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Abstract

Let G = (V, E) be a simple graph of order n with m edges. Also let E(G), LE(G)
and LE+(G) be energy, Laplacian energy and signless Laplacian energy of graph G,
respectively. In this paper, we obtain a relation between E(G), LE(G) and LE+(G)
of graph G. Moreover, we present an upper bound on E(G) of graph G in terms of m
and rank r.

1 Introduction

Let G = (V, E) be a graph of order n with the vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i = 1, 2, . . . , n. The diameter

of a graph is the maximum distance between any two vertices of G. Let d be the diameter

of G.

Let A(G) = (aij) be the (0, 1)-adjacency matrix of G such that aij = 1 if vivj ∈ E(G) and

0 otherwise. Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the degree di of

the vertex vi ∈ V (G). Then the matrices L(G) = D(G)−A(G) and L+(G) = D(G) +A(G)

are the Laplacian and the signless Laplacian matrices, respectively.

The eigenvalues λ1, λ2, . . . , λn of the adjacency matrix A(G) of the graph G are also
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called the eigenvalues of G. The energy of the graph G is defined as

E(G) =
n∑
i=1

|λi| . (1)

Details on the properties of graph energy can be found in [6, 7, 10, 11, 13, 14, 15, 16].

Let µ1, µ2, . . . , µn and q1, q2, . . . , qn be the eigenvalues of the matrices L(G) and L+(G),

respectively. Then the Laplacian energy of the graph G is defined as [12]

LE = LE(G) =
n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ . (2)

and the signless Laplacian energy of the graph G is defined as [1]

LE+ = LE+(G) =
n∑
i=1

∣∣∣∣qi − 2m

n

∣∣∣∣ . (3)

Details on the properties of Laplacian energy and signless Laplacian energy can be found in

[5, 8, 12, 17, 19, 21, 22] and [1], respectively.

As usual, Kn and Sn denote respectively the complete graph and the star on n vertices.

Denote by Kp, q (p + q = n) a complete bipartite graph of order n. For n ≥ 3, let S+
n be

an unicyclic graph of order n obtained by adding an edge to Sn .The rank of the adjacency

matrix of graph G is denoted by r = rank(A) and is defined as the number of nonzero

eigenvalues of G.

This paper is organized as follows. In Section 2, we give a list of some necessary lemmas

and known results. In Section 3, we give a relation between LE(G), LE+(G) and E(G). In

Section 4, we obtain an upper bound on E(G) of graph G.

2 Preliminaries

In this section, we shall list some previously known results that will be needed in the next

two sections.

Lemma 2.1. [18] Let A and B be n× n Hermitian matrices and C = A+B. Then

λi(C) ≤ λj(A) + λi−j+1(B) (n ≥ i ≥ j ≥ 1),

λi(C) ≥ λj(A) + λi−j+n(B) (n ≥ j ≥ i ≥ 1),
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where λi(M) is the ith largest eigenvalue of matrix M (M = A, B, C).

The following result is obtained from [8]:

Lemma 2.2. [8] Let G be a graph of order n with m edges. Then

LE(G) = max
1≤k≤n

{
2Sk(G)− 4mk

n

}
, (4)

where

Sk(G) =
k∑
i=1

µi.

Similarly Lemma 2.2, from (3), we can get the following result for signless Laplacian

energy.

Lemma 2.3. Let G be a graph of order n with m edges. Then

LE+(G) = max
1≤k≤n

{
2S+

k (G)− 4mk

n

}
, (5)

where

S+
k (G) =

k∑
i=1

qi.

Lemma 2.4. [4] A graph G is bipartite if and only if λ1 = −λn.

Lemma 2.5. [9] Let G be a connected graph. Then q1(G) ≥ 2λ1(G) with equality holding if

and only if G is regular.

3 Relation between LE(G), LE+(G) and E(G)

In this section we give a relation between E(G), LE(G) and LE+(G) of graph G. Recently,

Abreu et al. [1] obtained the following relation between E(G), LE(G) and LE+(G) of graph

G:

LE+(G) + LE(G) ≥ max

{
2E(G), 2

n∑
i=1

∣∣∣di − 2m

n

∣∣∣} . (6)

Theorem 3.1. Let G be a graph of order n with m edges and rank r. Then

LE+(G) + LE(G) ≥ 4E(G)− 4mr

n
(7)

with equality holding if and only if G ∼= nK1 or G ∼= K2 ∪ (n− 2)K1 or G ∼= Kn/2, n/2 .
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Proof: If G ∼= nK1 , then the equality holds in (7). Otherwise, m ≥ 1. Since L+(G) =

L(G) + 2A(G) is a positive semi definite matrix, by Lemma 2.1, we get

µi ≥ −2λn−i+1 (1 ≤ i ≤ n) (8)

and qi ≥ 2λi (1 ≤ i ≤ n). (9)

Let ν+ and ν− be the number of positive and negative eigenvalues of graph G, respectively.

Since the rank of the adjacency matrix is r, we have r = ν+ + ν− . From (1),

E(G) =
n∑
i=1

|λi| =
ν+∑
i=1

λi −
ν−∑
i=1

λn−i+1 . (10)

By Lemma 2.2, we have

LE(G) = max
1≤k≤n

(
2

k∑
i=1

µi −
4mk

n

)

≥ 2
ν−∑
i=1

µi −
4mν−

n

≥ −4
ν−∑
i=1

λn−i+1 −
4mν−

n
by (8). (11)

Similarly, from Lemma 2.3, we get

LE+(G) = max
1≤k≤n

(
2

k∑
i=1

qi −
4mk

n

)

≥ 4
ν+∑
i=1

λi −
4mν+

n
by (9).

