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Abstract

Let G be a graph with edge set E(G) that admits a perfect matching M . A
forcing set of M is a subset of M contained in no other perfect matching of G. A
complete forcing set of G, recently introduced by Xu et al. [Complete forcing num-
bers of catacondensed hexagonal systems, J. Comb. Optim., doi: 10.1007/s10878-
013-9624-x], is a subset of E(G) to which the restriction of any perfect matching
M is a forcing set of M . The minimum possible cardinality of a complete forcing
set of G is the complete forcing number of G. In this article, we prove theorems
for general graphs about explicit relations between the complete forcing numbers
under the operation of identifying edges. Regarding its applications to a catacon-
densed hexagonal system, we prove an unexpectedly linear relationship between
the complete forcing number and the Clar number, an important concept on Clar’s
aromatic sextet theory in chemistry, propose a linear-time algorithm for computing
the complete forcing number and the Clar number and, finally, give an exponential
sharp lower bound on the number of minimum complete forcing sets.
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1 Introduction

A perfect matching of a graph is a set of disjoint edges that covers all vertices of the graph.

Perfect matchings arose in the dimer problem of statistical physics, Kekulé structures of

organic chemistry and in the personnel assignment problem of operations research [14].

The number of Kekulé structures (i.e., perfect matchings) of a benzenoid hydrocarbon

can measure its stability [4]. The idea of “forcing” has long been used in many research

fields in graph theory and combinatorics [7, 15], and its application to a perfect matching

M of a graph first appeared in Ref. [8] by Harary, Klein, Živković, that is, a subset S of

M forces exactly one perfect matching of G, namely, M . In other words, then S occurs

simultaneously in no other perfect matching. Such an S is called a forcing set of M .

The minimum possible cardinality of S is called the forcing number of M . The forcing

number can trace its origin back to the papers [11, 17] in the study of molecular resonance

structures by Randić and Klein in the chemical literature, where the forcing number was

introduced under the name of “innate degree of freedom” of a Kekulé structure. Adams

et al. proved [1] the problem of finding the forcing number of a perfect matching in a

bipartite graph with maximum degree 3 is NP-complete. For more results on the forcing

number, we refer the reader to Refs. [2, 12, 13, 16, 18, 27].

Forcing sets and forcing numbers of perfect matchings of a graph G with edge set

E(G) are defined by the “local” approach, i.e., defined with respect to a particular perfect

matching of G. Vukičević et al. [20, 21] introduced the concept of global (or total) forcing

set from the “global” point of view, i.e., concerning all perfect matchings instead of a

particular perfect matching, which is defined as a subset S of E(G) on which there are

no two distinct perfect matchings coinciding, i.e., the restriction of the characteristic

function of perfect matchings to S is an injection. On the other hand, Klein and Randić

[11] proposed the degree of freedom of a graph from the “global” point of view, defined as

the sum of forcing numbers over all perfect matchings of a graph. Again, combining the

“forcing” and “global” ideas, Xu et al. [22] first proposed studying a structure concerning

all perfect matchings instead of a particular perfect matching, namely a subset S of E(G)

to which the restriction of every perfect matching is a forcing set of the perfect matching.

Such an S is called a complete forcing set of G. The minimum possible cardinality of

a complete forcing set is called the complete forcing number of G. To a certain extent,

the complete forcing number of a graph gives some sort of identification of the minimal
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amount of “information” required to specify forcing sets of perfect matchings of the graph.

Also, they established some initial results about complete forcing sets and the complete

forcing number of a graph, including a necessary and sufficient condition for a set to be

a complete forcing set of a graph, and proving that a complete forcing set of a graph is

also a global forcing set and the converse is not true by a counterexample.

