New Upper Bounds for the First Zagreb Index

Sunilkumar M. Hosamani ${ }^{*}$, B. Basavanagoud ${ }^{\dagger}$
*Department of mathematics, Rani Channamma University, Belgaum, India
e-mail: sunilkumar.rcu@gmail.com
\dagger Department of Mathematics, Karnatak University, Dharwad, India
e-mail: b.basavanagoud@gmail.com

(Received October 14, 2014)

Abstract

The first Zagreb index $M_{1}(G)$ of a graph G is defined as the sum of squares of the degrees of the vertices. This paper presents some new upper bounds for the first Zagreb index.

1 Introduction

Let $G=(V, E)$ be a graph. The number of vertices of G we denote by n and the number of edges we denote by m, thus $|V(G)|=n$ and $|E(G)|=m$. The degree of a vertex v, denoted by $d_{G}(v)$.Specially, $\Delta=\Delta(G)$ and $\delta=\delta(G)$ are called the maximum and minimum degree of vertices of G respectively. G is said to be r-regular if $\delta(G)=\Delta(G)=r$ for some positive integer r.

The Zagreb indices were first introduced by Gutman [8], they are important molecular descriptors and have been closely correlated with many chemical properties [17].

The first Zagreb index is defined as

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2}
$$

Recently, there was a vast research on comparing Zagreb indices [$2,10,11,14$], establishing various upper bounds $[3,4,12,13,18,20]$ and relation involving graph invariants $[6,15,19$, 21], a survey on the first Zagreb index see [9].

In this paper, we obtain some new sharp upper bounds for $M_{1}(G)$.

2 Main Results

In this section, a new of upper bounds for the first Zagreb index of a graph G are presented. At this point, let us remind the lower bound for the first Zagreb index is $\frac{4 m^{2}}{n}$, i.e., $M_{1}(G) \geq \frac{4 m^{2}}{n}[11]$.

We begin with the following straightforward, previously known, auxiliary result.
Theorem 1. [1] Suppose a_{i} and $b_{i}, 1 \leq i \leq n$ are positive real numbers, then

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leq \alpha(n)(A-a)(B-b) \tag{1}
\end{equation*}
$$

where a, b, A and B are real constants, that for each $i, 1 \leq i \leq n, a \leq a_{i} \leq A$ and $b \leq b_{i} \leq B$. Further, $\alpha(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$.

We can see the appearance of Theorem 1, in [16].
Theorem 2. Let G be a nontrivial graph of order n and size m. Then

$$
M_{1}(G) \leq \frac{\alpha(n)(\Delta-\delta)^{2}+4 m^{2}}{n}
$$

where $\alpha(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$, where $\lceil x\rceil$ largest integer greater than or equal to x. Further, equality holds if and only if G is regular graph.

Proof. Let $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots, b_{n}$ be real numbers for which there exist real constants a, b, A and B, so that for each $i, i=1,2, \cdots, n, a \leq a_{i} \leq A$ and $b \leq b_{i} \leq B$. Then by Theorem 1, the following inequality is valid

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leq \alpha(n)(A-a)(B-b) \tag{2}
\end{equation*}
$$

$\alpha(n)=n\left\lceil\frac{n}{2}\right\rceil\left(1-\frac{1}{n}\left\lceil\frac{n}{2}\right\rceil\right)$, where $\lceil x\rceil$ largest integer greater than or equal to x. Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$ and $b_{1}=b_{2}=\cdots=b_{n}$.
We choose $a_{i}=d_{G}\left(v_{i}\right)=b_{i}, A=\Delta=B$ and $a=\delta=b$, inequality (2), becomes

$$
\begin{aligned}
n \sum_{i=1}^{n} d_{G}\left(v_{i}\right)^{2}-\left(\sum_{i=1}^{n} d_{G}\left(v_{i}\right)\right)^{2} & \leq \alpha(n)(\Delta-\delta)(\Delta-\delta) \\
n M_{1}(G) & \leq \alpha(n)(\Delta-\delta)^{2}+4 m^{2} \\
M_{1}(G) & \leq \frac{\alpha(n)(\Delta-\delta)^{2}+4 m^{2}}{n}
\end{aligned}
$$

Since equality in (2) holds if and only if $a_{1}=a_{2}=\cdots,=a_{n}$ and $b_{1}=b_{2}=\cdots,=b_{n}$. Therefore equality of the theorem holds if and only if G is regular graph.

