
An Improved Upper Bound of the Energy

of Some Graphs and Matrices

Maria Aguieiras A. de Freitasa, Maŕıa Robbianob,∗,
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Abstract

Considering a consequence of the Cauchy–Schwarz inequality we obtain a sharp
upper bound of the energy of a bipartite graph and a large family graphs, namely
those graphs whose adjacency matrix is partitioned into blocks with constant row
sum.

1 Introduction

Let G = (V,E) be an undirected simple graph with n vertices and m edges. The eigenval-

ues of G are the eigenvalues of its adjacency matrix, AG. The multiset of the eigenvalues

of a matrix M is the spectrum of M and will be denoted by σM . The spectrum of a
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graph G, is σAG
, for short we denote it by, σG. If G has at least one edge, then AG has

a negative eigenvalue, not greater than −1 and a positive eigenvalue not less than the

average degree of the vertices of G (see [1,7]). Throughout the paper, the eigenvalues of

a real symmetric matrix M of order n are ordered as follows: λ1(M) ≥ · · · ≥ λn(M). In

a similar way, λ1(G) ≥ · · · ≥ λn(G) are ordered the eigenvalues of G. The energy of G is

defined as

E (G) =
n∑
i=1

|λi (G)| .

This concept was introduced by Gutman and is intensively studied in chemistry, since it

can be used to approximate the total π-electron energy of a molecule (see [5, 6]).

Many upper bounds for the energy of a graph present in the literature (see, [8–10])

were obtained by using the Cauchy–Schwarz inequality (see [11].)

Lemma 1 Let x = (x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn)t in Cn then∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

|xi|2
√√√√ n∑

i=1

|yi|2 . (1)

Equality holds if and only if y = αx, α ∈ C.

By taken xi = 1, for all 1 ≤ i ≤ n, we obtain

Lemma 2 Let y = (y1, y2, . . . , yn)t in Cn then

n∑
i=1

|yi| ≤

√√√√n

n∑
i=1

|yi|2 . (2)

Equality holds if and only if |y1| = · · · = |yn| =
√

1
n

n∑
i=1

|yi|2 .

Now we need to recall (see [3]) that a balanced incomplete block design (BIBD)

consist of v elements and b subsets of these elements called blocks such that (i) each

element is contained in r blocks, (ii) each block contains k elements, and (iii) each pair

of elements is simultaneously contained in λ∗ blocks. The integers (v, b, r, k, λ∗) are called

the parameters of the design. In the particular case r = k the design is called symmetric.

The incidence matrix B of a design is the v × b matrix defined by setting for each x

an element and N a block, Bx,N := 0 if x /∈ N and Bx,N := 1 otherwise. B satisfies

BBT = (r − λ∗)I + λ∗J and JB = kJ , such that J denotes a square matrix whose all
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entries are equal to 1. The incidence graph of a design is defined to be the graph G with

adjacency matrix

AG =

(
0 B
BT 0

)
.

Clearly, the graph is bipartite with each vertex of degree r or k, and its eigenvalues

are 0,±
√
r − λ∗ and ±

√
rk with multiplicities b − v , v − 1 , and 1, respectively, where

vr = bk, λ∗(v − 1) = r(k − 1).

It is well known [3] that the eigenvalues of a bipartite graph G on n = 2N vertices

occur in pairs: ±λ1,±λ2, . . . ,±λN . Let q =
∑N

i=1 λ
4
i . By the Cauchy–Schwarz inequality,

m2 ≤ Nq.

Rada and Tineo showed the following [15]: Let G be a bipartite graph on 2N vertices.

If 1 < m2/q < N , then

E(G) ≤ 2√
N

[(
m−

√
(N − 1)Q

)
+ (N − 1)

(
m−

√
q

N − 1

)]
(3)

where Q = Nq−m2. Equality holds if G is the graph of a symmetric BIBD. Conversely,

if the equality holds and G is regular, then G is the graph of a symmetric BIBD.

In this paper, we obtain a sharp upper bound for the energy of connected bipartite

graphs. We remark that the set of graphs that realize our upper bound contains all the

connected graphs that realize the previous upper bound. Moreover, we have found two

infinite families of graphs realizing our upper bound and not the previously.

