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Abstract
In this paper, we solve a system of two coupled nonlinear differential equations that

determine the concentrations of oxygen and the carbon substrate. This system models
the excess sludge production from water treatment plants. We will apply the Adomian
decomposition method combined with the Duan–Rach modified recursion scheme for an-
alytical approximations of oxygen and the carbon substrate. Our graphs of the objective
error analysis demonstrate the rapid rate of convergence of our sequence of analytic ap-
proximate solutions without recourse to comparisons with an alternate solution technique.
The Adomian decomposition method yields a rapidly convergent, easily computable and
readily verifiable sequence of analytic approximations that are convenient for parametric
simulations.

1 Introduction

The disposal of excess sludge from waste water treatment plants represents a rising chal-

lenge in designing activated sludge processes [1–4]. Sludge comes as semi-solid material

left from waste water treatment plants, or sometimes sludge comes as solids removed from
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the raw water. The sludge will become putrescent in a short time once anaerobic bacteria

take over, and must be removed from the sedimentation tank before this can happen.

Tyagi et al. [4] discussed the dynamic behavior of activated sludge. Abbassi et al. [2]

developed a mathematical model that describes substrate removal, oxygen utilization and

excess sludge production within a microbial floc particle, surrounded by a biodegradable

substrate [3].

In [3], a mathematical model that relates the concentration of the carbon substrate

and the concentration of oxygen was established as a system of two coupled Lane–Emden

type equations

d2u

dρ2
+

2

ρ

du

dρ
= −α2 + F1 (u(ρ), v(ρ)) , (1)

d2v

dρ2
+

2

ρ

dv

dρ
= F2 (u(ρ), v(ρ)) , (2)

subject to two mixed sets of Neumann and Dirichlet boundary conditions

u′(0) = 0, u(1) = 1, v′(0) = 0, v(1) = 1 , (3)

where the functions u(ρ) and v(ρ) are the concentration of the carbon substrate and the

concentration of oxygen, respectively, ρ is the radius of a spherical floc particle, and the

system nonlinearities are

F1 (u (ρ) , v (ρ)) = α1f1 (u (ρ) , v (ρ)) + α3f2 (u (ρ) , v (ρ)) , (4)

F2 (u (ρ) , v (ρ)) = α4f1 (u (ρ) , v (ρ)) + α5f2 (u (ρ) , v (ρ)) , (5)

where

f1 (u (ρ) , v (ρ)) =
u (ρ) v (ρ)

(l1 + u (ρ)) (m1 + v (ρ))
, (6)

f2 (u (ρ) , v (ρ)) =
u (ρ) v (ρ)

(l2 + u (ρ)) (m2 + v (ρ))
, (7)

which are products of the respective Michaelis–Menten nonlinearities, i.e.

fj (u (ρ) , v (ρ)) = Mj (u (ρ))×Mj (v (ρ)) =
u (ρ)

lj + u (ρ)
× v (ρ)

mj + v (ρ)
, (8)

for j = 1, 2, where Mj is the respective Michaelis–Menten nonlinear operator. Note that

in [3], the parameter α5 in Eq. (5) was denoted as a product αα5.

In this work, we shall apply the Adomian decomposition method [5–11] combined

with the Duan–Rach modified recursion scheme [12–14] to systematically obtain a rapidly
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convergent analytic approximate solution that is convenient for numerical simulations.

The rapid rate of convergence of our approximate solutions is validated by graphs of the

error analysis that features the error remainder functions and the maximal error remainder

parameters instead of comparison to an alternate solution technique alone.

We remark that the Adomian decomposition method has been efficiently used to solve

a wide variety of nonlinear problems in engineering and science [7–9, 15–20], especially

including several in theoretical chemistry [3, 11,14,21–24].

