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Abstract

Abdo et al. demonstrateATCH Commun. Math. Comput. Cher2.(2014) 741-751] that there exist connected
graphs for whichu? (G) = M, (G)/m where u(G) is the spectral radius of a graph G(GYlis the second Zagreb index and

m the number of edges. We use and extend this approximation to investigate opportunities to convert results from spectral
graph theory into results involving the first and the second Zagreb indi€€9 hd M(G). We do this principally by noting
that My(G)=ws and 2M(G)=w,, where w and w; are the numbers of 3- and 4-walks in a graph, respectively.

1. Introduction

Let G=G(V,E) be a graph with vertex set V(G) and edge set E(G). Denote by n and m
the number of vertices and edges of G, respectively. To avoid trivialities we always assume
that rv2. An edge of G connecting vertices u and v is denoted by uv. For a vertex u, d(u)
denotes the degree of u and d=d(G)=2m/n the average degree of G. We deywat€Gjyand
8=3(G) the maximum and the minimum degrees, respectively, of vertices of G. A graph is
called regular (R-regular), if all its vertices have the same degree R. A connected graph with
maximum vertex degree at most 4 is said to be a chemical graph.

Using the standard terminology [1], let A=A(G) denote the adjacency matrix of G,
H=p(G) the spectral radius of G, an(l5) the clique number of G. The average-degree of the
vertices adjacent to a vertex u is defined aguyED,(u)/d(u), where Bu) is the sum of

degrees of the vertices adjacent to u. A graph G is called harmonic (pseudoregular) if the
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average-degree,du) is equal for any vertex u. If G is harmonicriiibe average-degree is
identical to the spectral radius of G. Moreovegraph G is harmonic if and only i pAj
holds, where j is the all-one vector [2,3].

Define the first and second Zagreb indices of lyi@ as usual as follows [4-12]:

M,=M, (@)=Y d*@ and M, =M,(G)= Y dud)-

uvilE

For more detailed information on Zagreb indices refer the reader to surveys [13-16]. For a
graph G, a k-walk is a sequence of verticgs.v v;,...,Vk such that vis adjacent to  for
all i=1,2,...k-1. We denote by mw=w(G) the number of k-walks in G [2,3]. Teranish¥]1
has noted that:
wi=n, w=2m, w=Mi(G) and w=2My(G).

Denote byoa(G) andB(G) two distinct topological invariants of a gragh Throughout this
papera(G) =p(G) will mean that there exists a famiy of graphs which includes graphs, G
G, and G for which a(G1)=p(G1), a(Gy) < B(Gy) andu(Gs) > B(Gs) hold. Abdo et al. [16]
have demonstrated experimentally that for the set connected graphs
H2(G) =M, (G)/m=w,(G)/w,(G) . They provide examples of graphs for whidhqMz/m, £
< My/m, and |z > Mo/m hold.

In this paper, we investigate and characterize sol@&ses of graphs for which the

relation p’(G) =w,,,/ w, is fuffilled. It is verified that this relation igalid for graphs with no

isolated vertices when q is even, moreover, if G harmonic, the equality
H'(G)=wWrq(G)/Wy(G) holds for arbitrary>1 and g2. Using the Motzkin-Straus theorem a
general lower bound for the cligue numhg(G) is established. We derive a novel upper
bound for the second variable Zagreb index(G) and answer a question due to Nikiforov.
We begin, however, with a series of new lower beufat »(G), one of which uses the

second Zagreb index §G).

2. Lower bounds foro(G)

Zhou [10] proved the following upper bounds for &hd M as a function of(G).
Theorem 1.

M,(G) <2 Lonm 1)
w

M,(G) < 2nt + @ D@2 o )
w o
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These bounds are sharp if and only if G is a cotefgartite or a regular complete g-partite
graph. An alternative proof of (1) is availablerfrarheorem (2) since Edwards and Elphick
[18] noted that that & My/n.

The following sequence of lower bounds for thewdiqnumber is reasonably well known.
Theorem 2.

n n
n—d nu2mu

The weakest bound is due to Myers and Liu [19], nfiddle bound to Wilf [20], and the
strongest bound to Nikiforov [21]. The following &brem provides a degree-based

<w(G)-

alternative to the Nikiforov bound.