The present paper is organized in four sections. In the second section we show an

inequality which is a consequence of the Cauchy–Schwarz inequality and we study the

equality case (see [16]). In the third section we apply the equality results obtained in the

preceding section to an imprimitive symmetric matrix and we use these results to obtain

a sharp upper bound of the energy of connected bipartite graphs. The most general

result of this section is then used, in a subsection, to obtain tight upper bounds for the

energy of a generalized Bethe tree (see [17]). In the fourth section we apply the results of

the second one to an important family of graphs, namely those graphs whose adjacency

matrix is given into block form with equitable partitions. We apply the result for energy

of real symmetric equitable partitioned matrices to the H-join which is a generalization

to more than two graphs of the join of two graphs.
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2 A Consequence of the Cauchy–Schwarz Inequality

Now we obtain a new version of Eq. (2) (see [16]).

Lemma 3 Let y = (y1, y2, . . . , yn)t in Cn and p an integer with 1 ≤ p ≤ n. Then

n∑
i=1

|yi| ≤

√√√√ p∑
i=1

p |yi|2 +

√√√√ n∑
i=p+1

(n− p) |yi|2 ≤

√√√√n

n∑
i=1

|yi|2 .

The left inequality is an equality if and only if |y1| = · · · = |yp| = a =

√
1
p

p∑
i=1

|yi|2 and

|yp+1| = · · · = |yn| = b =

√
1

n−p

n∑
i=p+1

|yi|2 .

Proof. For the left inequality we just apply two times the Cauchy–Schwarz inequality,

firstly to
p∑
i=1

|yi| and thereafter to
n∑

i=p+1

|yi|. For the right inequality we apply the Cauchy–

Schwarz inequality to x = (a1, a2)t and z = (b1, b2)t , where a1 =
√
p, b1 =

√
p∑
i=1

|yi|2,

a2 =
√
n− p and b2 =

√
n∑

i=p+1

|yi|2. It is evident that the left equality holds for the case

in the statement. Reciprocally, if the left equality holds, then

p∑
i=1

|yi|+
n∑

i=p+1

|yi| =
p∑
i=1

|yi|+
√
n− p

√√√√ n∑
i=p+1

|yi|2 =
√
p

√√√√ p∑
i=1

|yi|2 +
√
n− p

√√√√ n∑
i=p+1

|yi|2.

In consequence,
p∑
i=1

|yi| =
√
p

√
p∑
i=1

|yi|2 and by Cauchy–Schwarz equality case we obtain

|y1| = · · · = |yp| = a =

√
1
p

p∑
i=1

|yi|2. By following analogous steps those above, now for

the sum
n∑

i=p+1

|yi| we obtain |yp+1| = · · · = |yn| = b =

√
1

n−p

n∑
i=p+1

|yi|2 .

Let M be an m1×m2 real matrix we denote by |M | =
√
trace (MM t) the Frobenius

matrix norm of M . Nikiforov [13] defined the energy of M as the sum of its singular

values. Let p = min {m1,m2} and consider σ1 (M) ≥ σ2 (M) ≥ · · · ≥ σp (M) as the

singular values of M . As a generalization of the result of Theorem 1 in [8], into the proof

of Theorem 1 in [13], it is shown that

E (M) ≤ σ1 (M) +
√

(p− 1)
(
|M |2 − σ2

1 (M)
)
. (4)
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Let M be a real symmetric `× ` matrix. According to Nikiforov [14], the Ky Fan k-norm

‖M‖(k) is the sum of the k largest absolute values of the eigenvalues of M . If k = `, the

Ky Fan `-norm and the energy of M coincide. Therefore,

E(M) = ‖M‖(`) =
∑̀
j=1

|λj| .

The following inequality is an immediate consequence of the Cauchy–Schwarz result, for

any real symmetric matrix M

E (M) ≤
√
` |M | . (5)

3 Bipartite Graphs

Definition 1 For an irreducible nonnegative matrix M with maximal eigenvalue r, with

exactly h eigenvalues of modulus r, the number h is called the imprimitivity index of M

(see [12, Ch. 3]). If h = 1, then the matrix M is said to be primitive; otherwise it is

imprimitive.

Remark 1 A symmetric imprimitive matrix M must have index 2. By the Frobenius

Form of an Irreducible Matrix [12, Theorem 3.1], in those cases there exists a permutation

matrix P such that

M = P t

(
0 M12

M21 0

)
P . (6)

We note that M t
21 = M12 .

In the next result we obtain an upper bound for the energy of an irreducible nonneg-

ative imprimitive symmetric matrix M .