2 The Duan–Rach modified recursion scheme in the

Adomian decomposition method

We rewrite Eqs. (1) and (2) in Adomian’s operator-theoretic form as

Lu = −α2 + F1 (u(ρ), v(ρ)) , (9)

Lv = F2 (u(ρ), v(ρ)) , (10)

where the linear differential operator L is defined as

Lw(ρ) =
d2

dρ2
w(ρ) +

2

ρ

d

dρ
w(ρ) . (11)

Define the corresponding inverse operator L−1 [25, 26]

L−1w(ρ) =

∫ ρ

0

(
r − r2

ρ

)
w(r)dr , (12)

we have [25,26]

L−1Lu = u (ρ)− u (0) , L−1Lv = v (ρ)− v (0) , (13)

for du
dρ

(0) = 0, and dv
dρ

(0) = 0.

Applying the corresponding inverse linear operator L−1 (·) to both sides of Eqs. (9)

and (10) leads to

u (ρ) = u (0)− α2

6
ρ2 + L−1F1 (u (ρ) , v (ρ)) , (14)

v (ρ) = v (0) + L−1F2 (u (ρ) , v (ρ)) , (15)

which is a system of coupled nonlinear Volterra integral equations with two – as yet

undetermined – constants of integration u (0) and v (0) as an intermediate step.

Denote

L−11 w(ρ) := [L−1w(ρ)]ρ=1 =

∫ 1

0

(
r − r2

)
w(r)dr . (16)
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Substituting the boundary conditions u (1) = 1 and v (1) = 1 into Eqs. (14) and (15) we

have

u (0) = 1 +
α2

6
− L−11 F1 (u (ρ) , v (ρ)) , (17)

v (0) = 1− L−11 F2 (u (ρ) , v (ρ)) . (18)

Substituting Eqs. (17) and (18) into Eqs. (14) and (15), we obtain the equivalent sys-

tem of coupled nonlinear Fredholm-Volterra integral equations without any undetermined

constants of integration as

u (ρ) = 1 +
α2

6
− α2

6
ρ2 − L−11 F1 (u (ρ) , v (ρ)) + L−1F1 (u (ρ) , v (ρ)) , (19)

v (ρ) = 1− L−11 F2 (u (ρ) , v (ρ)) + L−1F2 (u (ρ) , v (ρ)) . (20)

Next we apply the respective Adomian decomposition series

u (ρ) =
∞∑
n=0

un (ρ), v (ρ) =
∞∑
n=0

vn (ρ), (21)

F1 (u (ρ) , v (ρ)) =
∞∑
n=0

A 1, n (ρ), F2 (u (ρ) , v (ρ)) =
∞∑
n=0

A 2, n (ρ), (22)

f1 (u (ρ) , v (ρ)) =
∞∑
n=0

B 1, n (ρ), f2 (u (ρ) , v (ρ)) =
∞∑
n=0

B 2, n (ρ), (23)

where the two-variable Adomian polynomials satisfy

A1, n = α1B1, n + α3B2, n, A2, n = α4B1, n + α5B2, n, (24)

B1, 0 =
u0v0

(l1 + u0) (m1 + v0)
, (25)

B1, 1 =
m1u0

2v1 + l1u1v0
2 +m1l1 (u1v0 + u0v1)

(l1 + u0) 2 (m1 + v0) 2
, . . . , (26)

from Eqs. (4), (5), (6) and (7), and replacing m1 → m2 and l1 → l2 in B1, n leads to B2, n.

The two-variable Adomian polynomials for the general bivariate function f(u, v) are

defined by the formula [5]

An = An(u0, u1, · · · , un; v0, v1, · · · , vn) =
1

n!

dn

dλn
f

(
n∑
j=0

ujλ
j,

n∑
j=0

vjλ
j

)∣∣∣∣∣
λ=0

. (27)

Other algorithms for the one-variable and multivariable Adomian polynomials have

been proposed such as in [5, 9, 10, 27–35]. Duan [33–35] has recently crafted several new,

