graph and

obtain some inequalities between REE and RE.

Theorem 2.26 Let G be a connected bipartite graph of order n.Then

e+ e−1 +

√
(n− 2)2 + 2 (2R−1 − 2) ≤ REE (16)

≤ e+ e−1 + (n− 3)−
√

2R−1 − 2 + e
√

2R−1−2.

Equality occurs in both bounds if and only if G is a complete bipartite graph.
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Proof. Note that ρ1 = 1 and ρn = −1 for any bipartite graph G. Directly from (3), we

get (
REE − e− e−1

)2
=

n−1∑
i=2

e2ρi + 2
∑

2≤i<j≤n−1

eρieρj . (17)

In view of the inequality between the arithmetic and geometric means,

2
∑

2≤i<j≤n−1

eρieρj ≥ (n− 2) (n− 3)

[ ∏
2≤i<j≤n−1

eρieρj

]2/[(n−2)(n−3)]
(18)

= (n− 2) (n− 3)

(n−1∏
i=2

eρi

)n−3
2/[(n−2)(n−3)]

= (n− 2) (n− 3) as
n−1∑
i=2

ρi = 0.

Note that
n−1∑
i=2

ρ0i = n − 2,
n−1∑
i=2

ρi = 0 and
n−1∑
i=2

ρ2i = 2R−1 − 2. By means of a power-series

expansion, we get

n−1∑
i=2

e2ρi =
∞∑
k≥0

1

k!

n−1∑
i=2

(2ρi)
k (19)

= (n− 2) + 4 (R−1 − 1) +
∞∑
k≥3

1

k!

n−1∑
i=2

(2ρi)
k

≥ (n− 2) + 4 (R−1 − 1) + t

∞∑
k≥3

1

k!

n−1∑
i=2

ρki for t ∈ [0, 4]

= (1− t) (n− 2) + (4− t) (R−1 − 1) + t
(
REE − e− e−1

)
.

By substituting (18)and (19) back into (17), and solving for REE − e− e−1, we have

REE − e− e−1 ≥ t

2
+

√
[t− 2 (n− 2)]2 + 2 (2R−1 − 2) (4− t)

2
.

It is elementary to show that for n ≥ 2 and R−1 ≥

{
1, if n is even
n
n+1

, if n is odd
, the function

f (x) =
x

2
+

√
[x− 2 (n− 2)]2 + 2 (2R−1 − 2) (4− x)

2

monotonically decreases in the interval [0, 4] . Consequently, the best lower bound for

REE − e− e−1 is attained for t = 0. Then we arrive at the first half of Theorem 2.26.
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Starting from the following inequality, we get

REE − e− e−1 = n− 2 +
∞∑
k≥2

1

k!

n−1∑
i=2

ρki

≤ n− 2 +
∞∑
k≥2

1

k!

n−1∑
i=2

|ρi|k

= n− 2 +
∞∑
k≥2

1

k!

n−1∑
i=2

(
ρ2i
)k/2

≤ n− 2 +
∞∑
k≥2

1

k!

[
n−1∑
i=2

ρ2i

]k/2

= n− 2 +
∞∑
k≥2

(2R−1 − 2)k/2

k!

= n− 3−
√

2R−1 − 2 +
∞∑
k≥0

(√
2R−1 − 2

)k
k!

= n− 3−
√

2R−1 − 2 + e
√

2R−1−2.

From derivation of (16) and Lemma 2.14 it is evident that equality will be attained if

and only if ρ2 = ... = ρn−1 = 1. By Lemma 2.15, this happens only in the case of G is

complete bipartite. The proof now is completed.

Using Lemma 2.16, we give the following corollary for above theorem (Theorem 2.26)

Corollary 2.27 Let G be a connected bipartite graph with n vertices. Then

e+ e−1 +

√
(n− 2)2 +

2 (n− 2∆)

∆
≤ REE (20)

≤ e+ e−1 + (n− 3)−
√
n− 2δ

δ
+ e
√

n−2δ
δ .

Equality holds in both bounds if and only if G is a complete bipartite regular graph.

Recall that for a general graph G, we have ρ1 = 1, by Lemma 2.14. If we consider

REE−e =
n∑
i=2

eρi in the same way as in Theorem 2.26, we then have the following bounds

for general graphs.