Theorem 1 Let M be an imprimitive symmetric matrix whose Frobenius form is given

in Eq. (6). If M12 has order m1×m2, and M21 has order m2×m1 and m̃ = min {m1,m2}.
Then

E (M) ≤ 2λ1 (M) + 2
√

(m̃− 1)
(
|M |2 /2− λ2

1 (M)
)
.

Equality holds if and only if m̃ = 1 or if M has 2 (m̃− 1) eigenvalues distinct from

±λ1 (M) with the same modulus, namely
√[
|M |2 /2− λ2

1 (M)
]
/(m̃− 1) and |m2 −m1|

eigenvalues equal to 0.

Proof. Without loss of generality, we can assume that m̃ = m1. Therefore,

M2 = P t

(
M12M21 0

0 M21M12

)
P . (7)
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Since M12M21 and M21M12 share the same nonzero eigenvalues, the multiplicity of the

eigenvalue 0 of M is at least m2 −m1. So the energy of M is the sum of absolute value

of the 2m1 other eigenvalues. On the other hand, it is not difficult to prove that M and

−M are similar matrices. In consequence, the nonzero eigenvalues of M are on pairs, λ

and −λ.

Let σ+ (M) = {λ ∈ σM : λ > 0}. Note that 0 < |σ+ (M) | ≤ m1. Therefore,

|M |2 = 2
∑

λ∈σ+(M)

λ2

and

E (M) =
∑

λ∈σ+(M)

2 |λ| ≤ 2λ1 (M) + 2
√

(m1 − 1)
(
|M |2 /2− λ2

1 (M)
)
. (8)

Thus, the inequality holds.

If m1 = 1, it is clear that E(M) = 2λ1(M) and the equality holds in (8).

If M has 2(m1 − 1) eigenvalues distinct from λ1(M) with the same modulus, say α,

and the other m2 −m1 eigenvalues equal to 0, then

E(M) =
∑
λ∈σM

|λ| = λ1 (M) + 2 (m1 − 1)α

and the equality holds in (8). Conversely, if∑
λ∈σM

|λ| = 2λ1 (M) + 2
√

(m1 − 1)
(
|M |2 /2− λ2

1 (M)
)
,

then, m1 = 1 or ∑
λ∈σ+(M)

|λ| = λ1 (M) +
√

(m1 − 1)
(
|M |2 /2− λ2

1 (M)
)
.

and the result follows from Lemma 2

In what follows we apply the above result to search an upper bound for the energy

of a bipartite graph. Let G be a bipartite graph with bipartition {X, Y }, where |X| = k

and |Y | = `. We label the vertices of G so that

AG =

(
0 A12

A21 0

)
, (9)

where A12 and A21 have order k × ` and ` × k, respectively. If G is a connected graph,

then AG is an irreducible nonnegative symmetric matrix. We are now in a position to

apply Theorem 1 to AG .
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Corollary 1 Let G be a connected bipartite graph with n vertices and m edges and sup-

pose that {X, Y } is a bipartition of the vertices of G, with |X| = k and |Y | = `. Let

k̃ = min {k, `}. Then

E (G) ≤ 2λ1 (G) + 2

√(
k̃ − 1

)
(m− λ2

1 (G)) .

Equality holds if and only if k̃ = 1, or if AG has 2
(
k̃ − 1

)
eigenvalues distinct from

±λ1 (M) with the same modulus, namely

√
(m− λ2

1 (M)) /
(
k̃ − 1

)
, and |k− `| eigenval-

ues equal to 0.

Proof. By considering P = In, the identity matrix, in Eq. (6) it is possible identify AG

in Eq. (9) with M . In this case k̃ and m̃ coincide. Moreover, |M |
2

2
and λ1 (M) correspond

to m and λ1 (G), respectively, and the inequality holds. Considering further that the

order of the adjacency matrix coincides with the number of vertices we see the case of

equality in the statement reproduces the case for equality in Theorem 1. Thus, the result

is proved.

Remark 2 The set of connected bipartite graphs that realize the upper bound in Corollary

1 contains all connected graphs that realize the upper bound in equation (3).

Remark 3 The set of incidence graph of a BIBD ( symmetric or not) is a family of

graphs that is extremal in the sense of Corollary 1.

The subdivision of a graph G is the graph obtained by inserting a new vertex on

every edge of G. We denote by S2k+1 the subdivision of the star K1,k . According to

Ghorbani [4], σS2k+1
= {±

√
k + 1, 0,±1(k−1)}.

Remark 4 For k ≥ 3, the graphs S2k+1 are not the incidence graph of a design (because

of the degree of its vertices) and they are extremal in the sense of Corolllary 1.