-788-



more efficient algorithms for fast generation of the one-variable and multivariable Adomian

polynomials. For convenience, we list the first five two-variable Adomian polynomials of

the general bivariate function f(u, v) with the decompositions u =
∑∞

n=0 un, v =
∑∞

n=0 vn

as follows,

A0 = f(u0, v0),
A1 = v1f

(0,1)(u0, v0) + u1f
(1,0)(u0, v0),

A2 = v2f
(0,1) + 1

2
v21f

(0,2) + u2f
(1,0) + u1v1f

(1,1) + 1
2
u21f

(2,0),
A3 = v3f

(0,1) + v1v2f
(0,2) + 1

6
v31f

(0,3) + u3f
(1,0) + (u2v1 + u1v2) f

(1,1) + 1
2
u1v

2
1f

(1,2)

+u1u2f
(2,0) + 1

2
u21v1f

(2,1) + 1
6
u31f

(3,0),

A4 = v4f
(0,1) +

(
v22
2

+ v1v3

)
f (0,2) + 1

2
v21v2f

(0,3) + 1
24
v41f

(0,4) + u4f
(1,0)

+ (u3v1 + u2v2 + u1v3) f
(1,1) +

(
1
2
u2v

2
1 + u1v1v2

)
f (1,2) + 1

6
u1v

3
1f

(1,3)

+
(
u22
2

+ u1u3

)
f (2,0) +

(
u1u2v1 + 1

2
u21v2

)
f (2,1) + 1

4
u21v

2
1f

(2,2) + 1
2
u21u2f

(3,0)

+1
6
u31v1f

(3,1) + 1
24
u41f

(4,0),

where we use the notation f (m,n) = f (m,n)(u0, v0) = ∂m+nf
∂um∂vn

(u0, v0) as a space-saving

shorthand.

The MATHEMATICA code generating the two-variable Adomian polynomials of a

general abstract function f(u, v) based on the algorithm in Theorem 1 [35] is listed in the

Appendix.

Upon substitution of the decompositions (21) and (22) into Eqs. (19) and (20), we

obtain

∞∑
n=0

un (ρ) = 1 +
α2

6
− α2

6
ρ2 − L−11

∞∑
n=0

A 1, n (ρ) + L−1
∞∑
n=0

A 1, n (ρ), (28)

∞∑
n=0

vn (ρ) = 1− L−11

∞∑
n=0

A 2, n (ρ) + L−1
∞∑
n=0

A 2, n (ρ). (29)

We establish the system of coupled Duan-Rach modified recursion schemes

u0 (ρ) = 1 + α2

6
,

u1 (ρ) = −α2

6
ρ2 − L−11 A1, 0 (ρ) + L−1A1, 0 (ρ) ,

un+2 (ρ) = −L−11 A 1, n+1 (ρ) + L−1A 1, n+1 (ρ) , n ≥ 0,
(30)

v0 (ρ) = 1,
vn+1 (ρ) = −L−11 A 2, n (ρ) + L−1A 2, n (ρ) , n ≥ 0.

(31)

Next we list the first calculated solution components as

u1 (ρ) =
α2 + 6

6

(
α1

(m1 + 1)(α2 + 6l1 + 6)
+

α3

(m2 + 1)(α2 + 6l2 + 6)

)
(ρ2 − 1)− α2ρ

2

6
,

v1 (ρ) =
α2 + 6

6

(
α4

(m1 + 1)(α2 + 6l1 + 6)
+

α5

(m2 + 1)(α2 + 6l2 + 6)

)
(ρ2 − 1).
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The approximate solution functions as defined by Adomian and co-workers are

φm+1 (ρ) =
m∑
n=0

un (ρ), ψm+1 (ρ) =
m∑
n=0

vn (ρ), m ≥ 0. (32)

In order to evaluate the accuracy of our approximate solutions, we consider the error

remainder functions

ER 1, n (ρ) = d2

dρ2
φn (ρ) + 2

ρ
d
dρ
φn (ρ) + α2 − F1 (φn (ρ) , ψn (ρ)) ,

ER 2, n (ρ) = d2

dρ2
ψn (ρ) + 2

ρ
d
dρ
ψn (ρ)− F2 (φn (ρ) , ψn (ρ)) ,

(33)

and the maximal error remainder parameters

MER 1, n = max
0 ≤ ρ≤ 1

|ER 1, n (ρ)| , MER 2, n = max
0 ≤ ρ≤ 1

|ER 2, n (ρ)| , (34)

whenever the solutions are unknown in advance.

