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Carlos Alberto Maŕın, Juan Monsalve, Juan Rada
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Abstract

The energy of a graph G is defined as the sum of the absolute values of the eigenvalues
of its adjacency matrix. In this paper we find trees with minimal and maximal energy
over the sets Ω (n, 2) and Ω (n, 3) of all trees with n vertices and exactly two and three
branched vertices, respectively (see Figures 1 and 2). We show that S (2, 2;n− 8; 2, 2)
has maximal energy and S(1, . . . , 1

︸

︸

n−4

; 2; 1, 1) has minimal energy over Ω (n, 2). We also find

the extremal values of the energy over the set Ω
t
(n, 2) of all trees in Ω (n, 2) such that

the distance between the two branched vertices is exactly t. Finally, we show that among
all trees in Ω (n, 3) the tree S(1, 1; 1; 1; 1; 1, . . . , 1

︸ ︷︷ ︸

n−6

) has minimal energy while the maximal

energy is a attained in a tree of the form S(2, 2;p; 2;q; 2, 2).

1 Introduction

Let G be a graph with n vertices. The energy of G, denoted by E (G), is defined by

E (G) =

n∑

i=1

|λi|

where λ1, . . . , λn are the eigenvalues of the graph G, i.e. the eigenvalues of the adjacency

matrix of the graph G. This concept has a chemical motivation, it is related to the total
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π-electron energy for graphs which in the Hückel molecular orbital theory represent the

carbon-atom skeleton of a conjugated hydrocarbons [7]. However, it was in the 1970´s

when this graph-spectrum-based invariant was recognized by Gutman as an interesting

object of study from a mathematical point of view, independently from its possible chem-

ical interpretation [6] . For further details on this theory we refer to [13] and the literature

cited in.

One of the fundamental problems in the energy theory is to find the smallest and largest

energy value in a significant class of graphs. For instance, it is well known that among the

set Tn of all trees with n vertices, the star tree Sn has the minimal energy and the path tree

Pn has the maximal energy [5]. Since then, many classes of trees have been investigated,

among others, the set of trees with perfect matchings, chemical trees, Hückel trees, trees

with a given diameter, trees with a number of pendent vertices, trees with a maximum

degree vertex or trees with two maximum degree vertices ( [1], [4], [10], [11], [12], [14]-

[22], [23]).

The quasi-order method is of great value for comparing the energies of trees. Given

two trees T1 and T2 with n vertices and characteristic polynomials

ΦT1
(x) =

⌊n
2 ⌋∑

k=0

(−1)k m (T1, k)x
n−2k and ΦT2

(x) =

⌊n
2 ⌋∑

k=0

(−1)k m (T2, k) x
n−2k

where m (Ti, k) are the k-matching numbers of Ti, we write T1 � T2 or T2 � T1 if

m (T1, k) ≤ m (T2, k) for all k ≥ 0. If, moreover, at least one of the inequalities is strict,

then we write T1 ≺ T2 or T2 ≻ T1. As a consequence of Coulson´s integral formula [2]

E (Ti) =
2

π

∞∫

0

1

x2
ln




1 +

⌊n
2 ⌋∑

k=0

m (Ti, k) x
2k




 dx

it turns out that the energy is increasing with respect to the quasi-order order relation

“�”, i.e. if T1 ≺ T2 then E (T1) < E (T2).

Our interest in this paper is to initiate the study of minimal and maximal energy for

trees with a fixed number of branched vertices. Recall that a vertex u of a tree T is a

branched vertex if the degree of u, denoted by dT (u), is greater than 2. The problem

for trees with n vertices and exactly one branched vertex (i.e. starlike trees) was solved

in [9]. It is natural then to consider the extremal value problem of the energy over the

set of trees with few branched vertices.
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Let us denote by Ω (n, 2) the set of all trees with n vertices and exactly two branched

vertices. The structure of a tree in Ω (n, 2) is depicted in Figure 1.

Pt

1

b1

Pb1
· ·
·

··
·Pbs1

bs

··
·

· ·
·

b

bb

b

b

b

b

b

1

a1

Pa1

1

ar

Par

Figure 1: The tree S(a1, . . . , ar; t; b1, . . . , bs) in Ω (n, 2)

We will find the trees in Ω (n, 2) with maximal and minimal energy. More specifically,

we show that S (2, 2;n− 8; 2, 2) has maximal energy and S(1, . . . , 1
︸ ︷︷ ︸

n−4

; 2; 1, 1) has minimal

energy over Ω (n, 2). Later, we consider the subset Ωt (n, 2) of Ω (n, 2) consisting of trees

for which the two branched vertices are at a fixed distance t. Note that when t = 2 we

recover the set of two-starlike trees. Again, we find the trees in Ωt (n, 2) with maximal

and minimal energy for arbitrary positive integer t.

We also study the energy over the set Ω (n, 3) of all trees with n vertices and three

branched vertices (see Figure 2).

· ·
···

·

b1 bs

11

1

c1

· ·
·

··
·1

ct

··
·

· ·
·

b

bb

b

b

b

b

b

1

a1

1

ar

x y

Figure 2: The tree S (a1, . . . , ar;x; b1, . . . , bs;y; c1, . . . , ct) in Ω(n, 3)

We show that the tree S(1, 1; 1; 1; 1; 1, . . . , 1
︸ ︷︷ ︸

n−6

) has minimal energy among all trees in

Ω (n, 3). A much more complicated problem is to determine the maximal energy over

Ω (n, 3). Mainly we show that the maximal energy tree belongs to the class of trees

Ω∗ (n, 3) consisting of trees of the form S (2, 2;p; 2;q; 2, 2), for positive integers p and q.