Let G be a hexagonal system, H a set of disjoint hexagons in G. H is called a resonant

set (or sextet pattern) if the subgraph of G obtained from G by deleting vertices in H

together with their incident edges has a perfect matching or is empty. A Clar formula is

a resonant set of maximum possible size. The Clar number, denoted by Cl(G), of G is

the cardinality of a Clar formula of G. The concept of resonant pattern originates from

Clar’s aromatic theory [3]. Within benzenoid hydrocarbon isomers, one with larger Clar

number is chemically and thermodynamically more stable. Klažar et al. [10] proposed

a simple paper-and-pencil method for determining the Clar number of a catacondensed

hexagonal system. An integer linear programming was proposed by Hansen and Zheng

[9] to compute the Clar number of hexagonal systems. For other researches on the Clar

number, see Refs. [19, 23, 25, 26].

Concerning the difficulty of the computation of complete forcing numbers, we hope

to express the complete forcing number of a graph in terms of complete forcing numbers

of its subgraphs. Motivated by this idea, in this article we discuss the decomposition

of a graph into smaller subgraphs, which has been an area of considerable interest in

graph theory, and give relations between the complete forcing number of a graph and the

complete forcing numbers of the subgraphs obtained by splitting an edge whose endpoints

constitute a cutset. As their applications, we prove an unexpectedly linear relationship

between the complete forcing number and the Clar number of a catacondensed hexagonal

system G and propose a linear-time algorithm for computing the complete forcing number

and the Clar number of G. Finally we give an exponential sharp lower bound on the

number of minimum complete forcing sets of G.

The present paper is organized as follows. In the next section, we formally define

complete forcing sets, the complete forcing number of a graph, catacondensed hexagonal

systems, along with other graph-theoretic terms relevant to our subject. In Section 3,

we give a necessary and sufficient condition for complete forcing sets and theorems about

relations between complete forcing numbers under graph edge-identification. In Section
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4, we provide and prove our main results on catacondensed hexagonal systems G: a linear

relationship between the complete forcing number and the Clar number of G, a linear

algorithm for computing the complete forcing number and the Clar number of G, and an

exponential sharp lower bound on the number of minimum complete forcing sets of G.

We conclude this article in Section 5.

2 Preliminaries

Each graph G with edge set E(G) and vertex set V (G) in this paper is simple and has

perfect matchings. For all terms and notation used but not defined here we refer the

reader to the textbook [5].

A hexagonal system (or benzenoid system, polyhex graph) is a connected graph without

cut vertices embedded into the regular hexagonal lattice in the plane, and in which all

internal faces are regular hexagons. Note that hexagonal systems are bipartite. A hexag-

onal system is catacondensed if there are no three hexagons sharing one common vertex,

i.e., all vertices lie on the boundary of the non-hexagonal external face. A hexagonal chain

is a catacondensed hexagonal system in which no hexagon is adjacent to three hexagons.

Let G be a catacondensed hexagonal system. An edge e in G is called shared if e is

contained in two hexagons. A hexagon r of G has zero, one, two or three neighbouring

hexagons. If r has zero or one neighbouring hexagon, it is said to be terminal, and if it has

three neighbouring hexagons, to be branched. A hexagon which is adjacent to exactly two

other hexagons is a kink if it has two adjacent vertices of degree 2, and is linear otherwise.

A hexagonal chain with no kinks is said to be linear. A segment is a maximal linear

hexagonal chain in G, including the kinks and/or terminal hexagons and/or branched

hexagons at its end. If a segment L contains a terminal hexagon, L is called terminal.

Let S1, S2 be two subsets of a set. The symmetric difference, denoted by S1 ⊕ S2, of

S1 and S2 is the set of elements belonging to exactly one of S1 and S2.

Let G be a connected graph with a perfect matching. A subgraph H of G is nice if

G − V (H) contains a perfect matching. It is obvious that an even cycle C of G is nice

if and only if C is exactly the symmetric difference of some two perfect matchings M1

and M2 of G, i.e., C = M1 ⊕M2; Let C be an even cycle. A set of alternative edges on

C is called a type-set of C. Alternatively, each type-edge of an even cycle C is a perfect

matching of C.
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Fig. 1: A minimum complete forcing set {e1, e2, e3} in K4 is indicated by bold lines. Hence
cf(K4) = 3.

The following is a basic property of catacondensed hexagonal systems.

Lemma 2.1. [4, 6] Let G be a catacondensed hexagonal system. Then G has a perfect

matching and each hexagon in G is nice.

