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Abstract

Let H be a hexagonal system with a perfect matching. Xu et al. discovered

that the maximum forcing number of H equals its Clar number. In this article

we obtain a result: for any resonant set K of a peri-condensed hexagonal system

H consisting of disjoint hexagons not meeting the boundary of H, if the subgraph

obtained from H by deleting K and the boundary of H has a perfect matching

or is empty, then the Clar number of H is at least |K| + 2. This fact improves

the previous corresponding result due to Zheng and Chen. Based on the result, we

prove that for each perfect matching M of H with the maximum forcing number,

there exists a Clar set consisting of disjoint M -alternating hexagons of H.

1 Introduction

A hexagonal system, also called benzenoid system, is a 2-connected finite plane graph

whose every interior face is bounded by a regular hexagon of side length one [17]. It

can also be formed by a cycle with its interior in the infinite hexagonal lattice on the

plane (graphene) [4]. A perfect matching of a hexagonal system H is a set of disjoint

edges covering all vertices of H. This concept coincides with that of a Kekulé structure in

organic chemistry. Since a hexagonal system with at least one perfect matching may be

viewed as the carbon-skeleton of a benzenoid hydrocarbon molecule, various topological
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properties of hexagonal systems have been extensively studied. The interested reader may

refer to [2–4] with references therein.

A basic concept of Clar’s aromatic sextet theory is that of Clar number, which can

measure the stability of polycyclic benzenoid hydrocarbons [2]. According to Clar’s theory,

within a series of isometric benzenoid hydrocarbons, the one with larger Clar number is

more stable [2].

Let M be a perfect matching of a graph G. A cycle C (resp. a path P ) of G is said

to be M-alternating if the edges of C (resp. P ) appear alternately in and off M . For a

subgraph F of G, let G−F denote the graph obtained from G by deleting all the vertices

of F together with their incident edges.

Let H be a hexagonal system with a perfect matching. A set K of disjoint hexagons

of H is called a resonant set (or cover) if there is a perfect matching M of H such that all

hexagons in K are M -alternating. It is obvious that K is a resonant set of H if and only

if H −K either has a perfect matching or is an empty graph. In particular, ∅ is regarded

as a perfect matching of an empty graph (no vertices). A resonant set is maximum if its

cardinality is maximum. A maximum resonant set of H is also called a Clar set or Clar

formula, and its size is called the Clar number of H, denoted by Cl(H). For the relevant

researches on the Clar number and Clar formula, please see [5, 7, 9, 12,18,19,22].

In 1985, Zheng and Chen [26] gave an important property for a maximum resonant

set of a hexagonal system as follows.

Theorem 1.1. [26] Let H be a hexagonal system and K a maximum resonant set of H.

Then H −K has a unique perfect matching.

The proof of Theorem 1.1 is based on the following Lemma 1.2.

Lemma 1.2. [26] Let H be a peri-condensed hexagonal system, K a resonant set of

internal hexagons and ∂(H) the boundary of the exterior face of H. If H −K− ∂(H) has

a perfect matching, then K is not a maximum resonant set.

A hexagonal system H is said to be fully benzenoid if a maximum resonant set of H

includes all vertices. Gutman and Salem showed [6] that a fully benzenoid has a unique

maximum resonant set.

The innate degree of freedom of a Kekulé structure was defined by Randić and Klein

[13] as the minimum number of double bonds which simultaneously belong to the given
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kekulé structure and to no other one, nowadays it is named “forcing number” by Harary

et al. [10].

Let M be a perfect matching of a graph G. A forcing set S of M is a subset of M

such that S is contained in no other perfect matchings of G. The forcing number of M ,

denoted by f(G,M), is the smallest cardinality over all forcing sets of M . The maximum

(resp. minimum) forcing number of G is the maximum (resp. minimum) value of forcing

numbers of all perfect matchings of G, denoted by F (G) (resp. f(G)). For the relevant

researches on the matching forcing problem, we refer to [1, 11,23–25].

