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Abstract 

Abdo et al. demonstrated [MATCH Commun. Math. Comput. Chem. 72 (2014) 741-751] that there exist connected 
graphs for which m/)G(M)G( 2

2 ≈µ  where µ(G) is the spectral radius of a graph G,  M2(G) is the second Zagreb index and 

m the number of edges. We use and extend this approximation to investigate opportunities to convert results from spectral 
graph theory into results involving the first and the second Zagreb indices M1(G) and M2(G). We do this principally by noting 
that M1(G)=w3 and 2M2(G)=w4, where w3 and w4 are the numbers of 3- and 4-walks in a graph, respectively. 

 

1. Introduction 

Let G=G(V,E) be a graph with vertex set V(G) and edge set E(G). Denote by n and m 

the number of vertices and edges of G, respectively. To avoid trivialities we always assume 

that n≥2.  An edge of G connecting vertices u and v is denoted by uv. For a vertex u, d(u) 

denotes the degree of u and d=d(G)=2m/n the average degree of G. We denote by ∆=∆(G) and 

δ=δ(G) the maximum and the minimum degrees, respectively, of vertices of G. A graph is 

called regular (R-regular), if all its vertices have the same degree R. A connected graph with 

maximum vertex degree at most 4 is said to be a chemical graph.  

Using the standard terminology [1], let A=A(G) denote the adjacency matrix of G,  

µ=µ(G) the spectral radius of G, and ω(G) the clique number of G. The average-degree of the 

vertices adjacent to a vertex u is defined as dav(u)=D2(u)/d(u), where  D2(u)  is the sum of 

degrees of the vertices adjacent to u. A graph G is called harmonic (pseudoregular) if the 
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average-degree dav(u) is equal for any vertex u. If G is harmonic then the average-degree is 

identical to the spectral radius of G.  Moreover, a graph G is harmonic if and only if A2j= µAj 

holds, where j is the all-one vector [2,3]. 

Define the first and second Zagreb indices of a graph G as usual as follows [4-12]: 

∑
∈

==
Vu

2
11 )u(d)G(MM   and   )v(d)u(d)G(MM

Euv
22 ∑

∈

== . 

For more detailed information on Zagreb indices, we refer the reader to surveys [13-16]. For a 

graph G, a  k-walk is a sequence of vertices v1,,… vi,…,vk such that vi is adjacent to  vi+1 for 

all i=1,2,…k-1. We denote by wk =wk(G)  the number of k-walks in G [2,3]. Teranishi [17] 

has noted that: 

w1=n,   w2=2m,   w3=M1(G)  and  w4=2M2(G). 

Denote by α(G) and β(G) two distinct topological invariants of a graph G. Throughout this 

paper )G()G( β≈α  will mean that there exists a family Ω of graphs which includes  graphs G1, 

G2 and G3 for which α(G1)=β(G1), α(G2) < β(G2) and α(G3) > β(G3) hold. Abdo et al. [16] 

have demonstrated experimentally that for the set of connected graphs

)G(w/)G(wm/)G(M)G( 242
2 =≈µ . They provide examples of graphs for which µ2 = M2/m,     µ2 

< M2/m, and µ2 > M2/m hold. 

In this paper, we investigate and characterize some classes of graphs for which the 

relation 
qqr

r w/w)G( +≈µ is fulfilled. It is verified that this relation is valid for graphs with no 

isolated vertices when q is even, moreover, if G is harmonic, the equality 

µr(G)=wr+q(G)/wq(G) holds for arbitrary r≥1 and q≥2. Using the Motzkin-Straus theorem a 

general lower bound for the clique number ω(G) is established. We derive a novel upper 

bound for the second variable Zagreb index )G(M 2
S  and answer a question due to Nikiforov. 

We begin, however, with a series of new lower bounds for ω(G), one of which uses the 

second Zagreb index M2(G). 

 

2. Lower bounds for ω(G) 

Zhou [10] proved the following upper bounds for M1 and M2 as a function of ω(G). 

Theorem 1.  

1

1
( ) 2M G nm

ω
ω
−≤        (1) 

2 2
2 2

2 ( 1)( 2)
( )M G m n m

ω ω
ω ω

− −≤ +       (2) 
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These bounds are sharp if and only if G is a complete bipartite or a regular complete q-partite 

graph. An alternative proof of (1) is available from Theorem (2) since Edwards and Elphick 

[18] noted that that µ2 ≥ M1/n.  