This is possible using the increasing property of the energy with respect to the quasi-

order relation defined above. However, inside the class Ω∗ (n, 3) we show through several

examples that the trees are no longer comparable, and so finding the maximal energy tree

is only possible by means of the Coulson’s integral formula combined by methods of real
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analysis. In other words, finding the maximal energy tree in Ω (n, 3) reduces to finding

the maximal energy tree in Ω∗ (n, 3), which is now an open problem. For 16 ≤ n ≤ 200

we computed the energy of all trees in Ω∗ (n, 3), which leads us to conjecture that the

maximal energy over Ω (n, 3) is attained when p = 1 and q = n − 12 if n is even, and

p = 4 and q = n− 15 if n is odd.

2 Two basic operations defined over trees

As we mentioned in the introduction, it is well known that if T ∈ Tn is different from Sn

and Pn, then

E (Sn) < E (T ) < E (Pn)

We will show a stronger result, namely, that it is possible to construct sequences of trees

Sn = Tp ≺ · · · ≺ T1 ≺ T0 = T

and

T = U0 ≺ U1 ≺ · · · ≺ Uq = Pn

where Ti is obtained from Ti−1 (resp. Ui is obtained from Ui−1) by an operation applied to

Ti−1 (resp. Ui−1). These operations will play an important role in the study of extremal

values of the energy over the set of trees with two branched vertices.

In what follows we will need some results on the number of matchings [3].

Lemma 2.1 Let G be a graph and e an edge connecting the vertices u and v. Then for

all k ≥ 0

m (G, k) = m (G− e, k) +m (G− u− v, k − 1) .

Recall that the coalescence of the graphs G and H at the vertices u and v, respectively,

denoted by G (u, v)H , is obtained by identifying the vertices u and v.

Lemma 2.2 Let G and H be graphs with non-isolated vertices u and v, respectively. Then

for every integer k ≥ 0

m (G (u, v)H, k) ≤ m (G ∪H, k)

and

m (G (u, v)H, 2) < m (G ∪H, 2) .
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Proof. For every k ≥ 0 there exists a trivial injective function between the k-

matchings of G (u, v)H and the k-matchings of G ∪ H . Moreover, an edge containing

u in G and an edge containing v in H are independent in G∪H but not in G (u, v)H .

Consider the path Pn with n vertices and arbitrary trees A and X different from P1,

with vertices a ∈ V (A) and x ∈ V (X). For every 1 ≤ i ≤ n we define by coalescence the

trees

Xn,i = Pn (i, x)X, AXn,i = A (a, n)Xn,i and An = A (a, n)Pn

(see Figure 3).

b bbb b b b

n i 1· · ·

X

Xn,i

· · ·
b bbb b b b

n i 1

X

A

AXn,i

· · · · · ·
b bb b b b b

n 123
A

An

· · ·

Figure 3: Some special trees.

The following result was shown by Gutman and Zhang ( [8], see also [13]).

Lemma 2.3 Let A and X be trees different from P1. Then

OP1 AXn,i ≺ AXn,3 for all 2 ≤ i ≤ n− 2 and i 6= 3;

OP2 AXn,2 ≺ AXn,n−1 for all n ≥ 2, n 6= 3;

OP3 Xn,2 ≺ Xn,4 ≺ · · · ≺ Xn,5 ≺ Xn,3 ≺ Xn,1.

We now prove the following result.

Theorem 2.4 AXn,2 ≺ AXn,1 for every n ≥ 2.

Proof. Let X ′ = X − x. For every integer k ≥ 1

m (AXn,2, k) = m (AXn−1,1, k) +m (An−2 ∪X ′, k − 1)

and

m (AXn,1, k) = m (An−1 ∪X, k) +m (An−2 ∪X ′, k − 1) .

Since AXn−1,1 = An−1 (1, x)X , it follows from Lemma 2.2 that

m (AXn−1,1, k) ≤ m (An−1 ∪X, k)
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b b XA
2 1

≻ b bA
2 1

X

Figure 4: Case n = 2 in Theorem 2.4.

which implies m (AXn,2, k) ≤ m (AXn,1, k). Since m (AXn−1,1, 2) < m (An−1 ∪X, 2) then

AXn,2 ≺ AXn,1 for every n ≥ 2.

One important case of Theorem 2.4 is when n = 2 (see Figure 4).

This will be our first operation, which we call a O1-type operation applied at vertex

a ∈ V (A).

Corollary 2.5 Let T ∈ Tn. Then there exists a sequence of trees T0, T1, . . . , Tp with n

vertices such that

Sn = Tp ≺ · · · ≺ T1 ≺ T0 = T.

Moreover, each Ti is obtained from Ti−1 by a O1-type operation, for every i = 1, . . . , p.

Proof. Let u be a vertex of T of degree ≥ 2. If all neighbor vertices of u have degree

1 then T = Sn and we are done. Otherwise u has a neighbor vertex of degree ≥ 2 which

implies that there exists trees A and X (both different from P1) such that T = AX2,1.

By Theorem 2.4

T1 = AX2,2 ≺ AX2,1 = T

and T1 has one more pendent vertex than T . We can repeat this process until we reach

the star Sn.

We now introduce a second operation applied to a tree, which we call a O2-type

operation. Let A be a tree. Denote by A (n1, n2, . . . , nk) the tree which is obtained by

joining the terminal vertices of Pn1
, Pn2

, . . . , Pnk
to a vertex u of A (see Figure 5).

b
u

A
b

bPn1

b

b
Pn2

...
b b Pnk

Figure 5: The tree A (n1, n2, . . . , nk).