For planar bipartite graphs, Pachter and Kim revealed a minimax fact that connects

the forcing number of a perfect matching and its alternating cycles as follows.

Theorem 1.3. [16] Let M be a perfect matching of a plane bipartite graph G. Then

f(G,M) = c(M), where c(M) is the maximum number of disjoint M-alternating cycles

of G.

For a hexagonal system H with a perfect matching M , let h(M) denote the maximum

number of disjoint M -alternating hexagons of H. Theorem 1.3 implies f(H,M) = c(M) ≥

h(M). Second equality does not hold alway. Let us see an example in Fig. 1. The bold

edges of Coronene form a perfect matching M ′ whose forcing number equals 2, but the

graph has only one M ′-alternating hexagon. However, Xu et al. [20] obtained the following

result by finding a perfect matching M of H so that F (H) = f(H,M) = h(M).

Theorem 1.4. [20] Let H be a hexagonal system with perfect matchings. Then Cl(H) =

F (H).

Figure 1: Coronene.

In this article, we show that for every perfect matching M of a hexagonal system H

with the maximum forcing number, i.e. F (H) = f(H,M), there exist F (H) disjoint M -

alternating hexagons in H. That is, f(H,M) = h(M). To prove this, we mainly improve
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Lemma 1.2 to obtain Lemma 2.1 in Section 2. Based on this crucial lemma, in Section

3 we describe clearly structure properties for a maximum set of disjoint M -alternating

cycles of H for any perfect matchings M with the maximum forcing number, then we give

a proof of this main result.

2 A crucial lemma

In this section, all hexagonal systems considered are placed in the plane so that an edge-

direction is vertical. A peak (resp. valley) of a hexagonal system is a vertex whose

neighbors are below (resp. above) it. For convenience, the vertices of a hexagonal system

are colored with white and black such that any pair of adjacent vertices receive different

colors and the peaks are black.

Let H be a hexagonal system. The boundary of H means the boundary of the infinite

face, denoted by ∂(H). An edge on the boundary of H is a boundary edge. A hexagon of

H is called an external hexagon if it contains a boundary edge and an internal hexagon

otherwise. H is said to be cata-condensed if all vertices lie on its boundary and peri-

condensed otherwise.

We state a crucial lemma as follows.

Lemma 2.1. Let H be a peri-condensed hexagonal system and K a resonant set consisting

of internal hexagons of H. Suppose H −K − ∂(H) has a perfect matching or is an empty

graph. Then Cl(H) ≥ |K|+ 2.

In order to prove the lemma, we need some further terminology and a known result.

Let M be a perfect matching of a hexagonal system H. An edge of H is called an

M -double edge if it belongs to M and an M -single edge otherwise. An M -alternating

cycle C of H is said to be proper if each edge of C in M goes from white end-vertex to

black end-vertex along the clockwise direction of C.

The symmetric difference of two finite sets A and B is defined as A⊕B := (A∪B)−

(A∩B). Given a perfect matching M of a hexagonal system H. If C is an M -alternating

cycle (or hexagon) of H, then the symmetric difference M⊕C is another perfect matching

of H and C is an (M ⊕C)-alternating cycle of H. Here C may be viewed as its edge-set.

Let P be a set of some hexagons of H and let F be a subgraph of H. The set of the

common hexagons of P and F is denoted by P ∩ F .
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A hexagonal system H is called a linear chain if the centers of all hexagons lie on a

straight line. Zhang et al. obtained the following result in [21, Theorem 4].

Theorem 2.2. [21] A hexagonal system H has Cl(H) = 1 if and only if H is a linear

chain.

For a cycle C of a hexagonal system H, let I[C] denote the subgraph of H formed by

C together with its interior.

Proof of Lemma 2.1. By the assumption, we can choose a cycle C of H satisfying

that

(i) the graph I[C] is a peri-condensed hexagonal system, and

(ii) C is disjoint with each member of K and H −K − C has a perfect matching,

and I[C] contains as few hexagons as possible subject to (i) and (ii). Set H ′ := I[C] and

K ′ := K ∩H ′.