In the Remarks 3 and 4 we exhibit two infinite families of graphs that are extremal

to our upper bound in Corollary 1 and are not extremal to the upper bound for bipartite

graphs in Eq. (3): the set of incidence graph of a BIBD that are not symmetric and the

graphs S2k+1.
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3.1 Generalized Bethe Trees

We now continue with the application of the result of Theorem 1 to search an upper

bound for the energy of some balanced trees, namely the generalized Bethe trees. Let T
be an unweighted rooted tree of k levels, where the root is the only vertex at first level

and such that, if we consider the decreasing order, all the vertices in the (k − j + 1)-th

level have equal degree, dj. Thus dk and d1 (= 1) are the degrees of the root vertex and

the vertices at level k (pendant vertices), respectively. By a suitable labeled, the authors

in [18] have characterized the eigenvalues of the adjacency matrix of T . Define

Rk =



0
√
d2 − 1 0 . . . . . . 0

√
d2 − 1 0

√
d3 − 1

. . .
...

0
√
d3 − 1

. . .
...

...
. . . . . . . . .

√
dk−1 − 1 0

...
. . .

√
dk−1 − 1 0

√
dk

0 . . . . . . 0
√
dk 0


. (10)

For 1 ≤ j ≤ k, let denote by nj the total number of vertices at level k − j + 1. Thus

nk = 1.

Theorem 2 [18] For 1 ≤ j ≤ k− 1, let Rj, be the principal submatrix of order j of Rk.

If Ω = {j : 1 ≤ j ≤ k − 1, nj − nj+1 > 0}. Then

1. σ (AT ) = σ (Rk) ∪
⋃
j∈Ω

σ (Rj) .

2. For j ∈ Ω the multiplicity of each eigenvalue of the matrix Rj, as an eigenvalue of

AT , is at least nj − nj+1 and equal to 1 for j = k .

Remark 5 ¿From interlacing Theorem we immediately note that the spectral radius of

T corresponds to the spectral radius of Rk. Moreover, for the energy of T it is holds

E (T ) = E (Rk) +
∑
j∈Ω

(nj − nj+1)E (Rj) . (11)

For a ∈ R we denote by [a] the greater integer less than or equal to a.

Remark 6 It is well known that for 1 ≤ j ≤ k, the matrix Rj is a symmetric imprimitive

matrix and it has at most [j/2] nonzero eigenvalues. By Theorem 1 we derive that

E (Rj) ≤ 2λ1 (Rj) + 2
√

([j/2]− 1)
(
|Rj|2 /2− λ2

1 (Rj)
)
, (12)
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where

1

2
|Rj|2 =


j∑
t=1

(dt − 1) , j < k

1 +
k∑
t=1

(dt − 1) , j = k .

(13)

Our aim here is to give an upper bound for the energy of T . By Eqs. (11) and (12)

we establish.

Theorem 3 Let T be a Bethe tree as described above. Then

E (T ) /2 ≤ λ1 (T ) +
√

([k/2]− 1)
(
|Rk|2 /2− λ2

1 (T )
)

+
∑
j∈Ω

(nj − nj+1)

(
λ1 (Rj) +

√
([j/2]− 1)

(
|Rj|2 /2− λ2

1 (Rj)
))

. (14)

Equality in (14) holds if and only if k ∈ {2, 3, 4, 5} or if for each j ∈ Ω ∪ {k}, j ≥
6, the matrix Rj has 2 ([j/2]− 1) nonzero eigenvalues with the same modulus, namely√(
|Rj|2 /2− λ2

1 (Rj)
)
/ ([j/2]− 1).

4 Equitable Partitions

For 1 ≤ i, j ≤ k, let us consider the ni×nj matrices Mij. Let n =
k∑
i=1

ni and suppose that

Mij = M t
ji for all (i, j). We consider the n× n symmetric matrix having the block form

M =


M11 M12 . . . M1k

M21 M22 M2k
...

. . . . . .
...

. . .

Mk1 . . . Mkk

 . (15)

Let denote by Jpq the all one matrix of order p× q and simply by Jp the all one vector of

order p × 1. The quotient matrix BM of M is the k × k matrix whose (i, j)-entry, bij is

the average of the row sums of Mij. More precisely

bij =
1

ni

(
Jtni

Mij Jnj

)
1 ≤ i, j ≤ k. (16)

The partition into blocks of M is called regular (or equitable) if each block Mij of M

has constant row sum. Note that in this case BM corresponds to the row sums ma-

trix. According to Lemma 2.3.1 in [1], if M is regular then all the eigenvalues of BM

are eigenvalues of M . Let qij = Jtni
MijJnj

= qji. Note that nibij = qij, for all 1 ≤ i, j ≤ k.