The following sequence of lower bounds for the clique number is reasonably well known. 

Theorem 2.  

)G(
m2

m2

n

n

dn

n
2 ω≤

µ−
≤

µ−
≤

−
. 

The weakest bound is due to Myers and Liu [19], the middle bound to Wilf [20], and the 

strongest bound to Nikiforov [21]. The following Theorem provides a degree-based 

alternative to the Nikiforov bound. 

Theorem 3. Let G be any graph. Then for arbitrary values of S 

 
)G(

)v(d)u(d2)u(d

)u(d

)S(g

Euv

SS

2

Vu

S

2

Vu

S

ω≤
−


















=

∑∑

∑

∈∈

∈
     (3) 

Proof. The Motzkin-Straus [22] inequality can be interpreted as follows.  If G is a graph with 

a clique number ω(G), then for any n-vector (x1,x2,…xn) with xi ≥ 0 for all i, and  

x1 + x2 +,…,+ xn = 1: 

{ }
∑

∈ ω
−ω≤

Ej,i
ji 2

1
xx . 

Let  V(G)={ u1,u2,…,un}  be the vertex set of G, and define xi as follows: 

 ∑
∈

=
Vu

S
i

S
i )u(d/)u(dx    

Therefore x1 + x2 +,…,+ xn = 1, this implies that 

{ } ω
−ω








≤






= ∑∑∑∑
∈∈∈∈ 2

)1(
)u(dxx)u(d)v(d)u(d

2

Vu

S

Ej,i
ji

2

Vu

S

Euv

SS .    (4) 

Corollary 1. With S=0 we reproduce the Myers and Liu bound, namely 

)G(
m2n

n
2

2

ω≤
−

. 

Corollary 2. With S=1 we obtain 

{ } ω
−ω≤== ∑∑

∈∈

)1(
m2xxm4)v(d)u(dM 2

Ej,i
ji

2

Euv
2

   or equivalently   )G(
Mm2

m2

2
2

2

ω≤
−

. 

The bound is sharp for complete bipartite graphs and for regular complete q-partite graphs. 

Note that it is immediate that for triangle-free graphs M2 ≤ m2 as proved by Zhou [10]. 

Moreover, combining this corollary with (1) we observe that 

1 2 ( 1)
max , 2

M M
m

n m
ω

ω
 
 
 

−≤ . 
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Corollary 3. With S=2 one obtains 

ω
−ω≤∑

∈ 2
)1(

M)v(d)u(d 2
1

Euv

22 . 

Corollary 4.  Let G be a chemical graph, other than K5.  Then M2(G) ≤ 1.5m2 . 

Proof. For a chemical graph ∆≤ 4 holds. It follows from Brooks’  [23]  famous theorem that, 

excluding K5,   ω(G) ≤ ∆ ≤ 4. Therefore 

222
2 m5.1m2

4

3
m2

)1(
M =≤

ω
−ω≤  . 

This bound is sharp, for example, for K4 complete graph. 

Corollary 5.  It is easy to see that g(0) ≤  g(1).  Moreover, there exist graphs with g(S) > g(1) 

for some   S > 1. For these graphs the series of lower bounds for ω(G) initially increases as S 

increases. This phenomenon can be well demonstrated with lollipop graphs. A lollipop graph 

Lo(p,t) is obtained by attaching a path of length t to a vertex of the complete graph Kp . 

As an example, the graph Lo(7,3) with ω(G)=7 is depicted in Fig.1. For graph Lo(7,3) the 

corresponding g(S) lower bounds are: 1.9, 3.4, 5.1, 6.1, 6.3, 6.2 as S increases from 0 to 5. 

 

Figure 1: Lollipop graph Lo(7,3) 

The bounds for M2 represented by Eq.(2) and in Corollary 2 are incomparable. However, the 

calculation of M2 is straightforward whereas the calculation of ω(G) is NP-hard. Corollary 2 is 

more useful than Eq.(2) which is an upper bound for M2.  Moreover, Corollary 2 is a special 

case, with r=2, of the following theorem due to Nikiforov (Lemma 10 in [24]).  

Theorem 4. For every r > 0 and every graph G: 

)G(
ww

w
)r(f

r2
2
r

2
r ω≤

−
= . 