Claim 1. For any resonant set K0 of H ′, K0 ∪ (K\K ′) is a resonant set of H.

Proof. Since H −K −C has a perfect matching, H has a perfect matching M0 such that

each member in K ∪ {C} is M0-alternating. So the restriction of M0 on H − H ′ is a

perfect matching of H − H ′, denoted by Mc. Let M ′
0 be a perfect matching of H ′ such

that each member in K0 is M ′
0-alternating. Let M ′ := M ′

0 ∪Mc. Then M ′ is a perfect

matching of H such that each member in K0 ∪ (K\K ′) is an M ′-alternating hexagon.

From Claim 1 it suffices to prove that Cl(H ′) ≥ |K ′| + 2. If K ′ = ∅, by Theorem 2.2

we have that Cl(H ′) ≥ |K ′| + 2. From now on suppose that K ′ 6= ∅. Without loss of

generality, let M be a perfect matching of H ′ such that the boundary C of H ′ and each

member in K ′ are proper M -alternating cycles. We have the following claim.

Claim 2. H ′ has no external hexagons that are proper M -alternating.

Proof. Suppose to the contrary that an external hexagon h of H ′ is proper M -alternating.

Then M⊕h is a perfect matching of H ′, and each component of C⊕h is a proper (M⊕h)-

alternating cycle. Since any two proper M -alternating hexagons of H ′ are disjoint, h is

disjoint with each member of K ′. Since K ′ 6= ∅, C ⊕ h has a component as a cycle C ′

which satisfies the above conditions (i) and (ii). But I[C ′] has fewer hexagons than I[C],

contradicting the choice for C. Hence Claim 2 holds.
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Along the boundary C of H ′, we will find two substructures of H ′ in its left-top corner

and left-bottom corner as Figs. 3 and 4, respectively, as follows.

A b-chain of hexagonal system H ′ is a maximal horizontal linear chain consisting of the

consecutive external hexagons when traversing (counter)clockwise the boundary ∂(H ′).

A b-chain is called high (resp. low) if all hexagons adjacent to it are below (resp. above)

it. For example, in Fig. 2 D0, D1, D2, G1, G2, . . . , G9, G
′
1, D5, D6 and D7 are b-chains. In

particular, D0, D1, D2 and G1 are high b-chains, while G′1, D5 and D6 are low b-chains.

But G2, G3, . . . , G9 and D7 are neither high nor low b-chains.

Figure 2: Various b-chains of a hexagonal system.

Choose a high b-chain and a low b-chain of H ′. They are distinct. Otherwise H ′ itself

is a linear chain, contradicting that H ′ is peri-condensed. From the high b-chain to the

low b-chain along the boundary ∂(H ′) counterclockwise, we pass through a sequence of

consecutive b-chains. In this process, let G1 be the last high b-chain and let G′1 be the

first low b-chain after G1. Clearly, there is no other high b-chain and low b-chain between

G1 and G′1. That is, those b-chains between G1 and G′1 descend monotonously.

From high b-chain G1 we have a sequence of consecutive b-chains G1, G2, . . . , Gm with

the following properties: (1) for each 1 ≤ i < m, Gi+1 is next to Gi, and the left end

hexagon of Gi+1 lies on the lower left side of Gi, (2) either Gm is just the low b-chain

G′1 or Gm+1 is the b-chain next to Gm such that Gm+1 has no hexagon lies on the lower

left side of Gm. Let G be a hexagonal chain of H ′ consisting of b-chains G1, G2, . . . , Gm.

Then G is a ladder-shape hexagonal chain.

Similarly, from low b-chain G′1 we have a sequence of consecutive b-chains G′1, G
′
2, . . . , G

′
s
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with the following properties: (1) for each 1 ≤ j < s, G′j is next to G′j+1, and the left end

hexagon of G′j+1 lies on the higher left side of G′j, (2) either G′s is just the high b-chain

G1 or G′s is next to the b-chain G′s+1 such that G′s+1 has no hexagon lies on the higher

left side of G′m. Let G′ be a hexagonal chain of H ′ consisting of b-chains G′1, G
′
2, . . . , G

′
s.