Theorem 3.Let G be any graph. Then for arbitrary values of S

(Zew) co®) 3)

[Z ds(u)J =23 d*(u)d®(v)

Proof. The Motzkin-Straus [22] inequality can btempreted as follows. If G is a graph with

9© =

a cliqgue numben(G), then for any n-vector {x,...X,) with x> 0 for all i, and

X+ Xo+,...,+ % =1:

Let V(G)={ uy,W,...,Uu} be the vertex set of G, and defineas follows:
x, =d%(u)/ Y d°(u)

uv

Therefore x+ X, +,...,+ %, = 1, this implies that

Sewem=(Tew] T ew] G0 @)

UE

Corollary 1. With S=0 we reproduce the Myers and Liu bound, glgm

n?
 <w(G)-
7_om = WG

n

Corollary 2. With S=1 we obtain

M, = Y dud(v) = 4m? ;X x, < 2m? (¢~ (u D or equwalently < W(G)-

The bound is sharp for complete bipartite graptt fan regular complete g-partite graphs.
Note that it is immediate that for triangle-freeagins M < m? as proved by Zhou [10].

Moreover, combining this corollary with (1) we obgethat

SRUNAPPEE
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Corollary 3. With S=2 one obtains

2 2 2 (w-1)
Léd (u)d*(v) s M7} T

Corollary 4. Let G be a chemical graph, other than Khen My(G) < 1.5nf .
Proof. For a chemical grapgtx 4 holds. It follows from Brooks’ [23] famous them that,

excluding K, ®(G)<A <4. Therefore

M, PG P %Zm2 =15m° -
»

This bound is sharp, for example, foyf €omplete graph.

Corollary 5. It is easy to see that g(®) g(1). Moreover, there exist graphs with g(S)(2)g
for some S > 1. For these graphs the seriesndribounds for(G) initially increases as S
increases. This phenomenon can be well demonstvatedollipop graphs. A lollipop graph
Lo(p,t) is obtained by attaching a path of lengtit & vertex of the complete graph K

As an example, the graph Lo(7,3) witt{G)=7 is depicted in Fig.1. For graph Lo(7,3) the

corresponding g(S) lower bounds are: 1.9, 3.4,611,,6.3, 6.2 as S increases from 0 to 5.

Figure 1: Lollipop graph Lo(7,3)
The bounds for Mrepresented by Eq.(2) and in Corollary 2 are irgarable. However, the
calculation of M is straightforward whereas the calculatiom¢&) is NP-hard. Corollary 2 is
more useful than Eq.(2) which is an upper bounder Moreover, Corollary 2 is a special
case, with r=2, of the following theorem due to iftikov (Lemma 10 in [24]).
Theorem 4.For every r > 0 and every graph G:

w2

f) =7 —<w(G)-

&
It can be observed that for many graphs f(r) < f(@}h r > 2. However for some graphs this
series of lower bounds fan(G) increases as r increases. For example, fapdgl graph
Lo(7,3) depicted in Fig.1 the lower bounds f(r) 48, 3.4, 4.6, 5.2 and 5.3 as r increases
from 1 to 5.
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3. Variable Zagreb indices

Milicevi¢ and Nikolié [25] introduced and investigated applications afiable first and

second Zagreb indices defined as follows:

M, (G) = Y d*(u) and sy, (G)= ¥ ¢ @d(v)

Clearly with S=1 these equate to the original Zagrelices. Andova and PetruSevski [26]

proved thatsm,/n<sm,/m for so[005], and Il¢ and Stevanovi[12] have derived upper and

lower bounds for the variable Zagreb indices. lnd &utman [27] verified that for any>51

*M,(G) = D d°()d*(v) < [ > d(u)d(v)] =M3(G)

wllE uwlE

Based on the previous considerations, inequaljtgé4 be restated as follows

SM,(G) < {S“MI(G)}Z% (5

and Corollary 3 becomes:
M, () < M2(G)LD. (6)
2w

Then, following the approach in Corollary 4, we camclude that if G is a chemical graph,
other than K, then2m,(G) < 0373v2(G).

Theorem 5.Let G be a triangle-free graph. Then

M@= M@ =5 Tl e

with equality, for example, if G=Fpath or G=Gcycle.
Proof. Because G is a triangle-free grap{G)=2 holds. From Eq.(3) we have

2

[st(u)j sZ[[st(u)] —ZZdS(u)ds(v)]:Z[st(u)] -SM,(G)* 4
Consider the transformation formula [28] represeiitg

_y| W) | (V)
Tow-3 G a)

uVCE|
where®(u) is a positive continuous function defined oa thertex set V of G. Now, by using
this transformation rule, from (4) the result cam dibtained. It is easy to show that the

equality holds if G=Ppath or G=Gcycle.