It can be observed that for many graphs f(r) < f(2)  with r > 2. However for some graphs this 

series of lower bounds for ω(G) increases as r increases. For example, for lollipop graph 

Lo(7,3) depicted in Fig.1 the lower bounds f(r) are 1.9, 3.4, 4.6, 5.2 and 5.3 as r  increases 

from 1 to 5.  
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3. Variable Zagreb indices 

Milicević and Nikolić [25] introduced and investigated applications of variable first and 

second Zagreb indices defined as follows: 

∑
∈

=
Vu

S2
1

S )u(d)G(M  and  )v(d)u(d)G(M S

Euv

S
2

S ∑
∈

=  

Clearly with S=1 these equate to the original Zagreb indices.  Andova and Petruševski [26] 

proved that  m/Mn/M 2
S

1
S ≤  for [ ]5.0,0S∈ , and Ilić and Stevanović [12] have derived  upper and 

lower bounds for the variable Zagreb indices. Liu and Gutman [27] verified that for any S ≥ 1 

)G(M)v(d)u(d)v(d)u(d)G(M S
2

S

Euv

S

Euv

S
2

S =






≤= ∑∑
∈∈

 

Based on the previous considerations, inequality (4) can be restated as follows 

{ }
ω
−ω≤

2
)1(

)G(M)G(M
2

1
2/S

2
S      (5) 

and Corollary 3 becomes: 

ω
−ω≤

2
)1(

)G(M)G(M 2
12

2 .      (6) 

Then, following the approach in Corollary 4, we can conclude that if G is a chemical graph, 

other than K5, then )G(M375.0)G(M 2
12

2 ≤ . 

Theorem 5. Let G be a triangle-free graph. Then  

{ } ( )
2

Euv

1S1S2

1
2/S

2
S )v(d)u(d

4

1
)G(M

4

1
)G(M







 +=≤ ∑

∈

−−  

with equality, for example, if G=P2 path or G=C4 cycle. 

Proof. Because G is a triangle-free graph, ω(G)=2 holds. From Eq.(3) we have 

4*)G(M)u(d2)v(d)u(d2)u(d2)u(d 2
S

2

Vu

S

Euv

SS

2

Vu

S

2

Vu

S −






=













−







≤







∑∑∑∑
∈∈∈∈

 

Consider the transformation formula [28] represented by  

∑∑
∈∈








 Φ+Φ=Φ
EuvVu )v(d

)v(

)u(d

)u(
)u(  

where Φ(u) is a positive continuous function defined on the vertex set V of G. Now, by using 

this transformation rule, from (4) the result can be obtained. It is easy to show that the 

equality holds if G=P2 path or G=C4 cycle. 

 

4. Common lower and upper bounds for µ2 and M2(G)/m 

In [16] a common lower and upper bound is formulated for µ and m/M 2
:    
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)v(d)u(dmax
m

M
,)v(d)u(d

m

1
Euv

2

Euv
∈∈

≤











µ≤∑  

Here, it will be shown that by using the Zagreb indices it is possible to establish novel sharp 

common lower and upper bounds for µ and m/M 2
.     

Hong [31] proved that for graphs with no isolated vertices 

1nm2)G(2 +−≤µ        (7)  

with equality if and only if G is a complete graph Kn or a star graph Sn. This suggests the 

following theorem. 

Theorem 6. Let G be a graph with no isolated vertices. Then 

)1nm2(m)G(M 2 +−≤        (8)   

with equality if G is a complete graph Kn or a star graph Sn. 

Proof. Das and Gutman [8] proved that 








 −+
−

−δ+δ−−≤ 2n
1n

m2
m)1(

2
1

m)1n(m2)G(M 2
2

   (9) 

with equality if and only if G is isomorphic to Kn or Sn. 

Simple algebra and the fact that 2m≤ n(n-1) verifies that  

)1nm2(m2n
1n

m2
m)1(

2

1
m)1n(m2 2 +−≤







 −+
−

−δ+δ−− . 

From (7) and( 8) one obtains  

{ }2max ( ), ( ) / 2 1G M G m m nµ ≤ − +  

with equality if G is a complete graph Kn or a star graph Sn. 

