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Abstract 

In this paper, mathematical modeling of porous catalysts is discussed. An efficient wavelet 
method, called the shifted second kind Chebyshev wavelet method is used to obtain the solution for 
the concentration of species. An approximate polynomial expression for concentration and the 
effectiveness factors are obtained for general nonlinear Langmiur–Hinshelwood–Haugen–Watson type 
models which have variety of real rate function. To the best of our knowledge until there is no 
rigorous wavelet solution has been addressed in this model. The power of the manageable method is 
confirmed. The concentration and the effectiveness factors are also computed for the various limiting 
cases of LHHW models. 
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1. Introduction 

Solid catalysts are often called ‘heterogeneous catalysts’ as they are in a different 

phase from fluid reactants and products. The ease of separating solid catalysts from reactants 

and products gives them an advantage over liquid catalysts in solution with reactants and 

products. With porous solid catalysts, significant resistance to mass and heat transfer may be 

present. The transport resistance can make the species concentrations inside the porous 

catalyst lower than the concentrations in bulk fluid and the temperature inside the porous 

catalyst lower or higher than in the bulk fluid. In a heterogeneous catalytic reaction, however, 

the catalyst is usually in a different phase from the reactant(s). Mass transfer limitations play a 

vital role on the rate of reaction, the rate of conversion and product formation are included in 

the systems. 

A lot of efforts have been attempted to find out the roles of mass transfer efforts on the 

reaction rate. The rate of reaction in porous   heterogeneous catalysts is the most significant 

one. 

In porous catalysts, the internal mass transfer limitation is governed by the rate of reaction. In 

porous catalysts, the concept of diffusion and reaction is presented in many textbooks [1-4]. 

An approximate expressions to estimate dimensionless concentration profiles inside a catalyst 

pellet obtained by numerical algorithm was developed by Gottifredi et al [5] . Several 

investigations of diffusion in the wash coat have been discussed. Simulations based on real 

wash coat geometry of a fillet in a square channel are explained by Hayes and Kolaczkowski 

[6]. Leung et al. [7] illustrated an empirical method for mapping the real geometry onto a 1-D 

plane wall. The same author demonstrated the asymptote matching method. LHHW 

(Langmiur–Hinshelwood–Haugen–Watson) behaviors and the examples are given by Hayes 

et al. [4] and Papadias et al. [8, 9]. The authors [6–10] used flat wash coats with rounded 

comers of increasing radii. Gottifredi and Gonzo [11] presented a powerful and efficient tool 

to solve the singular BVP of reaction cum diffusion in a biocatalyst problem. Gottifredi and 

Gonzo [12] introduced a new numerical algorithm is used to finding the dimensionless 

concentration profiles and effectiveness factor. 

Hayes et al. [13] describes a mathematical model for the estimation of effectiveness 

factors in porous catalysts that have reactions with nonlinear kinetic models. M. K. 

Sivasankari and L.Rajendran [14] designed a Adomian decomposition method for obtaining 

solution for the concentration of species. However, to the best of our knowledge, till date no 

wavelet method  results for the concentration of species and effectiveness factor for all values 
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of the parameters have been reported. This research analyses the effectiveness factors and the 

concentrations of species which is obtained by using wavelet based Numerical method 

(shifted second kind Chebyshev wavelet transform method). 

In recent years, wavelets have found their ways into many different fields of science 

and engineering; particularly wavelets are very successfully utilized in signal analysis for 

waveform representation and segmentations. 

During previous years, wavelets have dominated all areas of pure and applied 

mathematics, especially in the numerical analysis of differential equations [15, 16]. Wavelets 

are established as a strong novel mathematical implement in signal processing, turbulence 

problem, simulation and time-series analysis [17-19].  Strenuous action and interest have been 

shown in the usage of wavelet theory and it is related multiresolution analysis. Hesameddini 

et al.[20] developed an algorithm for fractional differential equation. The substantial scheme 

back of the wavelet decomposition is the compressing representation of wavelet-based 

functions. In wavelet methods, the geometric region and functions are represented in terms of 

wavelet series defined in a certain domain. 

Wavelet analysis, as a relatively new and emerging area in applied mathematical 

research, has gained considerable attention in dealing with differential equations. Wavelet 

theory possesses many useful properties such as compact support, orthogonality, dyadic, 

orthonormality and multi-resolution analysis (MRA). 