Theorem 2.28 Let G be a graph of order n with the Randić index R−1. Then the Randić

Estrada index of G is bounded as

REE ≤ e+ (n− 3)−
√

2R−1 − 1 + e
√

2R−1−1 (21)

-381-



and

REE ≥ e+

√
(n− 1)

(
1 +

n− 2

e2/(n−1)

)
+ 2 (4R−1 − 3). (22)

Equality occurs in both bounds if and only if G is a complete bipartite graph.

Remark 2.29 We should note that the bounds in (21) and (22) for REE is better than

the bounds (21) in [7] on many special examples. We consider the graph G in Remark

2.18. For this graph, while 4.78 ≤ REE ≤ 5.26 in (21) and (22), the bounds in (21) give

4.08 ≤ REE ≤ 6.38 in [7].

Corollary 2.30 Let G be a graph of order n with maximum degree ∆ and minimum

degree δ. Then the Randić Estrada index of G is bounded as

REE ≤ e+ (n− 3)−
√
n− δ
δ

+ e
√

n−δ
δ

and

REE ≥ e+

√
(n− 1)

(
1 +

n− 2

e2/(n−1)

)
+ 2

(
2n

∆
− 3

)
.

Equality holds in both bounds if and only if G is a complete bipartite regular graph.

Recall that the Randić energy of a graph G is defined in [5, 6] as:

RE = RE (G) =
n∑
i=1

|ρi| .

Some properties on RE can be found in [5, 6]. In what follows, we give inequalities

between REE and RE.

Theorem 2.31 Let G be a bipartite graph of order n with minimum degree δ. Then

REE −RE ≤ (n− 5) + e+ e−1 −
√
n− 2δ

δ
+ e
√

n−2δ
δ (23)

or

REE +RE ≤ n− 1 + e+ e−1 + e(RE−2). (24)

Equality (23) or (24) is attained if and only if G is a complete bipartite regular graph.

Proof. Note that ρ1 = 1 and ρn = −1. Then we get

REE − e− e−1 = n− 2 +
∞∑
k≥1

1

k!

n−1∑
i=2

ρki ≤ n− 2 +
∞∑
k≥1

1

k!

n−1∑
i=2

|ρi|k .
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Taking into accout the definition of graph Randić energy (2), we have

REE − e− e−1 ≤ (n− 2) + (RE − 2) +
∞∑
k≥2

1

k!

n−1∑
i=2

|ρi|k ,

which, as in Theorem 2.26, leads to

REE −RE ≤ (n− 4) + e+ e−1 +
∞∑
k≥1

1

k!

n−1∑
i=2

|ρi|k

≤ (n− 5) + e+ e−1 −
√

2R−1 − 2 + e
√

2R−1−2

≤ (n− 5) + e+ e−1 −
√

2R−1 − 2 + e
√

2R−1−2.

The equality holds if and only if G is a complete bipartite regular graph.

Another route to connect REE and RE, is the following:

REE − e− e−1 = n− 2 +
∞∑
k≥2

1

k!

n−1∑
i=2

ρki

≤ n− 2 +
∞∑
k≥2

1

k!

n−1∑
i=2

|ρi|k

≤ n− 2 +
∞∑
k≥2

[∑n−1
i=2 |ρi|

k
]

k!

= (n− 2)− 1− (RE − 2) +
∞∑
k≥0

(RE − 2)k

k!

= (n− 1)−RE + e(RE−2)

implying

REE +RE ≤ n− 1 + e+ e−1 + e(RE−2).

Also on this formula equality occurs if and only if G is a complete bipartite regular graph.

This completes the proof.

Similary, if we consider REE − e =
n∑
i=2

eρi in the same way as in Theorem 2.31, we

then have the following inequalities for general graphs.

Theorem 2.32 Let G be a graph of order n with the minimum degree δ. Then

REE −RE ≤ n− 3 + e−
√
n− δ
δ

+ e
√

n−δ
δ (25)

or

REE +RE ≤ n− 2 + e+ e(RE−2). (26)

Equality (25) or (26) is attained if and only if G is a complete bipartite regular graph.
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