By the coupled system of the Duan-Rach modified recursion schemes in (30) and (31),

we can easily calculate the solution components without any undetermined coefficients

and including all of the modelling parameters. The results are shown to be superior for

parametric simulations.

3 Numerical simulations

First, we assign m1 = l1 = m2 = l2 = 0.0001 as in [3]. We further specify α1=5, α2=1, α3

=0.1, α4=0.1, α5=0.05 to examine the error remainder functions and the maximal error

remainder parameters.

0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.4
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0.6

0.7

0.8

0.9

1.0

ΦnHΡL

Fig. 1: Curves of the approximate solutions
φn(ρ) versus ρ for n = 2 (solid line), n = 3
(dot line) and n = 4 (dash line).

0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.975

0.980

0.985

0.990

0.995

1.000

ΨnHΡL

Fig. 2: Curves of the approximate solutions
ψn(ρ) versus ρ for n = 2 (solid line), n = 3
(dot line) and n = 4 (dash line).

In Figs. 1 and 2, we plot the curves of the approximate solutions φn(x) and ψn(ρ)

versus ρ for n = 2, 3, 4, respectively, where the three curves nearly overlap.
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0.2 0.4 0.6 0.8 1.0
Ρ

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

ER1,nHΡL

Fig. 3: Curves of the error remainder func-
tions ER1,n(ρ) versus ρ for n = 2 (solid
line), n = 3 (dot line), n = 4 (dash line)
and n = 5 (dot-dash line).

0.2 0.4 0.6 0.8 1.0
Ρ

0.00001

0.00002

0.00003

0.00004

ER2,nHΡL

Fig. 4: Curves of the error remainder func-
tions ER2,n(ρ) versus ρ for n = 2 (solid
line), n = 3 (dot line), n = 4 (dash line)
and n = 5 (dot-dash line).

Table 1: The Maximal error remainder parameters MER1, n and MER2, n.
n 2 3 4 5 6 7

MER1, n 0.00118506 0.000853760 0.000621465 0.000452526 0.000329508 0.000239928
MER2, n 0.0000348547 0.0000251106 0.0000182784 0.0000133096 9.69142× 10−6 7.05670× 10−6

3 4 5 6 7
n

0.00100

0.00050

0.00030

0.00070

MER1,n

Fig. 5: Logarithmic plots of MER1,n ver-
sus n for n = 2 through 7.

3 4 5 6 7
n

0.000010

0.000020

0.000030

0.000015

MER2,n

Fig. 6: Logarithmic plots of MER2,n ver-
sus n for n = 2 through 7.

The curves of the error remainder functions ER1,n(ρ) and ER2,n(ρ) versus ρ for n =

2, 3, 4, 5 are plotted in Figs. 3 and 4, respectively.

The maximal error remainder parameters MER1,n and MER2,n, for n = 2 through

7, are listed in Table 1. The logarithmic plots of these values are displayed in Figs. 5

and 6, respectively, where the points almost lay on a straight line thus indicating an

approximately exponential rate of convergence.

Then we use 6-term approximations to examine the effects of the parameters α1, α2,

α3, α4, α5 to the solution. In Figs. 7–9, the effects of α2, α1, α3 on the approximate

solution φ6(ρ) are shown, respectively. The approximate solution φ6(ρ) increases with the

increasing of α2, but decreases with the increasing of α1 or α3.

We checked that the effects of α1, α2, α3 on the approximate solution ψ6(ρ) are very
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0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.2
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0.6

0.8

1.0

Φ6HΡ;Α2L

Fig. 7: Curves of the approximate solutions φ6(ρ;α2) versus ρ for α1 = 5, α3 = 0.1, α4 = 0.1,
α5 = 0.05 and for different values of α2: 0.1 (solid line), 1 (dot line), 2 (dash line) and 4 (dot-dash
line).