Theorem 2.6 Let A be a tree. Then

A (n1, n2, . . . , nk, x, y) ≺ A (n1, n2, . . . , nk, x+ y) .
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Proof. Let X = A (n1, n2, . . . , nk). Then

A (n1, n2, . . . , nk, x, y) = Xx+y+1,y+1

and

A (n1, n2, . . . , nk, x+ y) = Xx+y+1,1.

The result follows from OP3 in Lemma 2.3.

Corollary 2.7 Let U ∈ Tn. Then there exists a sequence of trees U0, U1, . . . , Uq with n

vertices such that

U = U0 ≺ U1 ≺ · · · ≺ Uq = Pn.

Moreover, each Ui is obtained from Ui−1 by a O2-type operation, for every i = 1, . . . , q.

Proof. If U has a vertex u of degree ≥ 3 then there exists a tree A such that

U = A (n1, n2, . . . , nk, x, y) .

By Theorem 2.6

U ≺ U1 = A (n1, n2, . . . , nk, x+ y)

Moreover, this operation decreases in one the degree of u in U . Eventually, repeating this

process a finite number of times will end in a tree with no vertex of degree ≥ 3. This is

the tree Pn.

3 Extremal values of the energy of trees with 2

branched vertices

Let T be a tree. Recall that a vertex u of T is a branched vertex if dT (u) ≥ 3. We

denote by Ω(n, 2) the set of all trees with n vertices and two branched vertices. The tree

depicted in Figure 1 will be denoted by S(a1, . . . , ar; t; b1, . . . , bs). We begin considering

the problem of maximal energy in Ω(n, 2).

Lemma 3.1 Let n ≥ 10. Then

1. S (2, 2;n− 7; 1, 2) ≺ S (2, 2;n− 8; 2, 2) .

2. S (2, 2;n− 6; 1, 1) ≺ S (2, 2;n− 8; 2, 2) .
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3. S (1, 1;n− 5; 1, 2) ≺ S (2, 2;n− 8; 2, 2) .

4. S (1, 1;n− 4; 1, 1) ≺ S (2, 2;n− 8; 2, 2) .

5. S (1, 2;n− 6; 1, 2) ≺ S (2, 2;n− 8; 2, 2) .

Proof. This can be easily shown using OP1 in Lemma 2.3.

Theorem 3.2 Let n ≥ 10 and T = S(a1, . . . , ar; t; b1, . . . , bs) ∈ Ω(n, 2) where t ≥ 3.

Then

T � S (2, 2;n− 8; 2, 2) .

Proof. By Theorem 2.6 we can construct a tree T1 ∈ Ω(n, 2) of the form T1 =

S(p, q; t; r, s) such that T � T1. Assume first that p+ q ≥ 4. Then by OP3 in Lemma 2.3

there exists a tree T2 = S (2, p+ q − 2; t; r, s) ∈ Ω(n, 2) such that T1 � T2. Since t ≥ 3, we

can applyOP1 in Lemma 2.3 to construct a tree T3 = S (2, 2; t+ p+ q− 4; r, s) ∈ Ω(n, 2)

such that T2 � T3. Now if r + s ≥ 4 then a similar argument ends the proof. Otherwise

r + s ≤ 3 which implies that T3 = S (2, 2;n− 7; 1, 2) or T3 = S (2, 2;n− 6; 1, 1), and the

result follows from parts 1 and 2 of Lemma 3.1. The only case left to consider is when

p+ q ≤ 3 and r + s ≤ 3, but in this situation the result follows from parts 3-5 of Lemma

3.1.

The condition t ≥ 3 in the hypothesis of Theorem 3.2 is necessary, as we can see in

our next example.

Example 3.3 The trees A = S (2, 2; 2; 2, 3) and B = S (2, 2; 3; 2, 2) belonging to Ω(11, 2)

are not comparable. In fact,

ΦA (x) = X11 − 10X9 + 34X7 − 49X5 + 29X3 − 5X

ΦB (x) = X11 − 10X9 + 34X7 − 48X5 + 29X3 − 6X

When t = 2 we can prove the following result.

Theorem 3.4 Let n ≥ 10 and U = S(a1, . . . , ar; 2; b1, . . . , bs) ∈ Ω(n, 2). Then

U � S (2, 2; 2; 2, n− 8) .
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Proof. By Theorem 2.6 we can construct a tree U1 ∈ Ω(n, 2) of the form U1 =

S(p, q; 2; r, s) such that U � U1. Note that p + q + r + s ≥ 8. We may assume without

loosing generality that p + q ≥ 4. Hence by OP3 in Lemma 2.3 there exists a tree

U2 = S (2, p+ q − 2; 2; r, s) ∈ Ω(n, 2) such that U1 � U2. If r + s ≥ 4 then by OP3 in

Lemma 2.3 and [13, Lemma 7.18]

U2 � S (2, p+ q − 2; 2; 2, r + s− 2)

� S (2, 2; 2; 2, n− 8) .

Otherwise r + s ≤ 3. If U2 = S (2, n− 7; 2; 2, 1) then again by [13, Lemma 7.18]

U2 � S (2, n− 8; 2; 2, 2)

and we are done. If U2 = S (2, n− 6; 2; 1, 1) then by [13, Lemma 7.19] and the argument

above

U2 � S (2, n− 7; 2; 1, 2)

� S (2, n− 8; 2; 2, 2) .