Let G be a catacondensed hexagonal system with a hexagon r. (Hexagon r is neces-

sarily nice by Lemma 2.1.) If r is a kink or branched hexagon, then all shared edges of r

belong to one common type-set of r, while two shared edges of a linear hexagon r belong

to two distinct type-sets of r.

Let G be a connected graph with edge set E(G) and a perfect matching M . A forcing

set of M is a subset of M contained in no other perfect matching of G. It follows that the

empty set is a forcing set of M if and only if M is the unique perfect matching of G. A

complete forcing set of G is a subset S of E(G) of which, for any perfect matching M , the

restriction to M is a forcing set of M . Obviously, any set containing a complete forcing

set of G, particularly E(G), is also a complete forcing set of G. A complete forcing set

of the smallest cardinality is called a minimum complete forcing set, and its cardinality is

the complete forcing number of G, denoted by cf(G).

As an illustrative example we consider K4 shown in Fig. 1 (see Refs. [20, 22], Fig. 1).

It contains three different perfect matchings: M1 = {e1, e4}, M2 = {e2, e5}, M3 = {e3, e6}.

It is easy to see that the restriction of every perfect matching M to S = {e1, e2, e3} is a

forcing set of M . Hence S is a complete forcing set of K4. Since the intersection of S

and every perfect matching is nonempty and {M1,M2,M3} is a partition of the edge set

of K4, S of cardinality 3 is a minimum complete forcing set. Hence, cf(K4) = 3.
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3 Complete forcing numbers under graph

edge–identification

First, we recall a necessary and sufficient condition for a complete forcing set of a graph

shown in [22].

Theorem 3.1. [22] Let G be a connected graph with edge set E(G) and a perfect matching.

Then S ⊆ E(G) is a complete forcing set of G if and only if for any nice cycle C in G,

the intersection of S and each type-set of C is non-empty.

Now we show another necessary and sufficient condition for a complete forcing set of

a connected graph with a perfect matching.

Theorem 3.2. Let G be a connected graph with edge set E(G) and a perfect matching.

Then S ⊆ E(G) is a complete forcing set of G if and only if for each nice subgraph H

with a perfect matching of G, the restriction of S to H is a complete forcing set of H.

Proof. Sufficiency (“⇐=”). Since G itself is a nice subgraph of G (i.e., let H = G), S is

a complete forcing set of G.

Necessity (“=⇒”). Let S be a complete forcing set of G, H a nice subgraph with a

perfect matching of G, and S ′ the restriction of S to H. We need to prove that S ′ is a

complete forcing set of H. Suppose to the contrary that S ′ is not a complete forcing set

of H. That is, by Lemma 3.1 S ′ does not intersect a type-set of a nice cycle C of H.

Since C is also a nice cycle of G, S does not intersect a type-set of a nice cycle C of G, a

contradiction.

We now give some results about the complete forcing numbers under graph edge-

identification.

Theorem 3.3. Let G be a connected graph with two nice subgraphs G1 and G2 such that

G = G1 ∪G2 and the intersection of G1 and G2 is an edge e = v1v2 (see Fig. 2). Then

cf(G1) + cf(G2)− 1 6 cf(G) 6 cf(G1) + cf(G2), (1)

and

(1). cf(G) = cf(G1) + cf(G2) if and only if either e is not contained in any minimum

complete forcing set in G1 or e is not contained in any minimum complete forcing set in
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Fig. 2: Illustration for the proof of Claim in Theorem 3.3. Vertices on the nice cycle C in
G can be represented by white and black points.

G2,

(2). cf(G) = cf(G1)+cf(G2)−1 if and only if both G1 and G2 contain minimum complete

forcing sets which contain e.

Proof. We first prove the inequality (1).

Upper bound. For i = 1, 2, let Si be a complete forcing set of Gi. Then

Claim. The union S = S1 ∪ S2 of S1 and S2 is a complete forcing set of G.

By Theorem 3.1, it is sufficient to prove that there is a nonempty intersection of S

and any type-set of any nice cycle C of G.

