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Abstract

In this paper, mathematical modeling of porous catalysts is discussed. An efficient wavelet
method, called the shifted second kind Chebyshev wavelet method is used to obtain the solution for
the concentration of species. An approximate polynomial expression for concentration and the
effectiveness factors are obtained for general nonlinear Langmiur—Hinshelwood—Haugen—Watson type
models which have variety of real rate function. To the best of our knowledge until there is no
rigorous wavelet solution has been addressed in this model. The power of the manageable method is
confirmed. The concentration and the effectiveness factors are also computed for the various limiting
cases of LHHW models.

* Author for the correspondence
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1. Introduction

Solid catalysts are often called ‘heterogeneousalysts’ as they are in a different
phase from fluid reactants and products. The ehseparating solid catalysts from reactants
and products gives them an advantage over liquidlysts in solution with reactants and
products. With porous solid catalysts, significeegistance to mass and heat transfer may be
present. The transport resistance can make thdespeoncentrations inside the porous
catalyst lower than the concentrations in bulkdlaind the temperature inside the porous
catalyst lower or higher than in the bulk fluid.drheterogeneous catalytic reaction, however,
the catalyst is usually in a different phase frbw teactant(s). Mass transfer limitations play a
vital role on the rate of reaction, the rate ofvemsion and product formation are included in
the systems.

A lot of efforts have been attempted to find owt thles of mass transfer efforts on the
reaction rate. The rate of reaction in porous efogteneous catalysts is the most significant
one.

In porous catalysts, the internal mass transfetdiion is governed by the rate of reaction. In
porous catalysts, the concept of diffusion andtieads presented in many textbooks [1-4].
An approximate expressions to estimate dimensisrdeacentration profiles inside a catalyst
pellet obtained by numerical algorithm was devetbfy Gottifredi et al [5] . Several
investigations of diffusion in the wash coat haeib discussed. Simulations based on real
wash coat geometry of a fillet in a square chaanelexplained by Hayes and Kolaczkowski
[6]. Leung et al. [7] illustrated an empirical methfor mapping the real geometry onto a 1-D
plane wall. The same author demonstrated the asyenpnatching method. LHHW
(Langmiur—Hinshelwood—Haugen—-Watson) behaviors thedexamples are given by Hayes
et al. [4] and Papadias et al. [8, 9]. The autl6¢d0] used flat wash coats with rounded
comers of increasing radii. Gottifredi and Gonza][fresented a powerful and efficient tool
to solve the singular BVP of reaction cum diffusiona biocatalyst problem. Gottifredi and
Gonzo [12] introduced a new numerical algorithmuised to finding the dimensionless
concentration profiles and effectiveness factor.

Hayes et al. [13] describes a mathematical modethe estimation of effectiveness
factors in porous catalysts that have reactionsh wibnlinear kinetic models. M. K.
Sivasankari and L.Rajendran [14] designed a Adordieeomposition method for obtaining
solution for the concentration of species. Howeteithe best of our knowledge, till date no

wavelet method results for the concentration ec&gs and effectiveness factor for all values
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of the parameters have been reported. This reseaaliises the effectiveness factors and the
concentrations of species which is obtained by gusiravelet based Numerical method
(shifted second kind Chebyshev wavelet transforrthod.

In recent years, wavelets have found their ways many different fields of science
and engineering; particularly wavelets are veryceasfully utilized in signal analysis for
waveform representation and segmentations.

During previous years, wavelets have dominatedaadlas of pure and applied
mathematics, especially in the numerical analykdifterential equations [15, 16]. Wavelets
are established as a strong novel mathematicaleimgait in signal processing, turbulence
problem, simulation and time-series analysis [1}-Erenuous action and interest have been
shown in the usage of wavelet theory and it isteelanultiresolution analysis. Hesameddini
et al.[20] developed an algorithm for fractionaffeliential equation. The substantial scheme
back of the wavelet decomposition is the compressipresentation of wavelet-based
functions. In wavelet methods, the geometric regind functions are represented in terms of
wavelet series defined in a certain domain.

Wavelet analysis, as a relatively new and emergirea in applied mathematical
research, has gained considerable attention inndealith differential equations. Wavelet
theory possesses many useful properties such apaoorsupport, orthogonality, dyadic,
orthonormality and multi-resolution analysis (MRA).