Corollary 3.5 For every n ≥ 11, S (2, 2;n− 8; 2, 2) is the tree with maximal energy in

Ω(n, 2).

Proof. Using Coulson’s integral formula it was shown in [14] that for every n ≥ 11,

E (S (2, 2;n− 8; 2, 2)) > E (S (2, 2; 2; 2, n− 8)) .

The result follows from Theorems 3.2 and 3.4.

In order to find the minimal tree in Ω(n, 2) we prove the following result. Recall that

An = A (a, n)Pn for a given tree A (Figure 3).

Lemma 3.6 Let p, q ≥ 2 be integers such that p ≤ q. Then

S(1, . . . , 1
︸ ︷︷ ︸

p

; t; 1, . . . , 1
︸ ︷︷ ︸

) ≻

q

S(1, . . . , 1
︸ ︷︷ ︸

p−1

; t; 1, . . . , 1
︸ ︷︷ ︸

q+1

).
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Proof. Let U = S(1, . . . , 1
︸ ︷︷ ︸

p

; t; 1, . . . , 1
︸ ︷︷ ︸

q

) and V = S(1, . . . , 1
︸ ︷︷ ︸

p−1

; t; 1, . . . , 1
︸ ︷︷ ︸

q+1

). Consider the

star trees A = Sq+1 and B = Sp. Applying Lemma 2.1 to the tree U we obtain

m(U, k) = m(S(1, . . . , 1
︸ ︷︷ ︸

p−1

; t; 1, . . . , 1
︸ ︷︷ ︸

q

), k) +m(At−1, k − 1);

for every k ≥ 1. Similarly,

m(V, k) = m(S(1, . . . , 1
︸ ︷︷ ︸

p−1

; t; 1, . . . , 1
︸ ︷︷ ︸

q

), k) +m(Bt−1, k − 1);

for every k ≥ 1. Since q > p−1, then Bt−1 is a (proper) subgraph of At−1 and consecuently

m(Bt−1, k − 1) ≤ m(At−1, k − 1) (the inequality is strict for k = 2). Hence V ≺ U .

For n ≥ 6 let S2 = S(1, . . . , 1
︸ ︷︷ ︸

n−4

; 2; 1, 1).

Theorem 3.7 Let n ≥ 6 and T ∈ Ω(n, 2), T 6= S2. Then T ≻ S2.

Proof. By Theorem 2.6 there exists a tree Q1 = S(1, . . . 1
︸ ︷︷ ︸

r

; t; 1, . . .1
︸ ︷︷ ︸

s

) ∈ Ω(n, 2) such

that Q1 ≺ T . Now by a repeated application of Theorem 2.4 we construct a tree Q2 =

S(1, . . . , 1
︸ ︷︷ ︸

p

; 2; 1, . . . , 1
︸ ︷︷ ︸

q

) ∈ Ω(n, 2) such that Q2 ≺ Q1, where we can assume without loosing

generality that p ≤ q. Now by Lemma 3.6 we deduce that S2 ≺ Q2.

4 Extremal values of the energy of trees with 2

branched vertices at a fixed distance

Consider the set Ωt(n, 2) of all trees in Ω(n, 2) such that the distance between the two

branched vertices is t. We next find the trees with maximal and minimal energy in

Ωt(n, 2). Consider the tree R1 = S(1, 1; t; 1, . . . , 1
︸ ︷︷ ︸

n−t−2

), where n ≥ t+ 4.

Theorem 4.1 Let n ≥ t+ 4 and T ∈ Ωt(n, 2), T 6= R1. Then R1 ≺ T .

Proof. By Theorem 2.6 there exists a tree T1 = S(1, . . . , 1
︸ ︷︷ ︸

p

; t; 1, . . . , 1
︸ ︷︷ ︸

q

) ∈ Ωt(n, 2) such

that T1 ≺ T . We may assume that p ≤ q. Now a repeated application of Lemma 3.6 gives

that R1 ≺ T1.

Let Guv(Pa, Pb) be the tree obtained from G by joining the path Pa to the vertex u

and joining the path Pb to the vertex v (see Figure 6).
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G

Pt vu

P2 P2

Pt

b b

Guv(Pa, Pb)

P2 P2u v

··
·

· ·
·

Pa Pb

Figure 6: Trees in Lemma 4.2.

Lemma 4.2 Let l ≥ 2 be an integer. Then Guv(Pl, P2) ≻ Guv(Pl+1, P1).

Proof. Let A = Guv(Pl, P2) and B = Guv(Pl+1, P1). By Lemma 2.1

m(A, k) = m(Guv(Pl, P1), k) +m(Guv(Pl, P0), k − 1);

for every integer k ≥ 1; in analogous manner

m(B, k) = m(Guv(Pl, P1), k) +m(Guv(Pl−1, P1), k − 1).

Hence m(A, k) − m(B, k) = m(A′, k − 1) − m(B′, k − 1) where A′ and B′ are the trees

shown in Figure 7. Now by a repeated application of Lemma 2.1 to A′ and B′ we deduce

m(A′, k − 1) = m(A′ − wz, k − 1) +m(A′ − w − z, k − 2),

and

m(B′, k − 1) = m(B′ − xy, k − 1) +m(B′ − x− y, k − 2).

Note that A′−w−z is the lineal tree, consequently m(A′−w−z, k−2) > m(B′−x−y, k−2).

Hence in order to obtain the desire result we compare A′′ = A′ − wz and B′′ = B′ − xy

(see Figure 7).