Corollary 3. Since, $\alpha(n) \leq \frac{n^{2}}{4}$. Therefore, $M_{1}(G) \leq \frac{n^{2}(\Delta-\delta)^{2}+16 m^{2}}{4 n}$.

Theorem 4. Let G be a nontrivial graph of order n and size m. Then

$$
M_{1}(G) \leq(\delta+\Delta) 2 m-n \delta \Delta
$$

Equality holds if and only if G is regular graph.
Proof. Let $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots, b_{n}$ be real numbers for which there exist real constants r and R so that for each $i, i=1,2, \cdots, n$ holds $r a_{i} \leq b_{i} \leq R a_{i}$. Then the following inequality is valid (see [5]).

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+r R \sum_{i=1}^{n} a_{i}^{2} \leq(r+R) \sum_{i=1}^{n} a_{i} b_{i} \tag{3}
\end{equation*}
$$

Equality of (3) holds if and only if, for at least one $i, 1 \leq i \leq n$ holds $r a_{i}=b_{i}=R a_{i}$. We choose $b_{i}=d_{G}\left(v_{i}\right), a_{i}=1, r=\delta$ and $R=\Delta$ in inequality (2), then

$$
\begin{aligned}
\sum_{i=1}^{n} d_{G}\left(v_{i}\right)^{2}+\delta \Delta \sum_{i=1}^{n} 1 & \leq(\delta+\Delta) \sum_{i=1}^{n} d_{G}\left(v_{i}\right) \\
M_{1}(G)+\delta \Delta n & \leq(\delta+\Delta) 2 m \\
M_{1}(G) & \leq(\delta+\Delta) 2 m-n \delta \Delta
\end{aligned}
$$

if for some i holds that $r a_{i}=b_{i}=R a_{i}$, then for some i also holds $b_{i}=r=R$. Therefore equality holds if and only if $\delta=\Delta$, i.e., for regular graphs.

Acknowledgements: This work is supported by the Science and Engineering Research Board, New Delhi India under the Major Research Project No. SERB/F/4168/201213 Dated 03.10.2013. The authors are grateful to the anonymous referee for valuable comments, which helped us to improve the manuscript.

References

[1] M. Biernacki, H. Pidek, C. Ryll-Nardzewsk, Sur une inégalité entre des intégrales définies, Univ. Marie Curie-Sklodowska A4 (1950) 1-4.
[2] G. Caporossi, P. Hansen, D. Vukičević, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 441-451.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math. 285 (2004) 57-66.
[4] K. C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521.
[5] J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. Pólya G. Szegö and L. V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963) 415-418.
[6] L. Feng, A. Ilić, Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number, Appl. Math. Lett. 23 (2010),943-948.
[7] F. Harary, Graph Theory, Addison-Wesely, Reading, 1969.
[8] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[9] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[10] Y. Huang. B. Liu, M. Zhang, On Comparing the variable Zagreb indices, MATCH Commun. Math. Comput. Chem. 63 (2010) 453-460.
[11] A. Ilić, D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681-687.
[12] M. Liu, B. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62 (2009) 689-698.
[13] B. Liu, I. Gutman, Upper bounds for Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 439-446.
[14] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (2011) 581-593.
[15] M. Liu, A simple approach to order the first Zagreb indices of Connected graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 425-432.
[16] I. Ž. Milovanovć, E. I. Milovanovć, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 179-182.
[17] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[18] Z. Yan, H. Liu, H. Liu, Sharp bounds for the second Zagreb index of unicyclic graphs, J. Math. Chem. 42 (2007) 565-574.
[19] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004) 93-95.
[20] B. Zhou, Upper bounds for the Zagreb indices and the spectral radius of seriesparallel graphs, Int. J. Quantum Chem. 107 (2007) 875-878.
[21] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 597-616.