4. Common lower and upper bounds for fland Mx(G)/m

In [16] a common lower and upper bound is formudte p ang/m,/m:
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% > Jduyd(v) < {u\/%} < rp&x,/d(u)d(v)

Here, it will be shown that by using the Zagrehiged it is possible to establish novel sharp
common lower and upper bounds for 1 gigm -
Hong [31] proved that for graphs with no isolateditices
u(G)<2m-n+1 (7)
with equality if and only if G is a complete graldh or a star graph,SThis suggests the
following theorem.
Theorem 6.Let G be a graph with no isolated vertices. Then
M,(G)<m(2m-n+1) (8)
with equality if G is a complete graph, Kr a star graph,S
Proof. Das and Gutman [8] proved that

MZ(G)S2m2—(n—l)m6+1(6—l)m(2—m+n—2j 9)
2 n-1

with equality if and only if G is isomorphic to,Kor S,
Simple algebra and the fact that2m(n-1) verifies that

2m? - (n —1)m6+%(6—1)m(%+n—2)s m@2m-n+1)-

From (7) and( 8) one obtains

max{y((;),JMz(G)/m}sJZm— n 1

with equality if G is a complete graph, iér a star graph,S
Remark 1. We can derive a novel upper bound fos Which is stronger for some graphs
than the Das and Gutman bound represented byt (8)e&sy to verify that for a graph G with
no isolated vertices:

M,(G) < m[2m-n+1-(3-1)(n-1-4)] (10)
with equality, for example, if G is a regular gragha star graph,S
Proof. It is known that for the first and the sed@agreb indices the following relations are
valid:

M, =Y d’(u) < 2mA 2M, =" d* (u)d,, (u)

where d(u) is the average-degree of the vertices adjaceatvertex u. Now, following the
approach outlined in [8] we have that
d(u)d(u),, < 2m-d(u) - (n—1- d(u))3.

This implies that
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2M, = Y d* ud,, W) Y, d(u)[2m - d(u) - (1 -1- d(u))d] = 4m* - 2m(n -3+ (5-1) Y d* (u) -

uv utv

Because

2M, <4m’® -2m(n-1)3+(5-1) d* (u) < 4m® - 2m(n -1+ 2m(3-DA s

one obtains
M, <2m?-m(n-1)3+m(3-1)A=m2m-n+1-(3-1)(n-1-4)]. (11)
The above inequality reduces to (8 if 1. It is easy to check that equality holds i@)(if G
is a regular graph or a star graph S
Remark 2. Das and Kumar [32] proved that
P2(G)<2m-(n-1)3+(d3-1)A (12)
and equality holds if and only if G is a regulaapn or a star graph.S
From inequalities (11) and (12) it can be conclutted
p3(G)<2m-n+1-(3-1)(n-1-A),
and equality is attained if G is a regular grapla star graph S
As it is known [18, 9], A(G) >M1(G)/n and (G} 2My(G)/My(G). From the previous
considerations it follows that

max{ M,(G)/n, ZMZ(G)/Ml(G)}s max{i(G),M,(G)/m}< 2m-n+1-(5-1)(n-1-2) -

On the right-hand side, equality holds if and dhl@ is a regular graph or a star graph S

5. Answering a question due to Nikiforov

Nikiforov asks (Problem 7 in [24]) whether it isiér that for connected bipartite graphs

W (G)

H(G)2 w,(G)

foreveryeveng 2 andy2 ?

Letting g=r=2 this inequality reduces to

Hi(G) 2

Wy(G) _M,
w,(G) m

Letc? be the graph obtained by attaching 3 pendent esrtiz each vertex of a cycle of length
k. When k> 4 is even this graph is connected and bipartiteah be easily obtained that
u(C) =3, m(C)=4k and M,(C?)=40k. This infinite set of unicyclic graphs therefore

provides counter-examples. Furthermore, Nikifora4][proved that for r > 0 and odd g > 0
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(@2

Let g=3 and r=1, and we obtain a result due to Zfguhat My/M1 < p(G)/2. Reti [33]
proved that M/M; > 8/2. In both cases equality holds for regular graffiastead we let g=1
and r=3 then we reproduce the following bound duderanishi [17] that M< np3(G)/2,

where equality is fulfilled if and only if G is &gular graph.