From the above two results, we get

LE(G) + LE+(G) ≥ 4

(
ν+∑
i=1

λi −
ν−∑
i=1

λn−i+1

)
− 4m

n
(ν+ + ν−) .

Since r = ν+ + ν−, using (10), from the above result, we get the required result in (7).

First part of the proof is done.

Now suppose that the equality holds in (7). Then all the inequalities in the above must

be equalities. Thus we have µi = −2λn−i+1 (1 ≤ i ≤ n) and qi = 2λi (1 ≤ i ≤ n). First we
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assume that G is disconnected. Then µn−1 = 0 and hence λ2 = 0, that is, q2 = 0. Hence

G ∼= K2 ∪ (n− 2)K1 as m ≥ 1.

Next we assume that G is connected. Since m ≥ 1, we have ν+, ν− ≥ 1. Therefore

q1 = 2λ1 and hence G is regular graph, by Lemma 2.5. For d-regular graph, we have

µi = d − λn−i+1 (1 ≤ i ≤ n). Moreover, µ1 = −2λn and hence λ1 = d = −λn , that

is, G is bipartite graph, by Lemma 2.4. If G ∼= Kn/2, n/2 , then LE+(G) = LE(G) = n,

E(G) = n, r = 2 and hence the equality holds in (7). Otherwise, G has diameter at least

3 as G is bipartite regular. Since d < k (k is the number of distinct eigenvalues in G),

then G has at least four different eigenvalues in G and hence ν+ ≥ 2. Therefore we have

q2 = 2λ2 = µ2 = d+ λ2, that is, d = λ2 < λ1 = d, a contradiction.

Remark 3.2. Two results (6) and (7) are incomparable. Sometimes our result in (7) is

better than the result in (6), but not always. For this we denote a graph H obtained from

an isolated vertex joining by two edges to the centers of two stars S3 and S4, respectively.

From the Table 1, one can easily check that our result in (7) is better than the result in (6)

for graphs H and K3, 5, on the other hand the result in (6) is better than our result in (7)

for graphs S8 and S+
8 .

Table 1.

G (7) (6)
H 15.538 15

K3, 5 15.984 15.492

S8 14.166 21

S+
8 12.293 20

4 Upper bound on E(G)

Brouwer [3] has conjectured the following:

Conjecture 4.1. Let G be a graph with n vertices. Then Sk(G) =
k∑
i=1

µi ≤ m +
(
k+1
2

)
for

k = 1, 2, . . . , n.

-363-



The conjecture is known to be true for (i) k = 1, k = 2, k = n− 1 and k = n; (ii) trees;

(iii) unicyclic and bicyclic graphs; (iv) regular graphs; (v) split graphs (graphs whose vertex

set can be partitioned into a clique and an independent set); (vi) cographs (graphs with no

path on 4 vertices as an induced subgraph); (vii) graphs with at most 10 vertices.

In [2], Ashraf et al. gave the following conjecture:

Conjecture 4.2. Let G be a graph with n vertices. Then S+
k (G) =

k∑
i=1

qi ≤ m +
(
k+1
2

)
for

k = 1, 2, . . . , n.

Moreover, they mentioned that Conjecture 4.2 is true for k = 1, 2, n−1, n. It is also true

for trees and regular graphs. Yang et al. [20] show that Conjecture 4.2 is true for unicyclic

and bicyclic graphs. Let G(n, m) be a set of graphs of order n and m edges. Now we define

Γ1 =

{
G : G ∈ G(n, m) and

k∑
i=1

µi(G) ≤ m+
k2 + k

2
, 1 ≤ k ≤ n

}

and Γ2 =

{
G : G ∈ G(n, m) and

k∑
i=1

qi(G) ≤ m+
k2 + k

2
, 1 ≤ k ≤ n

}
.

From the above we conclude that tree, unicyclic, bicyclic and regular graphs are belongs

to Γ1 ∩ Γ2. We now obtain the following result.

Theorem 4.3. Let G be a graph of order n with m (> 0) edges. If G ∈ Γ1 ∩ Γ2, then

E(G) ≤ m+
r2 + r

4
− 1 , (12)

where r = rank(A).

Proof: Since G ∈ Γ1 ∩ Γ2, we have G ∈ Γ1 and G ∈ Γ2 . From (8) and (9), we get

k∑
i=1

µi ≥ −2
k∑
i=1

λn−i+1 for 1 ≤ k ≤ n (13)

and
k∑
i=1

qi ≥ 2
k∑
i=1

λi for 1 ≤ k ≤ n. (14)

Let ν− and ν+ be the negative and positive eigenvalues of G, respectively. Since G ∈ Γ1

and setting k = ν− in (13), we get

E(G) = −2
ν−∑
i=1

λn−i+1 ≤
ν−∑
i=1

µi ≤ m+
ν−

2
+ ν−

2
.
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Since G ∈ Γ2 and setting k = ν+ in (14), we get

E(G) = 2
ν+∑
i=1

λi ≤
ν+∑
i=1

qi ≤ m+
ν+

2
+ ν+

2
.

From the above two results, we get

2E(G) ≤ 2m+
ν−

2
+ ν+

2

2
+
ν− + ν+

2
.

It is well known that ν− + ν+ = r = rank(A). Using this result, from the above, we get

2E(G) ≤ 2m+
r2 + r

2
− ν−ν+ .

Since m > 0, we have ν−ν+ ≥ 1. From the above, we get the required result in (12).
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