Remark 1.  We can derive a novel upper bound for M2 which is stronger for some graphs 

than the Das and Gutman bound represented by (9): It is easy to verify that for a graph G with 

no isolated vertices: 

[ ])1n)(1(1nm2m)G(M 2 ∆−−−δ−+−≤     (10) 

with equality, for example, if G is a regular graph or a star graph Sn. 

Proof.  It is known that for the first and the second Zagreb indices the following relations are 

valid: 

∆≤= ∑
∈

m2)u(dM
Vu

2
1

,       )u(d)u(dM2 av
Vu

2
2 ∑

∈

=  

where dav(u) is the average-degree of the vertices adjacent to a vertex u. Now, following the 

approach outlined in [8] we have that 

δ−−−−≤ ))u(d1n()u(dm2)u(d)u(d av
. 

 This implies that 
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[ ] ∑∑∑
∈∈∈

−δ+δ−−=δ−−−−≤=
Vu

22

Vu
av

Vu

2
2 )u(d)1()1n(m2m4))u(d1n()u(dm2)u(d)u(d)u(dM2 . 

Because  

∆−δ+δ−−≤−δ+δ−−≤ ∑
∈

)1(m2)1n(m2m4)u(d)1()1n(m2m4M2 2

Vu

22
2

,  

one obtains 

[ ])1n)(1(1nm2m)1(m)1n(mm2M 2
2 ∆−−−δ−+−=∆−δ+δ−−≤ .  (11) 

The above inequality reduces to (8) if δ = 1. It is easy to check that equality holds in (10) if G 

is a regular graph or a star graph Sn. 

Remark 2.  Das and Kumar [32] proved that 

∆−δ+δ−−≤µ )1()1n(m2)G(2       (12)  

and equality holds if and only if G is a regular graph or a star graph Sn. 

From inequalities (11) and (12) it can be concluded that  

)1n)(1(1nm2)G(2 ∆−−−δ−+−≤µ , 

and equality is attained if G is a regular graph or a star graph Sn. 

As it is known [18, 9], µ2(G) ≥M1(G)/n and µ(G) ≥ 2M2(G)/M1(G). From the previous 

considerations it follows that  

{ } )1n)(1(1nm2m/)G(M),G(max)G(M/)G(M2,n/)G(Mmax 2121 ∆−−−δ−+−≤µ≤






 . 

On the right-hand side, equality holds if and only if G is a regular graph or a star graph Sn. 

 

5. Answering a question due to Nikiforov 

Nikiforov asks (Problem 7 in [24]) whether it is true that for connected bipartite graphs 

)G(w

)G(w
)G(

q

rqr +≥µ , 

for every even q ≥ 2  and r≥ 2   ? 

Letting q=r=2 this inequality reduces to 

m
M

)G(w
)G(w

)G( 2

2

42 =≥µ . 

Let 3
kC be the graph obtained by attaching 3 pendent vertices to each vertex of a cycle of length 

k. When k ≥ 4 is even this graph is connected and bipartite. It can be easily obtained that

3)C( 3
k =µ , k4)C(m 3

k =  and k40)C(M 3
k2 = . This infinite set of unicyclic graphs therefore 

provides counter-examples. Furthermore, Nikiforov [24] proved that for r > 0 and odd q > 0 
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)G(w

)G(w
)G(

q

rqr +≥µ . 

Let q=3 and r=1, and we obtain a result due to Zhou [9] that M2/M1 ≤ µ(G)/2. Reti [33] 

proved that M2/M1 ≥ δ/2. In both cases equality holds for regular graphs. If instead we let q=1 

and r=3 then we reproduce the following bound due to Teranishi [17] that M2 ≤ nµ3(G)/2, 

where equality is fulfilled if and only if G is a regular graph. 

 

6. A series of approximations for µ(G) 

As already discussed, there are connected graphs for which )G(w/)G(w)G( 24
2 ≈µ  is 

fulfilled. It is known that d2(G) ≤ M1(G)/n ≤ µ2(G).  Based on this observation it can be 

supposed that )G()G(dn/)G(M1 µ≈ . More exactly, we can suppose that there exists a particular 

class of connected graphs for which 

)G(w

)G(w

m2

)G(M
)G(

2

31 =≈µ  . 

It is easy to see that there are connected graphs satisfying the equality µ(G)=w3(G)/w2(G). 

Such graphs are shown in Fig.2. For these graphs µ(HA)=2 and µ(HB)=3. 