If C is completely contained in G1 or G2, say G1, then it is easily proven that C is

also a nice cycle of G1 by the structure of G. Since S1 is a complete forcing set of G1,

the intersection of S1 and any type-set of C is non-empty by Theorem 3.1. Thus the

intersection of S (⊇ S1) and any type-set of C is non-empty. Otherwise, we assume that

C is not contained entirely in G1 or G2. C must pass through the vertices v1 and v2 but

not the edge e by the structure of G. The addition of e to C creates two cycles containing

e, one entirely in G1, say C1, and the other, say C2, entirely in G2 (see Fig. 2). Then for

i = 1, 2, Ci is nice in Gi by the nicety of C. So by the definition of Si, 1 6 i 6 2, the

intersection of Si and the type-set of Ci not containing e is non-empty; we denote by ei

one edge in the intersection. It is easily proven that e1 and e2 in S belong to two different

type-sets of C by using e serving as a link.

For i = 1, 2, if Si is minimal, then by the claim, we have cf(G) 6 |S| 6 |S1|+ |S2| =

cf(G1) + cf(G2). So we have proved the upper bound on cf(G).

Lower bound. Let S be a minimum complete forcing set of G. Let Si = S ∩ Gi for

i = 1, 2. By Theorem 3.2, Si is a complete forcing set of Gi. Combined with S1∩S2 ⊆ {e}

and S = S1 ∪ S2, we have cf(G1) + cf(G2)− 1 6 |S1|+ |S2| − 1 6 |S| = cf(G).

In what follows we prove the statements (1) and (2). By the inequality (1), we know
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two statements (1) and (2) are equivalent. So it is sufficient to prove one of these state-

ments. Here we prove Statement (1).

Necessity (“=⇒”). Assume to the contrary that, for i = 1, 2, Gi has a minimum

complete forcing set containing e, denoted by Si. Then S1 ∩ S2 = {e} and S = S1 ∪ S2

is a complete forcing set of G by the claim in Theorem 3.3. Hence cf(G) 6 |S| =

|S1|+ |S2| − 1 = cf(G1) + cf(G2)− 1, which contradicts the assumption.

Sufficiency (“⇐=”). Assume to the contrary that cf(G) = cf(G1) + cf(G2) − 1 by

Theorem 3.3. We distinguish two cases.

Case 1. There exists a minimum complete forcing set S containing e in G.

Let Si = S ∩ Gi for i = 1, 2. Then Si is a complete forcing set of Gi by Theorem 3.2

and S1 ∩ S2 = {e}. Then

cf(G1) + cf(G2)− 1 6 |S1|+ |S2| − 1 = |S| = cf(G1) + cf(G2)− 1. (2)

Hence the equality holds in Eq. (2) and further Si is a minimum complete forcing set of

Gi containing e for i = 1, 2, which contradicts the assumption.

Case 2. e is not contained in any minimum complete forcing set in G.

Let S be a minimum complete forcing set of G and denote Si = S ∩ Gi for i = 1, 2.

Then S1 ∩ S2 = ∅ and Si is a complete forcing set of Gi by Theorem 3.2. we have

cf(G1) + cf(G2) 6 |S1|+ |S2| = |S| = cf(G) = cf(G1) + cf(G2)− 1, a contradiction.

4 A linear relationship between the complete forcing

number and the Clar number and a linear-time al-

gorithm for their computation

For catacondensed hexagonal systems, there exists a particular necessary and sufficient

condition for complete forcing sets as follows.

Theorem 4.1. [22] Let G be a catacondensed hexagonal system with edge set E(G). Then

S ⊆ E(G) is a complete forcing set of G if and only if S and two type-sets of each hexagon

in G have a nonempty intersection, respectively.

Theorem 4.2. [22] Let L be a linear hexagonal chain with n hexagons. Then cf(L) =

n+ 1.
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Fig. 3: Illustration for the proof of Lemma 4.4.

Lemma 4.3. Let L be a linear hexagonal chain with n hexagons (n > 1). Then every

minimum complete forcing set of L consists of the n− 1 shared edges and two additional

edges, lying respectively in the type-set of its terminal hexagon(s) containing no shared

edges. Thus L has precisely nine minimum complete forcing sets.