Among the wavelet transform families the Haar, lrefye wavelets and Chebyshev
wavelets deserve much attention. Chen and Hsiapdkented Haar wavelet method for
Lumped and distributed-parameter systems. Lepik if2Poduced the Haar wavelet method
(HWM) for solving the integral and differential emfions. Hariharan et al. [23] had
implemented the Haar wavelet method for solvincghé&iis equation arising in population
dynamics. The same author(s) [24- 26] solving tlevection-diffusion equation and
reaction-diffusion equations by using Haar waveiethod (HWM).

Moreover, wavelet method establishes a connectidth ast approximation
algorithms. In the last two decades the wavelatt&wis have been attracted great attention
and numerous papers about this area have beersipedbliHariharan et.al [27] establishing
Haar wavelet based computational algorithm for isgivdifferential equations arising in
science and engineering. Tavassoli Kajani et @] fiscuss and Comparison between the
homotopy perturbation method (HPM) and the sineireosvavelet method (SCWM) for
solving linear integro differential equations. kcent years, there are numerous papers have

been published about the wavelets for solving @mjirdifferential equations. Particularly



-708-

Chebyshev wavelets play a vital role in the reses¢arch field. Doha et al. [29, 30] gave a
systematic explanation of the ideas, methods, aptications the Chebyshev spectral method
for solving the initial and boundary value problearsd differential equations of fractional
order. Zhu et al. [31] had established the secamd €hebyshev wavelets for solving integral
equations. Zhu and .Fan [32] applied the second Kthebyshev wavelets for solving the
fractional nonlinear Fredholm integrodifferentiajuations. The Solution of Abel’s integral
equations and compare the Chebyshev wavelet me(GatiM) with BPFs method illustrated
by Sohrabi [33]. Nonlinear fractional differentiabuation is solved effectively by using
Chebyshev wavelet, Li [34]. Hojatollah Adibi andWPia Assari [35] had implemented the
CWM for the numerical solutions of Fredholm intdgequations of the first kind. Li Zhu and
Qibin Fan [36] introduced the second kind Chebyshewelets for solving the fractional
nonlinear Fredholm integro-differential equationganxin Wang and Qibin Fan [37]
demonstrated the second kind Chebyshev wavelet ogiefbr solving the fractional
differential equations. Recently, Doha et al. [38ksented the second kind Chebyshev
operational matrix algorithm for solving differesitiequations of Lane—Emden type. Heydari
et al. [39] established the CWM for telegraph tppetial differential equations with boundary
conditions. Babolian and Fattahzadeh [40] had éstedal the Chebyshev wavelet operational
matrix of integration for solving the differentiefjuations. Ghasemi and Tavassoli Kajani [41]
had introduced the CWM for solving the time-varyihgay systems.

The basic idea of Chebyshev wavelets is to corthertdifferential equations into a
system of algebraic equations by the operationatices of integral or derivative. The main
goal is to show how wavelets and multi-resolutioalgsis can be applied for improving the
method in terms of easy implement ability and aghig the rapidity of its convergence [42].

In the present paper, the shifted second kind Giteby wavelet method is used to
find the solution of the concentration of specied affectiveness factor for various parameter
values. The mathematical modeling of porous catsligsdescribed by the nonlinear reaction
diffusion equation is easily converted to the atlgébequations by applying shifted second
kind Chebyshev operational matrices of differefdgiat Solving these equations we obtain the
solution.

The paper is organized as follows. In section 2 b@bkev wavelets and their
properties are discussed. Formation of the probikerpresented in section 3.Method of
solution for various limiting cases is discussedéation 4.Results and discussion are carried

out in section 5.Concluding remarks are given tiea 6.
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2. Properties of second kind Chebyshev polynomials and their
shifted forms

2.1 Second kind Chebyshev polynomials[29]
It is well known that the second kind Chebyshewpommials are defined on [-1,1] by

sin(n+1) 6

Ua(9 = sin @

, X =Cosé. (1)

These polynomials are orthogonal on [-1, 1]

1 O,m#n
[N1=XU, 00U, (dx={ 7 m=n @
ey E

The following properties of second kind Chebyshesypomials are of fundamental
importance in the sequel. They are eigen functane following singular Sturm-Liouville

equation.

L-x*)D?@, (X) —3xDg (x) + k(k +2)@. (x) =0, (3)
WhereD = dg and may be generated by using the recurrencéorelat
X

Uy () = 26U, () =U, (¥, k = 123.... @)

Starting from W(x) = 1 and W(x) = 2x, or from Rodrigues formula

_ (' T el
Un()()_(2n+1)!\/(17—x2)D 4=x3 ®)

Theorem 2.1[29]: The first derivative of second kind Chebyshewpohials is of the form

DU, (x) =2 ni(k +DU, (%). (6)
z(k:?n)odd

Definition 2.1.1 [29]

The shifted second kind Chebyshev polynomials afmed on [0,1] byJ, (x) =U, (2x-1).