For example, given a high b-chain D1 and a low b-chain D5 in Fig. 2, we can get two

required hexagonal chains G = G1 ∪G2 ∪G3 ∪G4 and G′ = G9 ∪G′1.

Claim 3. Either G and G′ are disjoint or the last b-chain Gm in G coincides with the

first b-chain G′s in G′.

To analyze the substructures G and G′ of H ′, as [26] we label the hexagons of G and

some edges as follows (see Fig. 3): let Si,j, 1 ≤ i ≤ m and 1 ≤ j ≤ n(i), be the hexagons of

b-chain Gi as Fig. 3, neither A nor A′ is contained in H ′. Denote by ei,j be the boundary

edge of H ′ which is parallel to e1,1 and belongs to Si,j, 1 ≤ i ≤ m and 1 ≤ j ≤ n(i), and

denote the other boundary edges in S1,1 and Sm,n(m) by a, a′, e0, e
′
0 respectively, as shown

in Fig. 3.

Since the boundary C of H ′ is a proper M -alternating cycle, all the edges e0, e
′
0, ei,j,

1 ≤ i ≤ m, 1 ≤ j ≤ n(i), are M -double edges. So we can draw a ladder-shape broke line

segment L1 = P0P1 · · ·Pq+1(q ≥ 1) satisfying the following conditions.

(A1) The endpoints P0 and Pq+1 of L1 are the midpoints of the edges a and a′, respec-

tively. Pi (1 ≤ i ≤ q) is the center of a hexagon Si of H ′, PiPi+1 (0 ≤ i ≤ q) is

orthogonal to one of the three edge directions, and Pi+1 (0 ≤ i ≤ q) lies on the

lower left side or the left side of Pi according as i is even or odd (see Fig. 3). L1

only passes through hexagons of H ′. Clearly, the graph consisting of the hexagons

intersected by L1 is a hexagonal chain, denoted by H1;

(A2) All the edges intersected by L1 are M -single edges, all the M -double edges which

are located in the region above L1 are parallel to e1,1 (see Fig. 3).

Note that there exists such a broke line segment such that it only passes through

hexagons Si,j, 1 ≤ i ≤ m and 1 ≤ j ≤ n(i). Among all those broke line segments, we can

select one, also denoted by L1, such that there are the maximum number of M -double

edges above it.

Symmetrically we treat substructure G′ of H ′ as follows. Let Ti,j, 1 ≤ i ≤ s and

1 ≤ j ≤ t(i), be the hexagons of b-chain G′i, neither hexagon B nor hexagon B′ is
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Figure 3: The hexagonal chain G on the left-top corner of H ′ (bold edges are M -double edges,

m = 6, n(1)=3, n(2)=1, n(3)=3, n(4)=2, n(5)=2. And A,A′ /∈ H ′.)

contained in H ′ as Fig. 4. Let fk,`, 1 ≤ k ≤ s and 1 ≤ ` ≤ t(k), be a series of boundary

edges on this structure as indicated in Fig. 4. Since the boundary of H ′ is a proper

M -alternating cycle, we can see that all the edges f0, f
′
0, fk,`, 1 ≤ k ≤ s and 1 ≤ ` ≤ t(k),

are M -double edges (see Fig. 4).

Figure 4: The hexagonal chain G′ on the left-bottom corner of H ′ (bold edges are M -double

edges, s = 4, t(1)=3, t(2)=1, t(3)=3, t(4)=1. And B,B′ /∈ H ′.)

Like L1, we also draw a ladder-shape broke line segment L2 = Q0Q1 · · ·Qr+1(r ≥ 1)

as indicated in Fig. 4 so that the part below L2 has as many M -double edges parallel to

f1,1 as possible. Let Qi (1 ≤ i ≤ r) be the center of a hexagon Ti of H ′. Let H2 be the

hexagonal chain consisting of the hexagons intersected by L2.