Pt

b b

·
·
·

Pl

A′

Pt

b b

·
·
·

Pl−1

B′

w

z x

y

Pt

b b b

·
·
·

Pl

A′′

Pt

b b

·
·
·

Pl−1

B′′

c
d

e

f

Figure 7: Trees in the proof of Lemma 4.2.

By using Lemma 2.1 we obtain

m(A′′, k − 1) = m(A′′ − cd, k − 1) +m(A′′ − c− d, k − 2);
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and

m(B′′, k − 1) = m(B′′ − ef, k − 1) +m(B′′ − e− f, k − 2).

Note that A′′ − cd = X3,1 ∪ P1 and B′′ − ef = X3,2 ∪ P1 where X is shown in Figure 8.

Therefore byOP3 given in Lemma 2.3, A′′−cd ≻ B′′−ef . Similary, A′′−c−d = X ′

l+t,j and

B′′−e−f = X ′

l+t,2 where X
′ = P2. Again by OP3 in Lemma 2.3, A′′−c−d ≻ B′′−e−f .

It follows that m(A′′, k − 1) > m(B′′, k − 1) and the result follows.

Pt

··
·

Pl−1

X

Figure 8: Tree in the proof of Lemma 4.2.

Lemma 4.3 Let a, b be integers such that a ≥ b ≥ 2. If b is odd then Guv(Pa, Pb) ≺

Guv(Pa+1, Pb−1). If b is even then Guv(Pa, Pb) ≻ Guv(Pa+1, Pb−1).

Proof. Let R = Guv(Pa, Pb) and S = Guv(Pa+1, Pb−1). For every integer k ≥ 1

m(R, k) = m(Guv(Pa, Pb−1), k) +m(Guv(Pa, Pb−2), k − 1)

and

m(S, k) = m(Guv(Pa, Pb−1), k) +m(Guv(Pa−1, Pb−1), k − 1).

Hence

m(R, k)−m(S, k) = (−1) [m(Guv(Pa−1, Pb−1), k − 1)−m(Guv(Pa, Pb−2), k − 1)]

Repeating this argument b− 2 times we deduce

m(R, k)−m(S, k) = (−1)b−2 [m(Guv(Pa−b+2, P2), k − b+ 2)−m(Guv(Pa−b+3, P1), k − b+ 2)] .

By Lemma 4.2, Guv(Pa−b+2, P2) ≻ Guv(Pa−b+3, P1) and the result follows.

Theorem 4.4 Let M = 4k + i, where i ∈ {0, 1, 2, 3}. Then

Guv (Pn−2, P2) ≻ Guv (Pn−4, P4) ≻ · · · ≻ Guv (PM−2k, P2k) ≻ Guv

(
PM−(2k+1), P2k+1

)

≻ Guv

(
PM−(2k−1), P2k−1

)
≻ · · · ≻ Guv (PM−3, P3) ≻ Guv (PM−1, P1) .
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Proof. Let A = Guv(Pa, Pb) and B = Guv(Pa−2, Pb+2), where 2 ≤ b ≤ a− 4. Then for

every integer k ≥ 1

m(A, k) = m(Guv(Pa−1, Pb), k) +m(Guv(Pa−2, Pb), k − 1)

and

m(B, k) = m(Guv(Pa−2, Pb+1), k) +m(Guv(Pa−2, Pb), k − 1).

Consequently

m(A, k)−m(B, k) = (−1) [m(Guv(Pa−2, Pb+1), k)−m(Guv(Pa−1, Pb), k)]

and so

m(A, k) −m(B, k) =

(−1)b [m(Guv(Pa−b−1, P2), k − b+ 1)−m(Guv(Pa−b, P1), k − b+ 1)] .

By Lemma 4.2, if b is even then A ≻ B and if b is odd then A ≺ B. Only remains to

prove that Guv(PM−2k, P2k) ≻ Guv(PM−(2k+1), P2k+1), but this is a direct consequence of

Lemma 4.3.

Let n ≥ t+ 7 and consider the tree R2 = S(2, 2; t; 2, n− t− 6) ∈ Ωt(n, 2).

Corollary 4.5 Let n ≥ t+ 7 and T ∈ Ωt(n, 2), T 6= R2. Then T ≺ R2.

Proof. Let T = S(a1, . . . , ar; t; b1, . . . , bs) ∈ Ωt(n, 2). As in the proof of Theorem 3.2,

there exists a tree T1 ∈ Ωt(n, 2) of the form T1 = S(2, r; t; 2, s) such that T ≺ T1, where

r + s = n− t− 4. Note that T1 = Guv(Pr, Ps), therefore the result follows from Theorem

4.4.

5 Extremal values for the energy of trees with three

branched vertices

Let Ω (n, 3) denote the set of all trees with n vertices and exactly three branched vertices.

The tree depicted in Figure 2 will be denoted by S (a1, . . . , ar;x; b1, . . . , bs;y; c1, . . . , ct)

where x and y denote the distances between the branched vertices.

One particular tree of major importance is the tree V1 = S(1, 1; 1; 1; 1; 1, . . . , 1
︸ ︷︷ ︸

n−6

) ∈

Ω (n, 3). In fact, we will show that the minimal energy over the set Ω (n, 3) is attained in

V1 (see Figure 9.)

First we need some preliminary results.
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n − 6

V1

Figure 9: The tree V1 where the minimal energy is attained in Ω (n, 3)

Lemma 5.1 Let p′, q′ and r′ be positive integers where 2 ≤ p′ ≤ r′ + 1 and let S ′, T ′ be

the following trees in Ω (n, 3) :

S ′ = S(1, . . . , 1
︸ ︷︷ ︸

p′

; 1; 1, . . . , 1
︸ ︷︷ ︸

q′

; 1; 1, . . . , 1
︸ ︷︷ ︸

r′

) and T ′ = S(1, . . . , 1
︸ ︷︷ ︸

p′−1

; 1; 1, . . . , 1
︸ ︷︷ ︸

q′

; 1; 1, . . . , 1
︸ ︷︷ ︸

r′+1

).