Proof. Assume to the contrary that there exists a minimum complete forcing set S of

L which does not contain a shared edge e. Then e divides L into two linear hexagonal

chains L1 and L2. Note that the total number of hexagons in L1 and L2 is n. By

Theorem 3.2, the restriction of S to L1 (resp., to L2) is a complete forcing set in L1

(resp., to L2), denoted by S1 (resp., S2). Then S1 (resp. S2) does not contain e and hence

|S| = |S1| + |S2|. Again combined with Theorem 4.2, we have n + 1 = cf(L) = |S| =

|S1|+ |S2| > cf(L1) + cf(L2) = n+ 2, a contradiction.

As there are totally n− 1 shared edges in L, combined with Theorem 4.2, S has two

edges other than shared edges. It directly follows from Theorem 4.1 that these two edges

belong respectively to the type-set of its terminal hexagon(s) containing no shared edges.

Since each type-set of a terminal hexagon containing no shared edges has three edges, L

has precisely 3× 3 = 9 minimum complete forcing sets.

Lemma 4.4. Let L be a terminal segment containing a kink K as one of its ends in a

catacondensed hexagonal system G. We denote by e, e′ the two edges in the type-set of

K containing shared edges (see Fig. 3) such that e is not shared. Then no minimum

complete forcing set in G contains e.

Proof. We denote by Gr the subgraph of G separated along e′ inclusive other than L. Let

S be a minimum complete forcing set of G.

If e′ ∈ S, then e /∈ S by the choice of S and Theorem 4.1. Otherwise, we assume that

e′ /∈ S. Let S1, S2 be the restrictions of S to L,Gr, respectively. Then |S| = |S1| + |S2|

and S1, S2 are complete forcing sets of L,Gr, respectively, by Theorem 3.2. So we have

cf(G) = |S| = |S1|+ |S2| > cf(L) + cf(Gr).
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Fig. 4: Illustration for the proof of Theorem 4.5.

Again combined with Theorem 3.3, equality holds in the inequality above. So S1 is a

minimum complete forcing set of L. Note that there are at least two hexagons in L. By

Lemma 4.3, e /∈ S1, so, e /∈ S.

Theorem 4.5. Let G be a catacondensed hexagonal system with a terminal segment

L containing a kink or branched hexagon K. G is decomposed into L and residuals

G1, G2 along two shared edges, denoted by e1, e2, of K (see Fig. 4) (called a terminal

decomposition. Note that if K is a kink, then one of G1, G2, say G2, is empty). Then

cf(G) = cf(L) + cf(G1) in the case of the kink K and cf(G) = cf(L) + cf(G1) + cf(G2)

in the case of the branched hexagon K.

Proof. If K is a kink, i.e., G2 is empty, then no minimum complete forcing set of L

contains e1 by Lemma 4.3. Hence by Theorem 3.3 (1), cf(G) = cf(L) + cf(G1). If K

is branched, we make two inverse operations of edge-identifications of G into L,G1, and

G2. First, along the edge e1, we decompose G into G1 and the residual Gr consisting of L

and G2 (including e1). By Lemma 4.4, no minimum complete forcing set of Gr contains

e1. By Theorem 3.3 (1), cf(G) = cf(G1) + cf(Gr). Similarly, we decompose Gr into L

and G2 along e2, by Lemma 4.3, no minimum complete forcing set of L contains e2 (note

that L contains at least two hexagons). By Theorem 3.3 (1), cf(Gr) = cf(L) + cf(G2).

Combining the two equalities above, we get cf(G) = cf(L) + cf(G1) + cf(G2). This

completes the proof.

Proposition 4.6. Let G be a catacondensed hexagonal system. Then G can be decomposed

into a series of linear hexagonal chains by successively terminal decompositions for current

components other than linear hexagonal chains.

Proof. We can make one further terminal decomposition whenever there exist kinks or

branched hexagons in current graphs. Thus we ultimately arrive at a series of linear

hexagonal chains.
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Since there are various linear hexagonal chains arising in current terminal decom-

position procedure, eventually there are various series of linear hexagonal chains as in

Proposition 4.6 for a given catacondensed hexagonal system. But we have the following

result.