Let

F = diag (
√
n1, . . . ,

√
nk) . (17)
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Lemma 4 Let BM and F defined as in Eqs. (16) and (17), respectively. If FBMF−1 =

S, then S is a symmetric matrix whose (i, j)-entry is sij = qij/
√
ninj .

Proof. It is clear that the (i, j)-entry of S is

√
nibij√
nj

=
√
ni

(
qij
ni

)
1
√
nj

=
qij√
ninj

. On the

other hand the (j, i)-entry of FBMF−1 is

√
njbji√
ni

=
√
nj

(
qji
nj

)
1
√
ni

=
qji√
njni

=
qij√
ninj

,

and the result holds.

Remark 7 If M is a symmetric regular partitioned matrix and BM and S are defined

as in Eq. 16 and Lemma 4 respectively, then all the eigenvalues of S are eigenvalues of

M . Therefore, σS ⊂ σM (as multisets), and

E (M) = E (S) +
∑

λ∈σM\σS

|λ| . (18)

At follows we present an upper bound for the energy of symmetric matrices regular

partitioned into blocks.

Theorem 4 Let M be the real symmetric regular partitioned matrix of order n =
k∑
i=1

ni

and BM and S defined as in (16) and Lemma 4 respectively. Then

E (M) ≤ E (S) +
√

(n− k)
(
|M |2 − |S|2

)
. (19)

Equality holds if and only if M has n− k eigenvalues, distinct to those from S, with the

same modulus, we say α, where α =
√(
|M |2 − |S|2

)
/ (n− k).

Proof. Note that
∑

λ∈σ(M)

|λ|2 =
∑

λ∈σM\σS
|λ|2 +

∑
λ∈σ(S)

|λ|2 or equivalently

∑
λ∈σM\σS

|λ|2 = |M |2 − |S|2 . (20)

The inequality in Eq. (19) is an immediate consequence of Eq. (18) and Cauchy–Schwarz

inequality. It is evident that the equality holds for the case in the statement. Reciprocally

if the equality holds, then

E(M)=

k∑
i=1

|λi (S)|+
∑

λi(M)∈σM\σS

|λi (M)| =
k∑
i=1

|λi (S)|+
√
n− k

√√√√ ∑
λi(M)∈σM\σS

∣∣λ2
i (M)

∣∣ .
In consequence,

∑
λi(M)∈σM\σS

|λi (M)| =
√
n− k

√√√√ ∑
λi(M)∈σM\σS

∣∣λ2
i (M)

∣∣
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and by Cauchy–Schwarz equality case we obtain αk+1 (M) = · · · = αn (M) = a =√(
|M |2 − |S|2

)
/ (n− k), where {αk+1 (M) , . . . , αn (M)} = σM \ σS .

An exact analogue of Lemma 3 for symmetric matrices partitioned into blocks with

constant row sum is given below.

Theorem 5 Let M be the real symmetric regular partitioned matrix of order n =
k∑
i=1

ni

as in (15) and S the matrix defined in Lemma (4) then

E (M) ≤
√
k |S|+

√
(n− k)

(
|M |2 − |S|2

)
≤
√
n |M | . (21)

Equality in the left inequality holds if and only if M has k eigenvalues with the same

modulus, namely
√
|S|2 /k and the others n−k eigenvalues of M have the same modulus,

namely
√(
|M |2 − |S|2

)
/ (n− k).

Proof. ¿From (5), E (S) ≤
√
k |S|. Now we use Eq. (19) and result holds. The equality

case is a direct consequence of the equality case in the Lemma 3.

Theorem 6 Let M be the real irreducible nonnegative symmetric regular partitioned ma-

trix of order n =
k∑
i=1

ni and consider S in Lemma 4. Then

E (M) ≤ λ1 (M) +
√

(k − 1)
(
|S|2 − λ2

1 (M)
)

+
√

(n− k)
(
|M |2 − |S|2

)
. (22)

Equality holds if and only if S has k − 1 eigenvalues distinct to λ1 (M) with the same

modulus, namely
√(
|S|2 − λ2

1 (M)
)
/ (k − 1) and the others n− k eigenvalues of M have

the same modulus, namely
√(
|M |2 − |S|2

)
/ (n− k).