 

Figure 2: Graphs HA and HB satisfying the equality µ(G)=w3(G)/w2(G)  

This suggests the following theorem, for which we first require a lemma that is due to 

Myerson [29]. 

Lemma 1. The number of k-walks of path P4 for k ≥ 3 is characterized by the following 

Fibonacci sequence: wk = wk-1 + wk-2.  

Proof. Label the vertices A, B, C and D in order from left to right. Let ak be the number of 

walks of length k starting at A, and similarly for bk, ck and dk.  

Clearly, wk = ak + bk + ck + dk and by symmetry ak = dk and bk = ck. Furthermore, ak = bk-1, 

because every path that starts at A must begin by going to B, and bk = ak-1 + ck-1, because 

every path that starts at B must start by going to either A or C.  Therefore 

1k2k1k1k1k1kk bbbacab −−−−−− +=+=+= , 

and similarly for ak, ck and dk. 

Theorem 7.  Let Ω be the family of graphs with no isolated vertices. Then for even q ≥ 2 and 

r ≥ 1: 
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qqr
r w/w)G( +≈µ  if Ω∈G . 

Proof. Case 1: Graphs with µr(G)=wr+q/wq.   

For a connected regular graph G one obtains that wk(G)=ndk-1.  Therefore, 

)G(
nd

nd
)G(w

)G(w r
1q

1qr

q

qr µ== −

−+
+  

Case 2: Graphs with µr(G) < wr+q/wq.   

Let G=P4 be a path for which µ(P4) = φ 61803.12/)51( =+=  (the golden ratio). Clearly, w1=4 

and w2=6. From Lemma 1, for r ≥ 3, wk can be calculated as follows: wk = wk-1 + wk-2. The 

number of k-walks in P4 is therefore a Fibonacci sequence with initial values 4 and 6, and is 

the sequence A078642 in the On-line Encyclopedia of Integer Sequences (OEIS). As readers 

will be well aware, the original Fibonacci sequence are the numbers 1,1,2,3,5,8,13,21,…and 

the r-th term in this series is denoted by F(r). The OEIS states that the r-th term of sequence 

A078642 equals 2F(r+2).  

Therefore, using the Binet’s formula for F(r) with ψ =-1/φ = - 0.61803, one obtains that  

5

)(2
w

2r2r

r

++ Ψ−Φ=  

Hence, for even q  
2 2

2 2

r q r q
r q r r

q q
q

w
w

µ
+ + + +

+
+ +

Φ − Ψ= > Φ =
Φ − Ψ

. 

          Case 3: Graphs with µr(G) > wr+q/wq.  

Let G=P4 U K2. Clearly, w1=6, w2=8 and µ(G)=φ.  Moreover, wk(K2)=2 for all k. Using the 

results discussed above, it follows that 

5

)(2
2)G(w

2r2r

r

++ Ψ−Φ+=  

We are therefore seeking to prove that for even q 
2 2

2 2

5
5

r q r q
r q r r

q q
q

w
w

µ
+ + + +

+
+ +

Φ − Ψ += < Φ =
Φ − Ψ +

 

This simplifies to )1(5)( rrr2q −Φ<Ψ−ΦΨ + , which is true for all r. By this the proof of 

Theorem 7 is completed. 

We can investigate this theorem experimentally. It is well known (see, for example, Lemma 

2.5 in [1]) that the number of walks of length r+1 in G, from vi
 to vj

 , is the entry a(r)(i,j) in 

position (i,j) of the matrix Ar . 

 Consequently, 

{ }
∑=== ++

j,i

)r(
j,i

rT
1r1r ajAj)G(ww . 
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It should be noted that we have followed Nikiforov [24] in measuring the length of a walk by 

the number of vertices from beginning to end, whereas Biggs [1] measures the length of a 

walk by the number of edges from beginning to end. This explains the apparent discrepancy 

between our formula for wk and Lemma 2.5 in [1]. 

We selected the 59 named graphs on 10 vertices in Wolfram Mathematica to assess how well 

the spectral radius approximations by means of the number of walks perform. Using 

increasing values of r, we have compared the spectral radii µ(G) of these graphs with the 

estimated spectral radii µA calculated by  

r 2rr

2

2r
A m2

)G(w
)G(w
)G(w ++ =≅µ  

Evaluating the computed results obtained in the considered cases, the following conclusion 

can be drawn: If r increases from 1 to 5,  the accuracy of the approximation to µ (i.e. the 

relative deviation between the values µ(G) and µA) is on average 2% too high, 0.35% too low, 

0.3% too high, 0.2% too low and 0.1% too high. 

