
On Zagreb Indices and Coindices

Ivan Gutman1,2, Boris Furtula1,
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Abstract

A complete set of relations is established between the first and second Zagreb index and

coindex of a graph and of its complements. Formulas for the first Zagreb index of several derived

graphs are also obtained. A remarkable result is that the first Zagreb coindices of a graph and

of its complement are always equal.

1 Introduction

The two Zagreb indices belong among the oldest molecular structure descriptors, and their

properties have been extensively investigated. Recently, the concept of Zagreb coindices

was put forward, attracting much attention of researchers in mathematical chemistry.

The aim of the present work is to establish a complete set of relations between Zagreb

indices and coindices of graphs and their complements.

In this paper we are concerned with simple graphs, having no directed or weighted

edges, and no self loops. Let G be such a graph and let V (G) and E(G) be its vertex

and edge sets, respectively. The number of vertices and edges of G will be denoted by
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n = n(G) and m = m(G), respectively. In addition, the edge connecting the vertices u

and v will be denoted by uv.

The complement G of the graph G is the graph with vertex set V (G), in which two

vertices are adjacent if and only if they are not adjacent in G.

The degree of the vertex v , denoted by dG(v) , is the number of first neighbors of v

in the underlying graph G. Then the first and second Zagreb index are defined as

M1 = M1(G) =
∑

v∈V (G)

dG(v)2 (1)

M2 = M2(G) =
∑

uv∈E(G)

dG(u) dG(v) . (2)

These topological indices were conceived in the 1970s [13, 15]; for details on their prop-

erties and additional references see [4, 9, 10, 12, 14, 21]; for historical details see [11]. In

what follows, we need another expression for the first Zagreb index, namely

M1(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

]
. (3)

The proof of the identity (3) is quite simple. Nevertheless, it seems to be first time

mentioned only a few years ago [6].

In 2008, bearing in mind Eq. (3), Došlić put forward the first Zagreb coindex, defined

as [6]

M1 = M1(G) =
∑

uv 6∈E(G)

[
dG(u) + dG(v)

]
. (4)

In view of Eq. (2), the second Zagreb coindex is defined analogously as [6]

M2 = M2(G) =
∑

uv 6∈E(G)

dG(u) dG(v) . (5)

In Eqs. (4) and (5) is it assumed that u 6= v.

The Zagreb coindices were recently studied in some detail [1, 2, 17–19, 22], and the

relations between Zagreb indices and coindices were also examined [3, 5, 7, 16,20].

In this paper, we determine all relations between the Zagreb indices and coindices

of a graph G and of its complement G. In Section 2 we focus our attention to the first

Zagreb index, in Section 3 to the second Zagreb index, whereas in Section 4 we obtain

relations for the Zagreb indices of certain derived graphs. Not all results outlined in this

paper are new, but we state them all for the sake of completeness.
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2 Relations for first Zagreb indices and coindices

Theorem 1. Let G be a graph with n vertices and m edges. Then

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1) (6)

M1(G) = 2m(n− 1)−M1(G) (7)

M1(G) = 2m(n− 1)−M1(G) . (8)

Proof.

Proof of Eq. (7):

We start with the identity ∑
u∈V (G)

∑
v∈V (G)

[
dG(u) + dG(v)

]
= 4mn

which is a direct consequence of the fact that the sum of degrees of all vertices is equal to

2m. The left–hand side summation in the above relation can be partitioned as follows:∑
u∈V (G)

∑
v∈V (G)

= 2
∑

uv∈E(G)

+2
∑

uv 6∈E(G)

+2
∑

u=v∈V (G)

which in view of Eqs. (3) and (4) yields∑
u∈V (G)

∑
v∈V (G)

[
dG(u) + dG(v)

]
= 2M1(G) + 2M1(G) + 2

∑
v∈V (G)

dG(v)

= 2M1(G) + 2M1(G) + 4m.

From

2M1(G) + 2M1(G) + 4m = 4mn

we straightforwardly arrive at Eq. (7).