Proof. It is well known that for a irreducible nonnegative matrix, the only eigenvalue

with a nonnegative eigenvector is its maximal eigenvalue (see [12]). Since M is nonnega-

tive then BM it is hence its maximal eigenvalue λ1

(
BM

)
has a nonnegative eigenvector,

we say x. Since M is regular partitioned, all the eigenvalues of BM (hence of S) are

eigenvalues of M . By Theorem 2.5.1 in [1] there exists a n×k nonnegative matrix T such

that y = Tx is an eigenvector of M . Hence, y nonnegative imply that λ1

(
BM

)
= λ1 (M),

hence λ1 (S) = λ1 (M) .

By Eq. (4)

E (S) ≤ λ1 (S) +
√

(k − 1)
(
|S|2 − λ2

1 (S)
)
.

By Eq. (19) the inequality in the statement follows. The equality case is a direct conse-

quence of the equality case in the Lemma 3.
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Remark 8 Let M be the real irreducible nonnegative symmetric regular partitioned ma-

trix of order n =
k∑
i=1

ni and consider S as in Lemma 4. By Lemma 3 the upper bound

in Eq. (19) is sharper than the upper bound in Eq. (22) and we confirm that the upper

bound in Eq. (22) is sharper than its analogue in Eqs. (21) and (4).

4.1 Join graph operations

A generalization of the join operation was introduced in [2] as follows: Consider a family

of k graphs, F = {G1, . . . , Gk}, where each graph Gi has order ni, for 1 ≤ i ≤ k, and

a graph H such that V(H) = {v1, . . . , vk}. Each vertex vi ∈ V(H) is assigned to the

graph Gi ∈ F . The H-join of G1, . . . , Gk is the graph G = H[G1, . . . , Gk] such that

V(G) =
k⋃
i=1

V(Gi) and edge set:

E(G) =

(
k⋃
i=1

E(Gi)

)
∪

 ⋃
uv∈E(H)

{vivj: vi∈V(Gu), vj∈V(Gv)}

 .

This operation, where H is an arbitrary graph of order k, is the same as the so called

generalized composition, was studied in [19] with the notation H[G1, . . . , Gk].

Consider a family of k regular graphs, F = {G1, . . . , Gk}, where each graph Gi has

order ni, and vertex degree pi for 1 ≤ i ≤ k, and a graph H such that V(H) = {v1, . . . , vk}.
Suppose that AH = (aij) ∈ Rk×k. For 1 ≤ i, j ≤ k, let, hij = aij

√
ninj and define

C =


p1 h12 · · · h1k

h12 p2 · · · h2k
...

...
. . .

...
...

h1k h2p · · · pk−1 hk,k−1

h1k h2k · · · hk,k−1 pk

 .

Let G = H[G1, . . . , Gk]. Since,

AG=



AG1 a12Jn1n2 · · · a1kJn1nk

a12Jn2n1 AG2 · · · a2kJn2nk

...
...

. . .
...

...
a1kJnk−1n1 a2pJnp−1n2 · · · AGk−1

ak,k−1Jnk−1nk

a1kJnkn1 a2kJnkn2 · · · ak,k−1Jnknk−1
AGk


in [2] it was proven that

σ (G) =
k⋃
j=1

σ (Gj)� {pj} ∪ σ (C) .
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In consequence,

E (G) = E (C) +
k∑
j=1

(E (Gj)− pj) .

By Theorem 4 we obtain.

Corollary 2 Let F = {G1, . . . , Gk} a family of k regular graphs, where each graph Gi has

order ni and vertex degree pi, for 1 ≤ i ≤ k, and a graph H such that V(H) = {v1, . . . , vk}.

Let n =
k∑
i=1

ni and let consider G = H[G1, . . . , Gk]. Then

E (G) ≤ E (C) +

√
k∑
i=1

pi(ni − pi) (n− k) .

Equality holds if and only if AG has n− k eigenvalues, distinct to those from C, with the

same modulus, namely

√
k∑
i=1

pi(ni − pi)/(n− k) .

Proof. If in Theorem 4 we replace M by AG we obtain S = C. Therefore following the

result in Theorem 4 we derive that

E (G) ≤ E (C) +
√

(n− k)
(
|AG|2 − |C|2

)
.

Equality holds if and only if AG has n − k eigenvalues, which are not shared with C,

with the same absolute value. Now by noticing that |AG|2 − |C|2 =
k∑
i=1

pi(ni − pi), the

result follows.
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