Then S ′ ≻ T ′.

Proof. We compute directly the characteristic polynomials of S ′ and T ′ :

ΦS′ = xn − (n− 1)xn−2 + [p′ (q′ + r′ + 1) + (q′ + 1) r′]xn−4 − p′q′r′xn−6

and

ΦT ′ = xn − (n− 1)xn−2 + [(p′ − 1) (q′ + r′ + 2) + (q′ + 1) (r′ + 1)]xn−4 − (p′ − 1) q′ (r′ + 1)xn−6.

Note that

p′q′r′ − (p′ − 1) q′ (r′ + 1) = q′ (r′ − p′ + 1) ≥ 0

and

[p′ (q′ + r′ + 1) + (q′ + 1) r′]− [(p′ − 1) (q′ + r′ + 2) + (q′ + 1) (r′ + 1)]

= r′ − p′ + 1 ≥ 0.

Consequently, S ′ ≻ T ′.

Lemma 5.2 Let q′ and h′ be positive integers and U ′ = S(1, 1; 1; 1, . . . , 1
︸ ︷︷ ︸

q′

; 1; 1, . . . , 1
︸ ︷︷ ︸

h′

) ∈

Ω (n, 3).

1. If 2 ≤ q′ ≤ h′ then

U ′ ≻ V ′ = S(1, 1; 1; 1, . . . , 1
︸ ︷︷ ︸

q′−1

; 1; 1, . . . , 1
︸ ︷︷ ︸

h′+1

).

2. If q′ > h′ ≥ 2 then

U ′ ≻ W ′ = S(1, 1; 1; 1, . . . , 1
︸ ︷︷ ︸

q′+1

; 1; 1, . . . , 1
︸ ︷︷ ︸

h′
−1

).
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Proof. 1. We compute the characteristic polynomials of U ′ and V ′ :

ΦU ′ = xn − (n− 1) xn−2 + [2 (q′ + h′ + 1) + (q′ + 1)h′] xn−4 − 2q′h′xn−6

and

ΦV ′ = xn − (n− 1) xn−2 + [2 (q′ + h′ + 1) + q′ (h′ + 1)] xn−4 − 2 (q′ − 1) (h′ + 1) xn−6.

Since 2 ≤ q′ ≤ h′ then

2q′h′ − 2 (q′ − 1) (h′ + 1) = 2 (h′ − q′ + 1) ≥ 0

and

(q′ + 1)h′ − q′ (h′ + 1) = h′ − q′ ≥ 0.

Consequently U ′ ≻ V ′.

2. The characteristic polynomial of W ′ is

ΦW ′ = xn−(n− 1)xn−2+[2 (q′ + h′ + 1) + (q′ + 2) (h′ − 1)] xn−4−2 (q′ + 1) (h′ − 1)xn−6.

Furthermore,

(q′ + 1)h′ − (q′ + 2) (h′ − 1) = q′ − h′ + 2 > 0

and

2q′h′ − 2 (q′ + 1) (h′ − 1) = 2 (q′ − h′ + 1) > 0

implies that U ′ ≻ W ′.

Theorem 5.3 Let n ≥ 8 and S ∈ Ω (n, 3), S 6= V1. Then V1 ≺ S.

Proof. By Theorem 2.4 there exists a tree S ′ ∈ Ω (n, 3) of the form

S ′ = S(1, . . . , 1
︸ ︷︷ ︸

p′

; 1; 1, . . . , 1
︸ ︷︷ ︸

q′

; 1; 1, . . . , 1
︸ ︷︷ ︸

r′

)

where 2 ≤ p′ ≤ r′+1, such that S ≻ S ′ . By Lemma 5.1 we construct a tree U ′ ∈ Ω (n, 3)

of the form

U ′ = S(1, 1; 1; 1, . . . , 1
︸ ︷︷ ︸

q′

; 1; 1, . . . , 1
︸ ︷︷ ︸

h′

)

such that S ′ ≻ U ′. If q′ ≤ h′ then by part 1 of Lemma 5.2, U ′ ≻ V1. If q′ > h′ then by

part 2 of Lemma 5.2 there exists a tree W ′ ∈ Ω (n, 3) of the form

W ′ = S(1, 1; 1; 1, . . . , 1
︸ ︷︷ ︸

n−7

; 1; 1, 1)
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such that U ′ ≻ W ′. Finally note that

ΦV1
= xn − (n− 1)xn−2 + 4 (n− 5) xn−4 − 2 (n− 6) xn−6

and

ΦW ′ = xn − (n− 1)xn−2 + 4 (n− 5) xn−4 − 4 (n− 7) xn−6.

Since for n ≥ 8

4 (n− 7)− 2 (n− 6) = 2n− 16 ≥ 0

it follows that W ′ ≻ V1 and consequently, S ≻ V1.

The maximal value for the energy over Ω (n, 3) is more complicated as we shall see

next. We will rely on OP1-OP3 given in Lemma 2.3 and one more operation OP4 which

compares the two trees shown in Figure 10.

Lemma 5.4 [OP4] Let S and T be the trees depicted in Figure 10. For the fragment A

being an arbitrary tree and n ≥ 4 we have S ≺ T .