All results of second kind Chebyshev polynomials ba easily transformed to give the
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corresponding results for their shifted forms. Bhogonally relation with respect to the
weight functiony/ x— x? is given by
m#n

1 0,
J\/x—xzun'(x)um'(x)dxz T @]
0 gv

m=n.

Corollary 2.1.1: The first derivative of the shifted second kindeBirshev polynomial is

given by

DU, () =4 > (k+DU, (¥ ®)

k=0
(k+n)odd
2.2 Shifted Second kind Chebyshev operational matrix of derivatives[29]

Second kind Chebyshev wavelets are denotet hyt) = ¢(k,n,m,t), wherek,n are

positive integers andh is the order of second kind Chebyshev polynomials.

Here t is the normalized time. They are definedheninterval [0, 1] by

k+3

22 e n n+l
Yom® =177 Im G120, tm[yv > } ©
0 otherwise

m=0,1,.....M, n=0,1,.../21. A function f (t) defined over [0,1] may be exypied in terms

second kind Chebyshev wavelets as

OED ) CH7M0) 10)
Where
c = (f CY7% (t))w = I V-2 f O Odt (11)

If the infinite series is truncated, then it canviréiten as
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21 M

ft)=D Y Conllm(®). =CTe(t) (12)

n=0 m=0

Where C andy () are #(M+1) x 1 defined by

-
c :[Co.ovco,l""COM ""pzkfl,M "‘céﬂ—m "'cﬁflM} (13)
YO =[WooWourWou w-lllzk_lM y---Wj_M v---‘/’g_lM 1

Theorem 2.2.1[29]: LetV (t) be the second kind Chebyshev wavelets veTtaen the first

derivative of the vecto¥ (t) can be expressed as

dy() _
= =Dy (14)

Where D is &M+1) square matrix of derivatives and is defingd b

F O o}

O F o}
D=

[ON©) F

in which F is an (M+1) square matrix and its (r,s)th element is defined by

k+2
F o= 2"°s r=2 r.>s and (r+s) odd. (15)
rs |0, otherwise
Corollary 2.2.1. The operational matrix for thé'rderivative can be obtained from
d (;‘i’n(t) =D"y(t), n=12,.whereD" isthen" power of D. (16)

2.3 Convergence Analysis
We state and prove a theorem ascertaining that the second kind Chebgsbkat expansion

of a functionf (x), with bounded second derivative, converges uniformiy ()



-712-

Theorem 2.3.1[43]

A function f (x) O L2 [0,1] with ‘f X < L can be expanded as an infinite sum of chebyshev
wavelets and the series converges uniformlgl(k). Explicitly the expansion coefficients in

(11) satisfying the following in equality:

BWTL

G| <——s—— Om>1n=0 (17)
(n+1) (m+1)?

Proof:
From (11) it follows that

32 (n+1)/2¢ .
G == = [ f(X)Un(2x=n) (2 x~n)dx (18)
n/2¢

If we set2*x—n=cosd in (17), then we get

(-k+3)/12 T
cnm:2 f(cose njsin(mﬂ)@sm@d@

N

o-keiz COS9+ n (29)
= f cosmd— cogm+ 26 |d@

=) e 3]

Which gives after integration by parts two times
cosf+n
Com = 25k12J_I ( ok }\m (9) dg (20)
Where 1. (6)= ﬂ{sin(m—l)ﬁ _ sin(m+1)0} _sind {sin(m+l)9 _sin(m+ 3)0} 1)
m m-1 m+1 m+2 m+1 m+3

Therefore, we have

1 cos€+ n co§+ n
‘Cnm‘ _‘Z(Sk 1)/2\/—.[ ( }‘m (H)dg (5k 1)/2\/— I )Am (H)dg

LV 1 1( 1 1
(5k 1)/2 -H/‘ ‘d9< V2 m(m—l+m]+m+ 2[m+ 1+ m+ 3)

_ Lﬁr - 2LV
(5k-1)12 (m2 +om— 3) 2(5<75)/2(m+ ])2

2
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Sincen< 2 -1, we have

8v2nL
(0= Pelmry

[Can <

This completes the proof of theorem.
2.4 Linear second-order two-point boundary value problems[29]

Consider the linear second-order differential equation
Y'()+ 6y +g,()y()=6(x),  x0[0,] (22)