0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

Φ6HΡ;Α1L

Fig. 8: Curves of the approximate solutions
φ6(ρ;α1) versus ρ for α2 = 1, α3 = 0.1,
α4 = 0.1, α5 = 0.05 and for different values
of α1: 1 (solid line), 2.5 (dot line), 4 (dash
line) and 5.5 (dot-dash line).

0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

Φ6HΡ;Α3L

Fig. 9: Curves of the approximate solutions
φ6(ρ;α3) versus ρ for α1 = 5, α2 = 1, α4 =
0.1, α5 = 0.05 and for different values of
α3: 0.001 (solid line), 0.5 (dot line), 1 (dash
line) and 1.5 (dot-dash line).

weak, and with the increasing of α4 or α5, the approximate solution ψ6(ρ) decreases, while

φ6(ρ) is nearly invariant.

Next, we assign α1=5, α2=1, α3 =0.1, α4=0.1, α5=0.05 to examine the effects of the

parameters li,mi, i = 1, 2, on the solution.

In Figs. 10 and 11, we plot the curves of the approximate solutions φ6(ρ) and ψ6(ρ)

versus ρ for m1 = m2 = l2 = 0.0001 and for different values of l1. In Figs. 12 and 13, we

plot the curves of the approximate solutions φ6(ρ) and ψ6(ρ) versus ρ for l1 = m2 = l2 =

0.0001 and for different values of m1. The increasing of l1 or m1 leads to increasing the

solutions. We checked that similar results hold for parameters l2 and m2.
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0.9

1.0

Φ6HΡ;l1L

Fig. 10: Curves of the approximate solu-
tions φ6(ρ; l1) versus ρ for m1 = m2 = l2 =
0.0001 and for different values of l1: 0.0001
(solid line), 0.001 (dot line), 0.01 (dash line)
and 0.1 (dot-dash line).

0.0 0.2 0.4 0.6 0.8 1.0
Ρ
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0.985

0.990

0.995

1.000

Ψ6HΡ;l1L

Fig. 11: Curves of the approximate solu-
tions ψ6(ρ; l1) versus ρ for m1 = m2 = l2 =
0.0001 and for different values of l1: 0.0001
(solid line), 0.001 (dot line), 0.01 (dash line)
and 0.1 (dot-dash line).

0.0 0.2 0.4 0.6 0.8 1.0
Ρ
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1.0

Φ6HΡ;m1L

Fig. 12: Curves of the approximate solu-
tions φ6(ρ;m1) versus ρ for l1 = m2 =
l2 = 0.0001 and for different values of m1:
0.0001 (solid line), 0.001 (dot line), 0.01
(dash line) and 0.1 (dot-dash line).

0.0 0.2 0.4 0.6 0.8 1.0
Ρ
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0.995

1.000

Ψ6HΡ;m1L

Fig. 13: Curves of the approximate solu-
tions ψ6(ρ;m1) versus ρ for l1 = m2 =
l2 = 0.0001 and for different values of m1:
0.0001 (solid line), 0.001 (dot line), 0.01
(dash line) and 0.1 (dot-dash line).

4 Conclusions

In this work, we have examined microbial floc particles immersed in a system of the car-

bon substrate and oxygen. The system models the excess sludge production from water

treatment plants. The proposed approach depends mainly on combining the Adomian

method with the Duan-Rach modified recursion scheme. The work resulted in an approx-

imation of the concentrations of carbon and the concentration of oxygen with a high level

of accuracy. The evaluated approximations show enhancements over existing techniques

where the minimal size of the obtained errors and the illustrated graphs emphasize these

improvements.
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Appendix. MATHEMATICA code for the two-variable

Adomian polynomials based on Theorem 1 [35].

Adth1[M_]:=Module[{},A[0]=f[Subscript[u, 0],Subscript[v, 0]];

For[n=1,n<=M,n++,A[n]=1/n*

Sum[(k+1)*(Subscript[u, k+1]*D[A[n-1-k],Subscript[u, 0]]

+Subscript[v, k+1]*D[A[n-1-k],Subscript[v, 0]]),{k,0,n-1}]];

Table[A[n],{n,0,M}]]
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