A
u

n 12
• • •· · · •

•

•

•

•

•

•

•

S

≺ A
u

n 1
• · · · •

•

• •

•

•

•

•

• • •

T

Figure 10: Trees involved in operation OP4

Proof. The characteristic polynomials of S and T are given by

ΦS(x) = ΦA(x)ΦW1
(x)− ΦA−u(x)ΦW2

(x)

and

ΦT (x) = ΦA(x)ΦZ1
(x)− ΦA−u(x)ΦZ2

(x)

where W1, W2, Z1 and Z2 are shown in Figure 11.

Note that

ΦT (x)− ΦS(x) = ΦA(x) (ΦZ1
(x)− ΦW1

(x))− ΦA−u(x) (ΦZ2
(x)− ΦW2

(x)) .

SinceW1 ≺ Z1 andW2 ≺ Z2 [13, Lemma 7.19], polynomials ΦZ1
(x)−ΦW1

(x) and ΦZ2
(x)−

ΦW2
(x) are alternating which implies that the polynomial ΦT (x) − ΦS(x) is alternating.

This clearly implies that S ≺ T .

Let T = S(a1, . . . , ar;x; b1, . . . , bs;y; c1, . . . , ct) ∈ Ω(n, 3). By Theorem 2.6 we can

construct a tree X1 ∈ Ω(n, 3) of the form X1 = S(a, b; c; d; e; f, g) such that T ≺ X1.
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n 12
• •· · · •

•

•

•

•

•

•

•

W1

n − 1 12
• ••· · · •

•

•

•

•

•

•

•

W2

n − 1 12
• •· · · •

•

•

•

•

•

•

• •

Z1

n − 2 12
• •· · · •

•

•

•

•

•

•

• •

Z2

Figure 11: Trees W1,W2, Z1, Z2 involved in the proof Lemma 5.4

Therefore in order to consider the problem of maximal energy in Ω(n, 3) we can assume

without loosing generality that our initial tree has the form S(a, b; c; d; e; f, g) as is shown

in Figure 12.

··
·

d

1
1

f

· ·
·

··
·1

g

··
·

· ·
·

b

bb

b

b

b

b

b

1

a

1

b

c e

Figure 12: The tree S(a, b; c; d; e; f, g)

From now on we consider the condition c ≥ 2 and e ≥ 2. In our next result we show

that we can reduce the problem to the case d = 2.

Lemma 5.5 Let n ≥ 15 and T = S(a, b; c; d; e; f, g) ∈ Ω(n, 3) where c ≥ 2 and e ≥ 2.

Then

T ≺ S(a′, b′; c′; 2; e′; f ′, g′),

where c′ ≥ 2 and e′ ≥ 2.

Proof. We divide the proof in two cases, when d = 1 and d > 2.

1. Assume that d = 1. If c ≥ 3 then by OP1 given in Lemma 2.3

•

•

• •

•

ec

a

b

f

g
≺

OP1

•

•

•T

d •

•

• •

•

•

e

c
′

a

b

fg •

••

T1

where c′ = c− 1 ≥ 2 and we are done. Similarly occurs if e ≥ 3 so we next assume

that c = e = 2. Since n ≥ 15 then a + b ≥ 5. Therefore by OP1 and OP3 in

Lemma 2.3
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•

•

• •

•

••

a

b

f

g
≺

OP3

•

•

•T

•

•

• •

••

• •

b′

f

g
≺

OP1

•

•

•

•

•

• •

••

•

• c
′

f

g

•

•

•

where b′ = a + b− 2 ≥ 3 and c′ = b′ ≥ 3. The result follows now from the previous

case since c′ ≥ 3.

2. Assume that d > 2. This is a direct consequence of OP1 in Lemma 2.3 bearing in

mind that c ≥ 2 gives

•

•

• •

•

•

•

ec

a

b

f

g
≺

OP1

•

•

•T

d
•

•

• •

•

•

•

f

g

•

•

•

c
′

a

b

where c′ = c+ d− 2 ≥ 2.

Now we are ready to address the main result of this section.

Theorem 5.6 Let n ≥ 15 and T = S(a, b; c; d; e; f, g) ∈ Ω (n, 3) where c ≥ 2 and e ≥ 2.

Then there exists positive integers p and q such that

T ≺ S(2, 2;p; 2;q; 2, 2)

Proof. By Lemma 5.5 we may assume that d = 2. We divide the proof in two parts,

we first show:

1. If a+ b+ c ≥ 5 then T ≺ S (2, 2; c′; 2; e; f, g). In fact, we consider three cases:

a) a + b ≥ 4. Then we apply operations OP1 and OP3 in Lemma 2.3 to obtain

•

•

• •

•

•

ec

a

b

f

g
≺

OP3

•

•

•T

•

•

• •

••

c

•

e
b′

f

g
≺

OP1

•

•

•

•

•

• •

••

•

e• c
′

f

g

•

•

•

where b′ = a+ b− 2 ≥ 2 and c′ = a + b+ c− 4 ≥ 2.

b) a+ b = 3. If c ≥ 3 then by OP1 in Lemma 2.3

•

•

•

• •

•

•

ec

f

g
≺

OP1

•

•

•T

•

•

•

•

•

••

c − 1

•

e

f

g

•

•

•

Otherwise c = 2, so by OP2 in Lemma 2.3

•

•

•

• •

•

•

e

•

f

g
≺

OP2

•

•

•T

•

•

•

•

•

•

•

•

e

f

g
•

•

•
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c) a+ b = 2. Then c ≥ 3 and so by OP1 in Lemma 2.3

•

•

• •

•

•

ec

f

g
≺

OP1

•

•

•T •

•

•

•

••

c − 1

•

e

f

g

•

•

•

where c− 1 ≥ 2. Now the result follows from case b).