Proof of Eq. (6):

For any vertex u of the complement G,

dG(u) = n− 1− dG(u) . (9)

Bearing in mind Eqs. (3) and (9), we have

M1(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

]
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=
∑

uv∈E(G)

[
n− 1− dG(u) + n− 1− dG(v)

]

= 2(n− 1)

[(
n

2

)
−m

]
−

∑
uv∈E(G)

[
dG(u) + dG(v)

]
because G has

(
n
2

)
−m edges. Now,∑

uv∈E(G)

[
dG(u) + dG(v)

]
=

∑
uv 6∈E(G)

[
dG(u) + dG(v)

]
= M1(G) .

This yields

M1(G) = 2(n− 1)

[(
n

2

)
−m

]
−M1(G) . (10)

Substituting Eq. (7) back into (10) yields Eq. (6).

Proof of Eq. (8):

Using Eqs. (4) and (9), we have

M1(G) =
∑

uv 6∈E(G)

[
dG(u) + dG(v)

]
=

∑
uv∈E(G)

[
n− 1− dG(u) + n− 1− dG(v)

]
= 2(n− 1)m−

∑
uv∈E(G)

[
dG(u) + dG(v)

]
which in view of Eq. (3) directly leads to Eq. (8).

Comparing Eqs. (7) and (8) we arrive at the following surprising conclusion:

Corollary 2. For any simple graph G,

M1(G) = M1(G) .

The Zagreb–index counterpart of Corollary 2 is:

Corollary 3. Let G be a simple graph with n vertices and m edges. Then

M1(G) = M1(G) (11)

holds if and only if m = 1
2

(
n
2

)
.

From Corollary 3 it also follows:
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Corollary 4. If Eq. (11) holds, then the number n of vertices satisfies either n ≡

0 (mod 4) or n ≡ 1 (mod 4).

Remark 1. If a graph G is self-complementary (i.e., if G ∼= G), then m = 1
2

(
n
2

)
must

hold and Eq. (11) is obeyed in a trivial manner. However, there are graphs which are not

self-complementary, but for which Eq. (11) holds. The smallest such graphs (with 4 and

5 vertices) are depicted in Fig. 1.

G G G GG G1 32 54 6

Fig. 1. The smallest non-self-complementary graphs for which Eq. (11) holds. Note
that G2 is the complement of G1 , G4 is the complement of G3 , and G6 is the complement
of G5 .

3 Relations for second Zagreb indices and

coindices

Theorem 5. Let G be a graph with n vertices and m edges. Then

M2(G) =
1

2
n(n− 1)3 − 3m(n− 1)2 + 2m2 +

2n− 3

2
M1(G)−M2(G) (12)

M2(G) = 2m2 − 1

2
M1(G)−M2(G) (13)

M2(G) = m(n− 1)2 − (n− 1)M1(G) +M2(G) . (14)

Proof.

Proof of Eq. (13):

We first note that ∑
u∈V (G)

∑
v∈V (G)

dG(u) dG(v) = 4m2 .

The left–hand side summation in the above relation can be partitioned as:∑
u∈V (G)

∑
v∈V (G)

dG(u) dG(v) = 2
∑

uv∈E(G)

dG(u) dG(v) + 2
∑

uv 6∈E(G)

dG(u) dG(v)

+
∑

u∈V (G)

dG(u)2 = 2M2(G) + 2M2(G) +M1(G)
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where Eqs. (1), (2), and (5) have been employed. From

2M2(G) + 2M2(G) +M1(G) = 4m2

we straightforwardly obtain Eq. (13).

Proof of Eq. (12):

Taking into account relation (9) and the fact that G has
(
n
2

)
−m edges, start with Eq.

(2) as

M2(G) =
∑

uv∈E(G)

dG(u) dG(v) =
∑

uv∈E(G)

[
n− 1− dG(u)

][
n− 1− dG(v)

]
= (n−1)2

∑
uv∈E(G)

1− (n−1)
∑

uv∈E(G)

[
dG(u)+dG(v)

]
+

∑
uv∈E(G)

dG(u) dG(v)

= (n−1)2
[(
n

2

)
−m

]
− (n−1)

∑
uv 6∈E(G)

[
dG(u)+dG(v)

]
+

∑
uv 6∈E(G)

dG(u) dG(v)

= (n−1)2
[(
n

2

)
−m

]
− (n−1)M1(G) +M2(G) . (15)

Substituting Eqs. (7) and (13) into (15), by a lengthy calculation we obtain Eq. (12).