Among the wavelet transform families the Haar, Legendre wavelets and Chebyshev 

wavelets deserve much attention. Chen and Hsiao [21] presented Haar wavelet method for 

Lumped and distributed-parameter systems. Lepik [22] introduced the Haar wavelet method 

(HWM) for solving the integral and differential equations. Hariharan et al. [23] had 

implemented the Haar wavelet method for solving Fisher’s equation arising in population 

dynamics. The same author(s) [24- 26] solving the convection-diffusion equation and 

reaction-diffusion equations by using Haar wavelet method (HWM). 

Moreover, wavelet method establishes a connection with fast approximation 

algorithms. In the last two decades the wavelet solutions have been attracted great attention 

and numerous papers about this area have been published. Hariharan et.al [27] establishing 

Haar wavelet based computational algorithm for solving differential equations arising in 

science and engineering. Tavassoli Kajani et al. [28] discuss and Comparison between the 

homotopy perturbation method (HPM) and the sine–cosine wavelet method (SCWM) for 

solving linear integro differential equations. In recent years, there are numerous papers have 

been published about the wavelets for solving ordinary differential equations. Particularly 
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Chebyshev wavelets play a vital role in the resent research field.  Doha et al. [29, 30] gave a 

systematic explanation of the ideas, methods, and applications the Chebyshev spectral method 

for solving the initial and boundary value problems and differential equations of fractional 

order. Zhu et al. [31] had established the second kind Chebyshev wavelets for solving integral 

equations. Zhu and .Fan [32] applied the second kind Chebyshev wavelets for solving the 

fractional nonlinear Fredholm integrodifferential equations. The Solution of Abel’s integral 

equations and compare the Chebyshev wavelet methods (CWM) with BPFs method illustrated 

by Sohrabi [33]. Nonlinear fractional differential equation is solved effectively by using 

Chebyshev wavelet, Li [34]. Hojatollah Adibi and Pouria Assari [35] had implemented the 

CWM for the numerical solutions of Fredholm integral equations of the first kind. Li Zhu and 

Qibin Fan [36] introduced the second kind Chebyshev wavelets for solving the fractional 

nonlinear Fredholm integro-differential equations. Yanxin Wang and Qibin Fan [37] 

demonstrated the second kind Chebyshev wavelet method for solving the fractional 

differential equations. Recently, Doha et al. [38] presented the second kind Chebyshev 

operational matrix algorithm for solving differential equations of Lane–Emden type. Heydari 

et al. [39] established the CWM for telegraph type partial differential equations with boundary 

conditions. Babolian and Fattahzadeh [40] had established the Chebyshev wavelet operational 

matrix of integration for solving the differential equations. Ghasemi and Tavassoli Kajani [41] 

had introduced the CWM for solving the time-varying delay systems. 

The basic idea of Chebyshev wavelets is to convert the differential equations into a 

system of algebraic equations by the operational matrices of integral or derivative. The main 

goal is to show how wavelets and multi-resolution analysis can be applied for improving the 

method in terms of easy implement ability and achieving the rapidity of its convergence [42]. 

In the present paper, the shifted second kind Chebyshev wavelet method is used to 

find the solution of the concentration of species and effectiveness factor for various parameter 

values. The mathematical modeling of porous catalysts is described by the nonlinear reaction 

diffusion equation is easily converted to the algebraic equations by applying shifted second 

kind Chebyshev operational matrices of differentiation. Solving these equations we obtain the 

solution. 

The paper is organized as follows. In section 2 Chebyshev wavelets and their 

properties are discussed. Formation of the problem is presented in section 3.Method of 

solution for various limiting cases is discussed in section 4.Results and discussion are carried 

out in section 5.Concluding remarks are given in section 6. 
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2. Properties of  second kind Chebyshev polynomials and their 
shifted forms 

2.1 Second kind Chebyshev polynomials [29] 

It is well known that the second kind Chebyshev polynomials are defined on [-1,1] by  

.cos,
sin

)1(sin
)( θ

θ
θ =+= x

n
xU n   (1) 

These polynomials are orthogonal on [-1, 1]  

1
2

1

0,
1 ( ) ( )

2
m n

m n
x U x U x dx m nπ

−
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− = =
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∫   (2) 

The following properties of second kind Chebyshev polynomials are of fundamental 

importance in the sequel. They are eigen functions of the following singular Sturm-Liouville 

equation. 