6. A series of approximations for p(G)

As already discussed, there are connected graphsHich u?(G)=w,(G)/w,(G) is
fulfilled. It is known that 4G) < My(G)/n < u¥(G). Based on this observation it can be
supposed that,(G)/n=d(G)u(G). More exactly, we can suppose that there exigartéicular

class of connected graphs for which

M,(G) _ w4(G)
2m  w,(G)

HeG) =

It is easy to see that there are connected gregiisfying the equality p(G)=4(G)/w(G).
Such graphs are shown in Fig.2. For these graghtg)g? and p(H)=3.

|

H H

A B

Figure 2: Graphs Hand H; satisfying the equality p(G)=4G)/wx(G)
This suggests the following theorem, for which vistfrequire a lemma that is due to
Myerson [29].
Lemma 1. The number of k-walks of pathsRor k > 3 is characterized by the following
Fibonacci sequence:w Wi.1 + W-2.
Proof. Label the vertices A, B, C and D in ordemfrleft to right. Let abe the number of
walks of length k starting at A, and similarly o, oc and d.
Clearly, w = & + b + o + dc and by symmetrya= d and R = a. Furthermore, \@= b,
because every path that starts at A must beginoiyggo B, and b= a.1 + a1, because
every path that starts at B must start by goingjtteer A or C. Therefore

b, =a,_+c,=a_,+b_, =b,_,+b_,

and similarly for g o and q.
Theorem 7. LetQ be the family of graphs with no isolated verticEsen for even g 2 and
r>1:
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H(G)=w,. /W, if coQ.
Proof. Case 1: Graphs with({B)=W+q/Wg.
For a connected regular graph G one obtains th@)wnd. Therefore,

Wea(®) _nd™ )
w,(G) nat "

Case 2: Graphs With'(G) < W..q/Wg.

Let G=R, be a path for which pgP=¢ = 1+/5)/2=1.61803 (the golden ratio). Clearly, w4

and w=6. From Lemma 1, for ¥ 3, w, can be calculated as followsj w W1 + Wi.o. The
number of k-walks in Pis therefore a Fibonacci sequence with initialbeal 4 and 6, and is
the sequence A078642 in the On-line Encyclopedimteiger Sequences (OEIS). As readers
will be well aware, the original Fibonacci sequeee the numbers 1,1,2,3,5,8,13,21,...and
the r-th term in this series is denoted by F(r)e DEIS states that the r-th term of sequence
A078642 equals 2F(r+2).

Therefore, using the Binet's formula for F(r) wih=-1/p = - 0.61803, one obtains that

+2 _r+2
= 2P =W

' V5
Hence, for even q
Wr+q _ qu+q+2 _Lpr+q+2 S q;f o
W, DIZ_ a2 H

Case 3: Graphs wWith(@) > Wq/Wy.
Let G=R, U K,. Clearly, w=6, w,=8 and u(G)®. Moreover, wW(K2)=2 for all k. Using the
results discussed above, it follows that

r+2 _r+2
w (@) =2+ A% ¥

We are therefore seeking to prove that for even g

Wr+q ¢r+q+2_q_jr+q+2+\/§
Wq - ¢q+2_wq+2+£

<O =y

This simplifies to wo*?(@" - w") </5(@" -1), which is true for all r. By this the proof of
Theorem 7 is completed.

We can investigate this theorem experimentallys Mvell known (see, for example, Lemma
2.5 in [1]) that the number of walks of length riflG, from v to v;, is the entry Qi) in
position (i,j) of the matrix A.

Consequently,
W,y =W, (G)='A"j = (Z}aﬁ? :
i
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It should be noted that we have followed Nikifof@4] in measuring the length of a walk by
the number of vertices from beginning to end, wherBiggs [1] measures the length of a
walk by the number of edges from beginning to €fffds explains the apparent discrepancy
between our formula for wand Lemma 2.5 in [1].