Corollary 4.7. Let G be a catacondensed hexagonal system with n hexagons. Then the

number of linear hexagonal chains into which G can be decomposed as in Proposition 4.6

is constant and is equal to cf(G)− n.

Proof. We take one series of linear hexagonal chains, say, H1, H2, · · · , Ht for some integer

t, as in Proposition 4.6. By Theorem 4.5, we have

cf(G) =
t∑

i=1

cf(Hi).

By Theorem 4.2, we know each cf(Hi) is equal to the number of hexagons, denoted by

hi, in Hi plus one. Note that n =
∑t

i=1 hi. Hence we have cf(G) =
∑t

i=1(hi + 1) =∑t
i=1(hi) + t = n + t, i.e., t = cf(G) − n. So t is constant for a given catacondensed

hexagonal system.

Let G be a catacondensed hexagonal system. We denote by t(G) the number of linear

hexagonal chains into which G can be decomposed as in Proposition 4.6.

Combining Theorems 4.2 and 4.5, we easily obtain the following result.

Theorem 4.8. Let G be a catacondensed hexagonal system with n hexagons. Then

cf(G) = n+ t(G).

In study of the Clar number of a catacondensed hexagonal system, Klavžar et al.

[10] also considered a kind of decomposition associated with a catacondensed hexagonal

system, which is essentially the terminal decomposition we used, and gave a remarkably

simple recursive method (i.e., Rules 1 and 2 in the original paper) for determining the

Clar number of a catacondensed hexagonal system, from which the following result is

easily obtained.

Lemma 4.9. [10] Let G be a catacondensed hexagonal system. Then Cl(G) = t(G).

Hence, combining Theorem 4.8 and Lemma 4.9, we give a close relationship between

the complete forcing number and the Clar number of a catacondensed hexagonal system

as follows.
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Theorem 4.10. Let G be a catacondensed hexagonal system with n hexagons, cf(G),

Cl(G) the complete forcing number and the Clar number of G, respectively. Then

cf(G) = Cl(G) + n.

By Theorem 4.8 and Lemma 4.9, we can give a linear-time algorithm for the complete

forcing number and the Clar number of a catacondensed hexagonal system as follows.

Algorithm A (Computing the complete forcing number and the Clar number of a cata-

condensed hexagonal system)

Input: a catacondensed hexagonal system G with n hexagons.

Output: the complete forcing number cf and the Clar number Cl of G.

Initialize a set TH as the set of terminal hexagons in G; cf ← n; Cl← 0.

while TH 6= ∅ do

choose a terminal segment L with hexagons h, h′ as their ends;

add non-branched hexagons outside L adjacent to h or h′ into TH;

delete h, h′ from TH;

G← the subgraph of G entirely consisting of hexagons not in L;

cf ← cf + 1, Cl ← Cl + 1,

end while

Return cf , Cl.

Theorem 4.11. Algorithm A runs in O(n) time.

Proof. Take any terminal hexagon K1 from the set of terminal hexagons in G1 = G. We

explore the terminal segment L1 containing K1 with l1 hexagons, which is implemented

in O(l1) time. We delete all hexagons in L1 from G1 (but not shared edges with the

other parts) and denote the resulting graph with n − l1 hexagons by G2 and update the

set of terminal hexagons in G2 in O(1) time. We continue until we are left with the

empty graph and get a series of linear hexagonal chains L1, L2, · · · , Lt with l1, l2, · · · , lt
hexagons, respectively. Note that n = l1 + l2 + · · · + lt. Hence the total time we need is

O(l1 + l2 + · · ·+ lt + t) = O(n).

An example: A catacondensed hexagonal system G with 16 hexagons in Fig. 5 can be

decomposed into eight linear hexagonal chains. So t(G) = 8. By Theorem 4.8 and Lemma
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Fig. 5: A catacondensed hexagonal system G with 16 hexagons. G can be decomposed into
eight linear hexagonal chains by terminal decompositions. By Theorem 4.8 and Lemma
4.9, cf(G) = 16 + 8 = 24, Cl(G) = 8.