Proof of Eq. (14):

Using an analogous reasoning, we have

M2(G) =
∑

uv 6∈E(G)

dG(u) dG(v) =
∑

uv∈E(G)

[
n− 1− dG(u)

][
n− 1− dG(v)

]
= (n−1)2m− (n−1)

∑
uv∈E(G)

[
dG(u) + dG(v)

]
+

∑
uv∈E(G)

dG(u) dG(v)

and Eq. (14) immediately follows.

4 Zagreb indices of some derived graphs

In the previous two sections we have shown that if Mi(G) , i = 1, 2, is known, then also

Mi(G), M i(G), and M i(G) are known. Therefore, what really needs to be calculated are

expressions for M1(G) and M2(G). In this section we calculate such expressions for M1

for a number of familiar derived graphs.

Let, as before, G be a simple graph with n vertices and m edges, with vertex set V (G)

and edge set E(G). We are concerned with the following graphs derived from G:
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• Line graph L = L(G); V (L) = E(G) and two vertices of L are adjacent if the

corresponding edges of G are incident.

• Subdivision graph S = S(G). V (S) = V (G) ∪ E(G) and the vertex of S corre-

sponding to the edge uv of G is inserted in the edge uv of G.

• Vertex-semitotal graph T1 = T1(G); V (T1) = V (G) ∪ E(G) and E(T1) = E(S) ∪

E(G).

• Edge-semitotal graph T2 = T2(G); V (T2) = V (G)∪E(G) and E(T2) = E(S)∪E(L).

• Total graph T = T (G); V (T ) = V (G) ∪ E(G) and E(T ) = E(S) ∪ E(G) ∪ E(L).

• Paraline graph PL = PL(G) is the line graph of the subdivision graph.

In Fig. 2 self-explanatory examples of these derived graphs are depicted.

T

T

G

T PL

SL
1

2

Fig. 2. Various graphs derived from the graph G. The vertices of these derived graphs
(except the paraline graph PL), corresponding to the vertices of the parent graph G,
are indicated by circles. The vertices of these graphs, corresponding to the edges of the
parent graph G are indicated by squares. For details see text.
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In order to calculate the first Zagreb index of the above specified derived graphs, we

need an auxiliary quantity

F = F (G) =
∑

v∈V (G)

dG(v)3 =
∑

uv∈E(G)

[
dG(u)2 + dG(v)2

]
(16)

This vertex–degree–based graph invariant was encountered already in the earliest work

on Zagreb indices [15], but was later totally ignored. Only quite recently there has been

some interest to it [8]. We prefer to call F the “forgotten topological index”.

In what follows, M1, M2, and F always refer to the fist Zagreb index, second Zagreb

index, and forgotten topological index of the parent graph G.

Proposition 6. Let L be the line graph of the graph G. Then

M1(L) = F − 4M1 + 2M2 + 4m. (17)

Proposition 7. Let S be the subdivision graph of the graph G. Then

M1(S) = M1 + 4m. (18)

Proposition 8. Let T1 be the vertex-semitotal graph of the graph G. Then

M1(T1) = 4M1 + 4m. (19)

Proposition 9. Let T2 be the edge-semitotal graph of the graph G. Then

M1(T2) = F +M1 + 2M2 . (20)

Proposition 10. Let T be the total graph of the graph G. Then

M1(T ) = F + 4M1 + 2M2 . (21)

Proposition 11. Let PL be the paraline graph of the graph G. Then

M1(PL) = F . (22)

Proof. The above defined derived graphs possess vertices corresponding to the vertices

of the parent graph G, and vertices corresponding to the edges of the parent graph. The

former will be referred to as γ-vertices (in Fig. 2 indicated by circles), whereas the latter

as λ-vertices (in Fig. 2 indicated by squares).
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Proof of Proposition 6:

The edge uv of the graph G is incident to dG(u) + dG(v)− 2 other edges of G. Therefore,

M1(L) =
∑

uv∈E(G)

[
dG(u) + dG(v)− 2

]2
=

∑
uv∈E(G)

[
dG(u)2 + dG(v)2

]
+ 2

∑
uv∈E(G)

dG(u) dG(v)

− 4
∑

uv∈E(G)

[
dG(u) + dG(v)

]
+

∑
uv∈E(G)

22

which bearing in mind Eqs. (16), (2), and (3), gives Eq. (17).