Clearly, both L1 and L2 have an odd number of turning points. We now have the
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following claim.

Claim 4. The boundary of H1 (resp. H2) is a proper M -alternating cycle and m ≥ 2

(resp. s ≥ 2).

Proof. We only consider H1 (the other case is almost the same). Let di be the edge of

S1,i opposite to e1,i, 1 ≤ i ≤ n(1) (see Fig. 3). By Claim 2, S1,1 is not an M -alternating

hexagon. It implies that all edges d2, . . . , dn(1) are M -double edges. Hence, S2,1 is a

hexagon of H ′ and m ≥ 2.

Let P1 be the path induced by those vertices of H1 which are just upon L1. By the

choice of L1, we can see that P1 is an M -alternating path with two end edges in M . Let

P2 be the path induced by those vertices of H1 which are just below L1. It suffices to

show that P2 is also an M -alternating path with two end edges in M .

Let w1(= e′0), w2, . . . , w`2 be a series of parallel edges on the bottom of H1 and let

h1(= e0), h2, . . . , h`1 be a series of vertical edges of H1 on the right of P0P1 (see Fig. 5).

For q = 1, by the condition (A2) and {e0, e′0} ⊆M , it follows that h1, h2, . . . , h`1 (resp.

w1, w2, . . . , w`2) are forced by e0 (resp. e′0) in turn and thus belong to M (see Fig. 5(a)).

Therefore, P2 is an M -alternating path with two end edges in M .

Figure 5: Illustration for Claim 4 in the proof of Lemma 2.1.

Let q ≥ 3. For even i, 2 ≤ i ≤ q−1, let e′′i be the slant edge of Si below L1. Let ei and

e′i be the two edges of H ′ which are adjacent to e′′ and below L1 (see Fig. 6(a)). Clearly,

ei is parallel to e0, and e′i is parallel to e′0. We assert that e′′i /∈ M . Otherwise, e′′i is an

M -double edge. Since C is a proper M -alternating cycle, e′′i does not lie on the boundary
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C of H ′. Thus S ′i is a hexagon of H ′ (see Fig. 6(b)). Moreover, we can switch from

L1 to a new broke line segment L′1 which passes through S ′i and satisfies the conditions

(A1–A2) (see Fig. 6(b)). But the part above L′1 has more M -double edges than above L1,

contradicting the choice for L1. Thus the assertion is true. From condition (A2), we can

see that {e0, e′0, e2, e′2, . . . , eq−1, e′q−1} ⊆ M . It follows that P2 is an M -alternating path

with two end edges in M (see Fig. 5(b)).

For odd i, by Claim 4 Si (1 ≤ i ≤ q) and Ti (1 ≤ i ≤ r) are all proper M -alternating

hexagons, and the other hexagons of H1 and H2 are not M -alternating. For convenience,

let S0 := S1,1, Sq+1 := Sm,n(m), T0 := T1,1 and Tr+1 := Ts,t(s). By Claim 2, we have that

S0 6= S1, Sq+1 6= Sq, T0 6= T1 and Tr+1 6= Tr. Further, by Claim 4 we can see that each

hexagon in K ′ either belongs to H1 ∪H2 or is disjoint with H1 ∪H2.

Let K1 := {S0, S2, . . . , Sq+1} and K2 := {T0, T2, . . . , Tr+1}. To complete the proof of

the lemma, there are two cases to be considered.

Case 1. H1 and H2 are disjoint (see Figs. 3 and 4).

It is straightforward to verify that Hi −Ki has a perfect matching, i = 1, 2, so Ki is

a resonant set of Hi and |Ki| ≥ |Hi ∩K ′|+ 1.

Let K ′′ := (K1 ∪K2)∪ (K ′−K ′ ∩H1−K ′ ∩H2). Similar to the proof of Claim 1, we

have that K ′′ is a resonant set of H ′ and |K ′′| ≥ |K ′|+ 2. Thus Cl(H ′) ≥ |K ′|+ 2.