4.9,

cf(G) = 16 + 8 = 24, Cl(G) = 8.

In what follows, we give an exponential sharp lower bound on the number of minimum

complete forcing sets of a catacondensed hexagonal system G with n hexagons in terms

of cf(G) and n.

Theorem 4.12. Let G be a catacondensed hexagonal system with n hexagons. Then the

number of minimum complete forcing sets is at least 9cf(G)−n. Equality holds if G is a

linear hexagonal chain.

Proof. Let {H1, H2, · · · , Hcf(G)−n} be any series of linear hexagonal chains as in Propo-

sition 4.6 associated with G. We denote by Si a minimum complete forcing set of Hi for

1 6 i 6 cf(G)− n. Let S = ∪cf(G)−n
i=1 Si. By Theorem 4.1, we know that S is a complete

forcing set of G. |S| 6
∑cf(G)−n

i=1 |Si| =
∑cf(G)−n

i=1 cf(Hi) = cf(G). Hence the equality

holds in the inequality above. So S is a minimum complete forcing set of G. By Lemma

4.3, S is a disjoint union of S1, S2, · · · , Scf(G)−n and each Si has nine choices. So S has at

least 9cf(G)−n distinct choices. This completes the proof.
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5 Concluding remarks

In this paper we discussed the calculation of the complete forcing numbers of graphs,

the close relationship between the complete forcing number and the Clar number, and

a remarkably simple method for their calculations. First we gave a necessary and suffi-

cient condition for complete forcing sets, then a result on the complete forcing numbers

under graph edge-identifications (i.e., Theorem 3.3) and introduced a decomposition for

a catacondensed hexagonal system G. Regarding their applications, we first decompose

G into a set of linear hexagonal chains by arbitrarily choosing terminal segments (i.e.,

terminal decompositions) and prove the number of these obtained linear hexagonal chains

for any such terminal decomposition are constant for any given catacondensed hexago-

nal system G and further gave an unexpectedly linear relationship between the complete

forcing number and the Clar number of G and ultimately gave a linear-time algorithm for

computing the complete forcing number and the Clar number of G. Finally we offered

an exponential sharp lower bound on the number of minimum complete forcing sets of G

with n hexagons in terms of n and the complete forcing number of G.

In deed, about the calculation of the complete forcing numbers of catacondensed hexag-

onal systems, Xu et al. [22] decomposed G into a series of hexagonal chains by choosing a

special branched hexagon K in the current graph and separating the component contain-

ing K into two parts along a special shared edge of K at each step, then expressed the

complete forcing number of G as the sum of all complete forcing numbers of these hexag-

onal chains. The complete forcing number of each hexagonal chain can be obtained by

considering the construction of each hexagonal chain. There are two main differences be-

tween two methods for the calculation of the complete forcing numbers of catacondensed

hexagonal systems. In order to carry out decompositions, we chose randomly terminal

segments in the current paper, while, in [22], branched hexagons and decompositions were

chosen in the special manner. On the other hand, there was a simple formula (i.e., Theo-

rem 4.2) for calculating the complete forcing number of a linear hexagonal chain in terms

of the number of hexagons, but no such a simple formula for the complete forcing number

of a hexagonal chain. Combining the two advantages, we gave a linear-time algorithm for

computing complete forcing numbers of catacondensed hexagonal systems.
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[6] T. Došlić, Global forcing number of benzenoid graphs, J. Math. Chem. 41 (2007)

217–229.

[7] K. Gray, On the minimum number of blocks defining a design, Bull. Austral. Math.

Soc. 41 (1990) 97–112.

[8] F. Harary, D. J. Klein, T. P. Živković, Graphical properties of polyhexes: perfect

matching vector and forcing, J. Math. Chem. 6 (1991) 295–306.

[9] P. Hansen, M. Zheng, Upper bounds for the Clar number of benzenoid hydrocarbons,

J. Chem. Soc. Faraday Trans. 88 (1992) 1621–1625.
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