Nikiforov [24] has observed that if G is connected and non-bipartite, then wr+q/wq tends to 

µr(G) as q tends to infinity. Moreover, it has been demonstrated [24] that for bipartite graphs, 

if q is even and r is odd, µr(G) can differ considerably from wr+q/wq , no matter how large q is.  

 

7. The case of equality  

A connected graph with an adjacency matrix A=A(G) is called [16,41]:  

 -semiharmonic if A3j = µ2 Aj, 

 -harmonic (or pseudoregular) if A2j = µAj, 

-semiregular, if it is bipartite and A2j = µ2j, 

-pseudo-semiregular if it is bipartite and vertices belonging to the same part of 

bipartition  have the same average degree [ 16, 30].   

From these definitions it follows that all regular graphs are harmonic, and moreover, the 

harmonic, semiregular, and pseudo-semiregular graphs form subsets of semiharmonic graphs. 

Let q and r be positive integers, and denote by Zr,q the set of graphs for which µr =wr+q/wq 

holds.  To characterize or classify the connected Zr,q  graphs is a complicated problem. It 

seems unlikely that it is possible to identify every graph for which µr=wr+q/wq. It is known that 

set Z1,2 contains acyclic and cyclic graphs. (See graphs depicted in Fig.2.) 
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Recently, it has been verified [16] that the set Z2,2 includes regular and semiharmonic graphs. 

In [16], it is also demonstrated that the set Z2,2 contains so-called “sporadic graphs” which do 

not belong to the family of semiharmonic graphs. 

As an example, in Fig.3 a bipartite and a non-bipartite graph belonging to set Z2,2 are depicted. 

They are sporadic, because they are not semiharmonic. For these graphs µ(JA)= 5  and µ(JB) 

=3. 

 

Figure 3: A bipartite graph (JA) and a non-bipartite graph (JB) belonging to set Z2,2 

 

Theorem 8.  Let G be a connected graph with a spectral radius µ(G). If µr =wr+q/wq holds for 

certain q>0 and r >0, then µr is an integer. 

Proof. The characteristic polynomial of G is a monic polynomial with integer coefficients. 

Consequently, µ(G) and µr(G) are algebraic integers. Furthermore wr+q /wq is a rational 

number.  It is known that the only algebraic integers in the set of rational numbers are 

integers. Therefore µr(G) is an integer and wr+q is divisible by wq.    

The relevant results concerning the relations between the walk numbers and the 

spectral radius of graphs are summarized in [24, 41, 42, 43].  

It is worth noting that in [30] the following theorem was proved: If G is a connected graph, 

then  
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with equality if and only if  G is a harmonic or a bipartite pseudo-semiregular graph.  

Using a spectral approach, Nikiforov verified that harmonic graphs belong to the family of Zr,q 

graphs. In what follows we present a simple alternative proof based on elementary graph 

theoretical considerations. 

Theorem 9. Let G be a harmonic graph with a spectral radius µ(G). Then for arbitrary r ≥ 1 

and q ≥ 2 we have: 

)G(w

)G(w
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q

qrr +=µ  
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Proof. Because for a harmonic graph G, the equality A2j = µAj holds, it follows on the one 

hand, that 

Aj)Aj(AjA 1r1rr −− µ==  

on the other hand,   
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This implies that if r ≥ 2 then 
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Consequently, for arbitrary r ≥ 1 and q ≥ 2 integers one obtains: 
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Corollary 6.  If G is a harmonic graph then  

m
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21 ===µ . 

Corollary 7.  Let r ≥ 1 and q ≥ 2 be arbitrary integers. There exist infinite subsets of bipartite 

and non-bipartite Zr,q graphs characterized by an identical spectral radius, and  for these 

graphs µr  = wr+q/wq holds. 

In Fig.4 infinite sequences of harmonic graph pairs denoted by GA(k) and GB(k) are shown. 

These graphs can be bipartite and non-bipartite, and they have identical spectral radius 

µ(GA(k))=µ(GB(k))=3 for any k≥3 integer.  