We selected the 59 named graphs on 10 verticesolfrakh Mathematica to assess how well
the spectral radius approximations by means of nbeber of walks perform. Using
increasing values of r, we have compared the sgecdii u(G) of these graphs with the

estimated spectral radinjcalculated by

Evaluating the computed results obtained in thesiclemed cases, the following conclusion
can be drawn: If r increases from 1 to 5, the emou of the approximation to p (i.e. the
relative deviation between the values p(G) agpigion average 2% too high, 0.35% too low,
0.3% too high, 0.2% too low and 0.1% too high.

Nikiforov [24] has observed that if G is connectd non-bipartite, then wy/wq tends to

W' (G) as q tends to infinity. Moreover, it has beemonstrated [24] that for bipartite graphs,

if g is even and r is odd, (&) can differ considerably fromw/w, , no matter how large q is.

7. The case of equality

A connected graph with an adjacency matrix A=A(&galled [16,41]:

-semiharmonic if & = p? Aj,

-harmonic (or pseudoregular) ifjA= pAj,

-semiregular, if it is bipartite andp= p3,

-pseudo-semiregular if it is bipartite and vertideslonging to the same part of

bipartition have the same average degree [ 16, 30]
From these definitions it follows that all regulgraphs are harmonic, and moreover, the
harmonic, semiregular, and pseudo-semiregular gripim subsets of semiharmonic graphs.
Let g and r be positive integers, and denote hyt@e set of graphs for which Ewi.g/wq
holds. To characterize or classify the connecteg graphs is a complicated problem. It
seems unlikely that it is possible to identify gvgraph for which [Ewr.g/wq. It is known that
set 7, contains acyclic and cyclic graphs. (See grappgcti in Fig.2.)
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Recently, it has been verified [16] that the sgi iicludes regular and semiharmonic graphs.
In [16], it is also demonstrated that the sgf Zontains so-called “sporadic graphs” which do
not belong to the family of semiharmonic graphs.

As an example, in Fig.3 a bipartite and a non-liifgagraph belonging to setZare depicted.
They are sporadic, because they are not semihacmeoi these graphs aj&5 and u(d)

=3.

J J

A B

Figure 3: A bipartite graph () and a non-bipartite graphsjdbelonging to set z»

Theorem 8. Let G be a connected graph with a spectral rad{@.f P =w;.q/wq holds for
certain g>0 and r >0, ther js an integer.
Proof. The characteristic polynomial of G is a nwopblynomial with integer coefficients.
Consequently, pu(G) and'() are algebraic integers. Furthermorgqww, is a rational
number. It is known that the only algebraic intsgen the set of rational numbers are
integers. Therefore'(G) is an integer andwy is divisible by w.

The relevant results concerning the relations betwthe walk numbers and the
spectral radius of graphs are summarized in [2442]143].
It is worth noting that in [30] the following theem was proved: If G is a connected graph,

then

wye) 2P0 Zldwd.eF

2(G) > = =
KO e S we

with equality if and only if G is a harmonic ob#partite pseudo-semiregular graph.

Using a spectral approach, Nikiforov verified thatmonic graphs belong to the family 2
graphs. In what follows we present a simple altéveaproof based on elementary graph
theoretical considerations.

Theorem 9.Let G be a harmonic graph with a spectral radid@)uThen for arbitrary p 1
and ¢> 2 we have:

W,.q(G)

(G) =
W(G) w,(G)
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Proof. Because for a harmonic graph G, the equAfiy= pAj holds, it follows on the one
hand, that
ATj=ATHA) =p A
on the other hand,
W, (G) =A=' TA = 2mp
This implies that if & 2 then
w,(G) =2mp"?
Consequently, for arbitrary>r 1 and ¢ 2 integers one obtains:

Woig(G) _ 2mp™e
W (G)  2mu®?

=W(G)-

Corollary 6. If G is a harmonic graph then

M,(G) _2M,(G) _ |M,(C) |
2mn MG V m

uG)=

Corollary 7. Letr>1 and ¢> 2 be arbitrary integers. There exist infinite ®ibf bipartite
and non-bipartite Z graphs characterized by an identical spectralusadand for these
graphs I = W.¢/wq holds.

In Fig.4 infinite sequences of harmonic graph pdesaoted by @k) and G(k) are shown.
These graphs can be bipartite and non-bipartite, taey have identical spectral radius
M (Ga(K))=p(Gs(K))=3 for any k3 integer.