Proof of Proposition 7:

In the subdivision graph S(G), all γ-vertices have same degree as the corresponding

vertices of the parent graph G. All λ-vertices of S(G) are od degree 2. Therefore,

M1(S) =
∑

v∈V (G)

dG(v)2 +
∑

uv∈E(G)

22

which yields Eq. (18).

Proof of Proposition 8:

Observe that in vertex-semitotal graph T1(G), the degrees of the γ-vertices are equal

to twice the degrees of the corresponding vertices of the parent graph G, whereas all

λ-vertices are of degree 2. Therefore

M1(T1) =
∑

v∈V (G)

[
2 dG(v)

]2
+

∑
uv∈E(G)

22

and Eq. (19) follows.

Proof of Proposition 9:

Observe that in the edge-semitotal graph T2(G), all γ-vertices have same degree as the

corresponding vertices of the parent graph G. The degrees of the λ-vertices are by two

greater than the degrees of the corresponding vertices in the line graph of G. Bearing

this in mind, we have

M1(T2) =
∑

v∈V (G)

dG(v)2 +
∑

uv∈E(G)

[
d(u) + d(v)− 2 + 2

]2
= M1(G) +

∑
uv∈E(G)

[
d(u)2 + d(v)2

]
+ 2

∑
uv∈E(G)

d(u) d(v)
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which in view of Eqs. (16) and (2) results in Eq. (20).

Proof of Proposition 10:

In the total graph T (G), the degrees of the γ-vertices are equal to twice the degrees of the

corresponding vertices of the parent graph G. The degrees of the λ-vertices are by two

greater than the degrees of the corresponding vertices in the line graph of G. Therefore,

M1(T ) =
∑

v∈V (G)

[
2 dG(v)

]2
+

∑
uv∈E(G)

[
d(u) + d(v)− 2 + 2]2

= 4M1(G) +
∑

uv∈E(G)

[
d(u)2 + d(v)2] + 2

∑
uv∈E(G)

d(u) d(v)

and Eq. (21) follows.

Proof of Proposition 11:

The paraline graph PL(G) of the graph G has 2m(G) vertices, and the interesting prop-

erty that dG(u) of its vertices have the same degree as the vertex u of the parent graph

G. Bearing this in mind, we have

M1(PL) =
∑

x∈V (PL)

dPL(x)2 =
∑

u∈V (G)

dG(u)
[
dG(u)

]2
=

∑
u∈V (G)

dG(u)3 = F (G)

which had to be demonstrated.

It remains a task for the future to find expressions for the second Zagreb index of the

derived graphs considered above.

Remark 2. A formula equivalent to Eq. (17) was established in [23], pertaining to the

“reformulated first Zagreb index”. Formula (19) was obtained in [16], where also an

incorrect formula (20) was reported.
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[2] A. R. Ashrafi, T. Došlić, A. Hamzeh, Extremal graphs with respect to the Zagreb

coindices, MATCH Commun. Math. Comput. Chem. 65 (2011) 85–92.

-14-



[3] J. Baskar Babujee, S. Ramakrishnan, Zagreb indices and coindices for compound

graphs, in: R. Nadarajan, R. S. Lekshmi, G. Sai Sundara Krishnan (Eds.), Compu-

tational and Mathematical Modeling , Narosa, New Delhi, 2012, pp. 357–362.

[4] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Com-

mun. Math. Comput. Chem. 52 (2004) 103–112.

[5] K. C. Das I. Gutman, B. Horoldagva, Comparing Zagreb indices and coindices of

trees, MATCH Commun. Math. Comput. Chem. 68 (2012) 189–198.
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