2. If a + b = 2 and c = 2 then T ≺ S (2, 2; 1; 2; e′; 2, 2). To see this note that n ≥ 15

implies e + f + g ≥ 8. Hence applying part 1. of this theorem, OP2 and OP4 we

deduce

•

•

• •

•

•

e

•

f

g
≺

part 1

•

•

•

•

•

• •

•

•

e
′

•

•

•

≺
OP2

•

•

•

•

•

•

• •

•

•

e
′

•

•

•

≺
OP4

•

•

• •

•

•

•

•

•

•

•

e
′
− 1

•

•

•

•

•

•

where e′ = e+ f + g − 4 ≥ 4.

In view of Theorem 5.6 it would be interesting to find the maximal value of the

energy among all trees of the form S(2, 2;p; 2;q; 2, 2), where p and q are positive integers.

Unfortunately, this will not be possible through quasi-ordering relations, as we can see in

the following examples.

Example 5.7 Note that given a tree T = S (2, 2;p; 2;q; 2, 2) ∈ Ω(n, 3), q is determined

by the value of p via the relation q = n− 11− p.

1. Consider the case n = 20

p Energy Characteristic polynomial
1 24.5488 x20

− 19x18 + 150x16
− 642x14 + 1633x12

− 2548x10 + 2427x8
− 1352x6 + 396x4

− 47x2 + 1

4 24.5447 x20
− 19x18 + 150x16

− 641x14 + 1624x12
− 2520x10 + 2389x8

− 1331x6 + 395x4
− 49x2 + 1

2 24.5443 x20
− 19x18 + 150x16

− 641x14 + 1623x12
− 2513x10 + 2375x8

− 1321x6 + 394x4
− 50x2 + 1

3 24.5441 x20
− 19x18 + 150x16

− 641x14 + 1624x12
− 2521x10 + 2395x8

− 1339x6 + 397x4
− 48x2 + 1

As we can see the maximal energy is attained in the value p = 1. We note that

none of the trees with 2 ≤ p ≤ 4 are comparable with this tree.
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2. Consider the case n = 21

p Energy Characteristic polynomial

4 25.748 x21
− 20x19 + 168x17

− 774x15 + 2148x13
− 3722x11 + 4041x9

− 2676x7 + 1007x5
− 184x3 + 11x

2 25.7467 x21
− 20x19 + 168x17

− 774x15 + 2147x13
− 3714x11 + 4021x9

− 2658x7 + 1004x5
− 186x3 + 11x

1 25.7419 x21
− 20x19 + 168x17

− 775x15 + 2158x13
− 3758x11 + 4100x9

− 2721x7 + 1019x5
− 182x3 + 10x

3 25.7365 x21
− 20x19 + 168x17

− 774x15 + 2148x13
− 3723x11 + 4048x9

− 2690x7 + 1017x5
− 185x3 + 10x

5 25.7362 x21
− 20x19 + 168x17

− 774x15 + 2148x13
− 3722x11 + 4042x9

− 2682x7 + 1015x5
− 186x3 + 10x

In this case the maximal energy is attained in the value p = 4. Again none of the

trees for 2 ≤ p ≤ 5 are comparable with this tree.

Let Ω∗(n, 3) ⊂ Ω(n, 3) denotes the set of all trees of the form S (2, 2;p; 2;q; 2, 2).

Actually, we computed for all 15 ≤ n ≤ 200 the energy of the trees in Ω∗(n, 3) and the

behavior is exactly the same as in the previous example. In other words, when n is even

the maximal energy is attained in the value p = 1 and when n is odd the maximal energy

is attained at p = 4. Consequently we conjecture:

Conjecture 5.8 For every n ≥ 16, the maximal value of the energy over Ω∗ (n, 3) is

attained in S (2, 2; 1; 2;n− 12; 2, 2) when n is even and in S (2, 2; 4; 2;n− 15; 2, 2) when

n is odd.

On the other hand, the conditions c ≥ 2 and e ≥ 2 in the hypothesis of Theorem 5.6

are necessary, as we can see in our next example.

Example 5.9 The trees T = S (2, 2; 1; 2; 1; 2, 4), A = S (2, 2; 1; 2; 3; 2, 2) and B =

S (2, 2; 2; 2; 2; 2, 2) belonging to Ω(15, 3) are not comparable. In fact,

ΦT (x) = X15 − 14X13 + 75X11 − 198X9 + 275X7 − 197X5 + 65x3 − 7x

ΦA (x) = X15 − 14X13 + 75X11 − 197X9 + 273X7 − 198X5 + 67x3 − 7x

ΦB (x) = X15 − 14X13 + 75X11 − 196X9 + 267X7 − 190X5 + 65x3 − 8x

However note that E (T ) = 18.0779 < E (A) = 18.0805 < E (B) = 18.0889.

This leads to the following conjecture:

Conjecture 5.10 For every n ≥ 16, the maximal value of the energy over Ω (n, 3) is

attained in S (2, 2; 1; 2;n− 12; 2, 2) when n is even and in S (2, 2; 4; 2;n− 15; 2, 2) when

n is odd.
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In conclusion, the general problem of the maximal value of the energy over Ω (n, 3)

is still an open problem. In this section we showed that using quasi-order relations,

Theorem 5.6 is as far as we can get. From this point on, it seems that any progress is

possible only by means of the Coulson’s integral formula combined by methods of real

analysis (see [13]).
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