Gy (k) Gs (k)

Figure 4: Infinite sequences of harmonic graph&izand G(k) (case of k=5)

For graphs (k) and G(k) the equalities m=4k, and gk, mp,=2k, mi,=k hold, where
quantities rpy denote the numbers of edges in a graph with entitee of degree p and g.
This implies that ®&Kk) and G(k) are characterized by identical vertex-degreseda
topological indices.

Complete bipartite graphs represent a subset oirsguatar graphs. The proof of the

following theorem is based on the concept outlimef@4].
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Theorem 10.Let K, be a complete bipartite graph witikkda < b positive integers. If 2
even, then Li=wi.q/wq holds where p(Ky)=+/ab.
Proof. For a complete bipartite graphKthe corresponding spectral radius is equalab
[30]. According to Nikiforov [24], it is known thdbr k> 1 and > 1 integers
W (K o) = 2@0)"
Woi (K op) = @+ b)(ap) i7"

Considering the values of.mfwyg , it is obvious that r will be even only in twosess: (i) if q is
even and r+q is even, or (ii) g is odd and r+qdd.o
CASE (i): Let k> 1 and p> 1 be arbitrary integers. Because =2k and r=2paee numbers,
consequently,

Wiig (K ap) = Waep = 2@0)" .
It follows that

Wo(Kaw) _ Wagey _ 260 .
b/ = = @bhP = @)% =" (G)-
R

CASE (ii): Let r=2p, where p 1 integer. Because r is even, g and r+q are thiljmplies
that

W, (K o) = Woy and Wi (K ap) = Wogepsj
It follows that

erq(Ka‘b) _ WZ(k+p)+| _ (a+ b)(ab)k+p+(i-1)/z
Wo(Kep)  Way  (@+b)(ah) i’

= @)° = @) =1'(G)-

8. Final remarks and conclusions

Zagreb indices have numerous applications in madlieal chemistry. In this paper we have
used results from spectral graph theory, includimg number of open walks in graphs, to
suggest results primarily for the Zagreb indices.

Nikiforov [24] proved that for odd g, mywg < W'(G) holdg and identified all families of

graphs for which there is equality. In this paperhave proved that for evenw,, /w,=p"

is fulfilled. Additionally, as an example, we hameesented various sporadic graphs for which
equality holds. This finding implies that it woubé very hard to identify all graphs for which
there is equality with even g.

It should be emphasized that there is a strongspandence between Zagreb indices and the
walk numbers in a graphs.
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For example, the well-known Zagreb indices inequdlil, 12, 15, 34-38] can be rewritten in

the following alternative form:

It has been verified that the Zagreb indices inbtyugZ(G) > 0) is true for a broad class of
connected graphs: for chemical graphs with maxindegree four, bidegreed graphs, acyclic
graphs, unicyclic graphs, threshold graphs, grapitls vertex degrees in any interval of
length three [11, 12, 15, 34-38]. The bound is gtemd for example, the equality,wy-
wow3=0 holds if G is a regular or semiregular graph [3BH.
Moreover, it was also demonstrated that there refiitely many connected graphs, that are
neither regular nor semiregular, which satisfy #agreb indices equality [39]. The Zagreb
indices inequality is not valid for general grapk®r example, counter examples can be
constructed for connected bicyclic and tricycliagjns [37, 40]. From these considerations it
follows that for the family of connected graphs/w, = w,/w, holds.
T&ubig et al. [42,43] have proved that#X >0 and 0 are integers, then
Wipia S W Worepien (13)

The above formula represents a generalization eftito sharp inequalities for Zagreb
indices, published by Hi and Stevanovi [12]. As particular cases, from (13) we obtain
directly the following equivalent inequalities:

a) if k=2, I=0 and p=1 then

2
w2 <ww, and M(@) | 4m”
n n?

b) if k=3, I=0 and p=1 then

M,(G) | 4m”
m  n?

We have noted that NiG)=w; and My(G)=w4/2. It may therefore be of interest to “define
higher Zagreb indices” such as(®@)=ws/3= (j"A%)/3 and M(G)=we/4= ("A%)/4. It would
be worth testing whether these higher Zagreb irsdmessess any practical applicability in

3 2,
wi < wiw, and

mathematical chemistry. Performing such testse#tptanatory, discriminatory and predictive
powers of these higher Zagreb indices could therdmpared with that for the traditional
degree-based topological indices.
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