Subject to the initial conditions

yO=a, yO=p8 (23)
(or) the boundary conditions

yO=a, yO=8 (24)
or the most general mixed boundary conditions

ay@Ortay ©O)=a, byD+b y'®=4. (29)

If we approximate the functions y(x)i(8), g(x) and G(x) in terms of the second kind

Chebyshev wavelet basis, one can write

Y= T Y Cotln () = CY(X. 6.00= 2> 0wV =GTY(XN  (26)
609 3, 2. Gubln() = 6 9() 9097 32 0ullim() =Y (27)
Theny'(x)=C"DY/(¥), Y% =CTDY(x) (28)

Now substitution of relations Eq.(26), Eq.(27) and Eq.(28) into Eq. (22), enable us to define

the residual, R(x), of this equation as

R(X) =CTDY(x) + G ¢ (x)@ (X)) D'C+G, ¢ (x)@ (¥ C-Gy(X). (29)
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and application of the tau method, yields the feltay (2(M+1) -2) linear equations in the

unknown expansion coefficients,¢ namely

J.x/x—xzz/ﬁ (X)R(x)dx =0, j=12,..2(M +1)-2. (30)
0 ]

Moreover, the initial conditions Eq.(23), the boandconditions Eq.(24), and the mixed

boundary conditions Eq.(25) lead respectivelyhtfollowing equations

C'y(©)=a, C'Dy () =5, (31)
C'yO=a Cly®=8
aC'y(0)+a Dy (0 =a, bCy®+bCDYW =4 (32)

Thus Eqg. (29) with the two equations of Eq.(31Eqt(32)generatekgM+1) a set of linear
equations which can be solved for the unknown camapts of the vector C, and hence an

approximate spectral wavelets solution to y(x) barobtained.

3. Mathematical formulation of the boundary value problems

The mass transport in heterogeneous catalystssisrided by following general nonlinear
reaction diffusion equation [13]:

(D. )A%_kviui (33)

2

ox’ (1+ KAUA)m
Where wu(mol/m® ) and R#(m%s) are the molar concentration and effective diffusion
coefficients of species A, respectively(rkolP! m3®-D s?) js the reaction rate concentration
and Ka(m3/mol) is the rate parameter for adsorption inhdsitof species A. p=1 or 2 and m=2
or 3 are the numerical constant. The boundary tiondiare:

ou, _

at x =0, 0
[))3

at x =Lu, =(u,)s (34)
Where (uA)S(mol /m?®) is the concentration at the external surface efcttalystl (m) is

the thickness of flat of catalyst. The followingrinsionless variables are introduced:
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p-1 p-1
¢=% /kD“i =L, /"DL and T =(u,).K, (35)
eff eff

The dimensionless parameter Thiele modulder three shapes with characteristic length is
defined as the ratio of the particle volume to acefarea. The characteristic lenigth(m) for
sphere, infinite cylinder and flat plate is equalR(3, R’2 andL (m), respectively, wher®
(m) is the radius and is the plate thickness. Using the dimensionles@bbes (35), now the
Eq. (33) becomes

2 p
o _ (u) m (36)
ax (1+ru)

_0u_ 1
and at x—O,a——O andx=1u=1 37)
X
The dimensionless effectiveness factor is
1+l (du

= - 38

7 4”2 (axjxﬂ (38)

4. Concentration and effectiveness factor using the shifted second
kind Chebyshev wavelet transform method

Non-linear differential equations play a vital ralemany engineering and sciences. Finding
the solution of non-linear problems is difficult @omplicated. Now we can apply the

numerical method, shifted second kind Chebyshev al¢awransform method described in

section (2)

Solving the Eq. (36) by using the method describesection (2 ) we obtain concentration as

follows

LIMITING CASES
Limiting Case (i) (For m=2and p=1)
Substituting the valum =2 andp = 1 in Eq. (36), and apply the method SSKCW
described in Section (2) for M=2 in to Eq.(36)
We can obtain the concentration as follows:
CTDZHJ(X)—qfw =0 (39)
(+rlcTw)f

Where C"W(x)=64C, and CTW(x)=2C,-28285, +2C,
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and applying the the boundary conditions

C'b¥©0)=0 , C'w@m=1
Which implies C, :%—11:2 and C, =4C,

Substitute theses values in to the Eq.(39) we obtai

64C,[1+ T (1-31.3140C, )’ |- ¢[1-31.3140C,] = 0 (40)
Solving Eq.(40) for various values df and ¢ we getC,

2
Using C,,C,,C, values intou(x) =C"W(x)=[C,,C,,C,] 8x-4 (41)
32x* -32x+6
The concentratiom(x) (from Eq.(41)) and the effectiveness facioffrom Eq.(38)) for
various values ofl and ¢ .