Case 2. H1 intersects H2 .

By Claim 3 the last b-chain Gm in G coincides with the first b-chain G′s in G′. Hence

Sq+1 = Tr+1. By Claim 4 both boundaries of H1 and H2 are proper M -alternating cycles.

It follows that only segment PqPq+1 of L1 is identical to segment QrQr+1 of L2. Hence

H1∪H2 is a cata-condensed hexagonal system with exactly one branch hexagon Sq (= Tr)

as Fig. 7, and its boundary is also a proper M -alternating cycle. So H1 and H2 have

exactly one common M -alternating hexagon. We also can see that K1∪K2 is a resonant set

of H1∪H2, and |K1∪K2| ≥ |K ′∩(H1∪H2)|+2. Let K ′′ := (K1∪K2)∪(K ′−K ′∩(H1∪H2)).

By Claim 1, we have that K ′′ is a resonant set of H ′ and |K ′′| ≥ |K ′|+ 2. Thus Cl(H ′) ≥

|K ′|+ 2.

Now the entire proof of the lemma is complete.
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Figure 6: Illustration for Claim 4 in the proof of Lemma 2.1.

Figure 7: Illustration for Case 2 in the proof of Lemma 2.1.

3 Main results

We now state our main result as follows.

Theorem 3.1. Let H be a hexagonal system with a perfect matching. For every perfect

matching M of H such that f(H,M) = F (H), there exist F (H) disjoint M-alternating

hexagons of H.
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By Theorem 1.3, there are F (H) disjoint M -alternating cycles of H. It is well known

that each M -alternating cycle of H has an M -alternating hexagon in its interior [24]. In

order to prove the above theorem, we only need to prove the following lemma.

Let C be a set of disjoint cycles of a hexagonal system H. A member of C is called

minimal if it contains no other members of C in its interior.

Lemma 3.2. Let H be a hexagonal system. Let M be a perfect matching of H with the

maximum forcing number and let A be a maximum set of disjoint M-alternating cycles

of H. Then for any two members in A their interiors are disjoint, and for any C ∈ A,

I[C] is a linear chain.

Proof. Let n := F (H) = f(H,M). By Theorem 1.3, n = |A|. Suppose to the contrary

that there exist two cycles in A so that their interiors have a containment relation. Then

A has a non-minimal member C0 and its interior contains only minimal members of A.

Let A0 denote the set of minimal members of A whose interiors are contained in the

interior of C0. Then the restriction of M on I[C0] is also a perfect matching of I[C0],

denoted by Mc. Note that each M -alternating cycle has an M -alternating hexagon in its

interior [24]. Then each cycle in A0 can be replaced by an M -alternating hexagon, the set

of these hexagons is a resonant set of I[C0], denoted by K. Clearly, K is disjoint with C0,

|K| = A0 and I[C0]−C0−K has a perfect matching. By Lemma 2.1, I[C0] has a resonant

set S such that |S| ≥ |K|+2. Let M0 be a perfect matching of I[C0] such that all hexagons

in S are M0-alternating. Let M1 := (M\Mc)∪M0 and A′ := S ∪
(
A−{C0}−A0

)
. Then

M1 is a perfect matching of H such that each member in A′ is an M1-alternating cycle.

Note that |A′| ≥ n+1. By Theorem 1.3, we have that f(H,M1) ≥ n+1. This contradicts

that the maximum forcing number of H is n. Therefore, for any two members in A their

interiors are disjoint.

For any C ∈ A, we assert that the Clar number of I[C] is 1. Otherwise, I[C] has

a resonant set S ′ with |S ′| ≥ 2. Similar to the above discussion, we can obtain n + 1

disjoint cycles which are M2-alternating with respect to some perfect matching M2 of H.

By Theorem 1.3, we have that F (H) ≥ n + 1, a contradiction. Hence the assertion is

true. By Theorem 2.2, for any C ∈ A, I[C] is a linear chain.
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