 
 

Figure 4:  Infinite sequences of harmonic graphs GA(k) and GB(k) (case of k=5) 

 

For graphs GA(k) and GB(k) the equalities m=4k, and  m22=k, m24=2k, m44=k hold, where 

quantities mpq denote the numbers of edges in a graph with end-vertices of degree p and q. 

This implies that GA(k) and GB(k) are characterized by identical vertex-degree based 

topological indices.  

Complete bipartite graphs represent a subset of semiregular graphs. The proof of the 

following theorem is based on the concept outlined in [24]. 
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Theorem 10. Let Ka,b  be a complete bipartite graph with 1 ≤ a < b positive integers. If r ≥ 2 

even, then µr =wr+q/wq holds where µ(Ka,b)= ab. 

Proof.  For a complete bipartite graph Ka,b  the corresponding spectral radius is equal to ab 

[30]. According to Nikiforov [24], it is known that for k ≥ 1 and j ≥ 1 integers 
k

b,ak2 )ab(2)K(w =  

             2/)1j(k
b,ajk2 )ab)(ba()K(w −+

+ +=  

Considering the values of wr+q/wq , it is obvious that r will be even only in two cases: (i) if q is 

even and r+q is even, or (ii) q is odd and r+q is odd.  

CASE (i): Let k ≥ 1 and p ≥ 1 be arbitrary integers. Because q=2k and r=2p are even numbers, 

consequently, 
pk
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++ == . 

It follows that 
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CASE (ii): Let r=2p, where p ≥ 1 integer.  Because r is even, q and r+q are odd, this implies 

that 

jk2b,aq w)K(w +=  and  j)pk(2b,aqr w)K(w +++ =  

It follows that 
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8. Final remarks and conclusions 

Zagreb indices have numerous applications in mathematical chemistry. In this paper we have 

used results from spectral graph theory, including the number of open walks in graphs, to 

suggest results primarily for the Zagreb indices.  

Nikiforov [24] proved that for odd q, wr+q/wq ≤ µr(G) holds, and identified all families of 

graphs for which there is equality. In this paper we have proved that for even q, r
qrq w/w µ≈+  

is fulfilled. Additionally, as an example, we have presented various sporadic graphs for which 

equality holds. This finding implies that it would be very hard to identify all graphs for which 

there is equality with even q. 

It should be emphasized that there is a strong correspondence between Zagreb indices and the 

walk numbers in a graphs. 
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For example, the well-known Zagreb indices inequality [11, 12, 15, 34-38] can be rewritten in 

the following alternative form: 

0)wwww(
ww
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n
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21
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It has been verified that the Zagreb indices inequality (Z(G) ≥ 0) is true for a broad class of 

connected graphs: for chemical graphs with maximum degree four, bidegreed graphs, acyclic 

graphs, unicyclic graphs, threshold graphs, graphs with vertex degrees in any interval of 

length three [11, 12, 15, 34-38]. The bound is sharp and for example, the equality w1w4-

w2w3=0 holds if G is a regular or semiregular graph [36, 37]. 

Moreover, it was also demonstrated that there are infinitely many connected graphs, that are 

neither regular nor semiregular, which satisfy the Zagreb indices equality [39]. The Zagreb 

indices inequality is not valid for general graphs. For example, counter examples can be 

constructed for connected bicyclic and tricyclic graphs [37, 40].  From these considerations it 

follows that for the family of connected graphs 
1324 w/ww/w ≈  holds. 

Täubig et al. [42,43] have proved that if k≥2, l≥0 and p≥0 are integers, then  

1pkl2
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k
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−
+++ ≤ .       (13) 

The above formula represents a generalization of the two sharp inequalities for Zagreb 

indices, published by Ilić and Stevanović [12]. As particular cases, from (13) we obtain 

directly the following equivalent inequalities: 

a) if k=2, l=0 and p=1 then 

31
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b) if k=3, l=0 and p=1 then 
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We have noted that M1(G)=w3 and M2(G)=w4/2. It may therefore be of interest to “define 

higher Zagreb indices” such as M3(G)=w5/3= (jTA4j)/3 and M4(G)=w6/4= (jTA5j)/4.  It would 

be worth testing whether these higher Zagreb indices possess any practical applicability in 

mathematical chemistry. Performing such tests, the explanatory, discriminatory and predictive 

powers of these higher Zagreb indices could then be compared with that for the traditional 

degree-based topological indices. 
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