In the Tables 1 and 2, the dimensionless concémtrate compared with simulation results
for various values off and ¢ .

Limiting Case (ii) (For m=3and p=1)

Substituting the valum = 3 andp = 1 in Eq. (36), and apply the method SSKCW in to
Eq.(36)

we can obtain the concentration as follows:

CTW(x)

CDW ¢ L+rlcre)f =0

(42)

Where C"W(x)=64C, and C"W(x)=2C,-2.8285C, +2C,

and applying the the boundary conditions

C'Dw(O =0 , CTw@=1
Which implies C, =%—11Cz and C, =4C,

Substitute theses values in to the Eq.(42) we obtai

64C, |1+ (1-31.3140C, )’ |- #?[1-31.3140C,] = 0 (43)
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Solving Eq.(43) for various values df and ¢ we getC,

2

Using C,,C,,C, values intou(X) =C"W(x)=[C,,C,,C,]| 8x— 4 (44)
32x* - 3%+ 6

The concentration U(X) (from Eq.(44)) and the effectiveness factor 77 (from Eq.(38)) for various

valuesof I" and ¢ .

In the Tables 3 and 4, the dimensionless concémtrate compared with simulation results

for various values ofl and ¢ .
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105
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Fig. 1. Dimensionless concentration (x) whenm= 2 andp = 1 using 7 =5 ; where ---- denotes SSKCW
(Eq.(41)) and __ denotes the numerical simulation

Fig. 2. Dimensionless concentratiofxy whenm= 2 andp = 1 using 7 =50 ; where ---- denotes SSKCW
(Eq.(41)) and __ denotes the numerical simulation
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Fig. 3. Dimensionless concentratioiwhenm= 3 andp = 1 using 7 =1 ; where ---- denotes SSKCW
(Eq.(44)) and ___ denotes the numerical simulation
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Fig. 4. Dimensionless concentratiofx) whenm= 3 andp = 1 using 7 =10 ; where ---- denotes SSKCW
(Eq.(44)) and ___ denotes the numerical simulation

5. Results and discussion

Using the SSKCWM, the dimensionless concentration is described in Eq.(41) and
Eq.(44).Tables (1-4) describe the dimensionless concentration for various parameter values of
¢ andT" .Variation of the Thiele modulus depends the changes either the thickness of the
membrane or the concentration of species in the external solution. Thiele modulus describes

the relative importance of diffusion and reaction in the enzyme layer. The kinetics is the



-724-

leading resistance when Thiele modulus is smalldédrihese conditions, the concentration
profile across the membrane is essentially idehtica

The overall kinetics is determined by the maximedation rate. In the other side,
when the Thiele modulus is large, diffusion limibas are the primary determining factor.
Figure 1 and 2 represents the dimensionless caatient u(x) for various values of and¢
whenm = 2 andp = 1. From this figures, it is obviously that theueof the concentration
increases whenp or thickness of the membrane decrease. At x=1 tiheerkionless
concentration u(x) reaches the maximum value. Ig.3Fiand 4, the dimensionless
concentration u(x) is plotted when = 3 andp = 1. In this case also the concentration
increases whet andr’ increases. The effectiveness factor can be cadelilay using Eq.(38)
easily. Applying the various values ¢fandI” for m=2 and p=1 in the Eq.(38), we confirmed
that effectiveness factor increases when bo#imd¢ increases. Whem=3 andp=1, it is
inferred that) increases whed increases anf decreases.
In the Tables 1 and 2, the dimensionless concétraising the proposed method result is
compared with simulation results for various valoé$ and¢. Applying the various values
of I and¢ and all the above results are also inveteratearnables 3 and 4.

All the
numerical experiments demonstrated in this seatiere computed in with some MATLAB
codes on a personal computer System Vostro 1400eBsor x86 Family 6 Model 15
Stepping 13 Genuine Intel 1596 Mhz.

6. Conclusion

In the
system of nonlinear steady-state reaction-diffu§lRBES) equations of the modal has been
solved by the shifted second kind Chebyshev wavetetthod (SSKCWM) numerically. The
accuracy of the proposed method has been demaustogt using the numerical examples.
Infact, the proposed SSKCWM provides direct sché&nebtaining the approximation of the
solution. The proposed SSKCWM is capable for smha variety of nonlinear BVPs arising

in various science and engineering.

Acknowledgment: The authors would like to thank the referee fieryaluable comments and
suggestions which improved the paper in its prekent.
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