,0)()2()(3)()1( 22 =++−− xkkxxDxDx kkk φφφ   (3) 

Where 
dx

d
D ≡  and may be generated by using the recurrence relation 
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Starting from U0(x) = 1 and U1(x) = 2x, or from Rodrigues formula 
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Theorem 2.1 [29]: The first derivative of second kind Chebyshev polynomials is of the form 

∑
−
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Definition 2.1.1 [29] 

The shifted second kind Chebyshev polynomials are defined on [0,1] by )12()(* −= xUxU nn . 

All results of second kind Chebyshev polynomials can be easily transformed to give the 
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corresponding results for their shifted forms. The orthogonally relation with respect to the 

weight function 2xx − is given by  

∫
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Corollary 2.1.1 : The first derivative of the shifted second kind Chebyshev polynomial is 

given by 

∑
+

=

+=
oddnk

k
kn xUkxDU

)(
0

** )()1(4)(   (8)

 

2.2 Shifted Second kind Chebyshev operational matrix of derivatives [29] 

Second kind Chebyshev wavelets are denoted by ),,,()(, tmnktmn ψψ = , where ,k n  are 

positive integers and m  is the order of second kind Chebyshev polynomials.   

Here t is the normalized time. They are defined on the interval [0, 1] by
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m= 0,1,…..M, n= 0,1,…2k-1. A function f (t) defined over [0,1] may be expanded in terms 

second kind Chebyshev wavelets as  

∑∑
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=
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Where 
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1
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If the infinite series is truncated, then it can be written as  
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 Where C and ψ (t) are 2k(M+1) x 1 defined by 

0,0 0,1 0, 2 1, 2 1,1 2 1,

0,0 0,1 0, 2 1, 2 1,1 2 1,
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Theorem 2.2.1 [29]:  Let Ψ (t) be the second kind Chebyshev wavelets vector. Then the first 

derivative of the vector Ψ (t) can be expressed as 

(t) 
)( ψψ

D
dt
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Where  D is 2k(M+1) square matrix of derivatives and is defined by 
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in which F is an (M+1) square matrix and its (r,s)th element is defined by  
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Corollary 2.2.1. The operational matrix for the nth derivative can be obtained from 

.,...2,1),(
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n

n

== ψψ
  (16)

 

2.3 Convergence Analysis 

We state and prove a theorem ascertaining that the second kind Chebyshev wavelet expansion 

of a function ( )xf , with bounded second derivative, converges uniformly to ( )xf  
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Theorem 2.3.1[43] 

A function [ ]1,0)( 2
ωLxf ∈ , with ( ) Lxf ≤"  can be expanded as an infinite sum of chebyshev 

wavelets and the series converges uniformly to( )xf . Explicitly the expansion coefficients in 

(11) satisfying the following in equality: 
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Which gives after integration by parts two times  
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Since 12 −≤ kn , we have  

( ) ( )22
5

11

28

++
<

mn

L
cnm

π
  

This completes the proof of theorem. 

2.4 Linear second-order two-point boundary value problems [29] 

 Consider the linear second-order differential equation 

[ ]1 2( ) ( ) ( ) ( ) ( ) ( ), 0,1y x g x y x g x y x G x x′′ ′+ + = ∈   (22)
 

Subject to the initial conditions 

βα =′= )0(,)0( yy   (23) 

(or)  the boundary conditions 

βα == )1(,)0( yy   (24) 

or the most general mixed boundary conditions 
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If we approximate the functions y(x), g1(x), g2(x) and G(x) in terms of the second kind 

Chebyshev wavelet basis, one can write 
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Now substitution of relations Eq.(26), Eq.(27) and Eq.(28) into Eq. (22), enable us to define 

the residual, R(x), of this equation as 
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and application of the tau method, yields the following (2k(M+1) -2) linear equations in the 

unknown expansion coefficients, cnm, namely 

∫ −+==−
t

k

j
MjdxxRxxx

0

2 .2)1(2,...2,1,0)()(ψ   (30) 

Moreover, the initial conditions Eq.(23), the boundary conditions Eq.(24), and the mixed 

boundary conditions Eq.(25) lead respectively, to the following equations 
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Thus Eq. (29) with the two equations of Eq.(31) or Eq.(32)generate 2k(M+1) a set of linear 

equations which can be solved for the unknown components of the vector C, and hence an 

approximate spectral wavelets solution to y(x) can be obtained. 

3. Mathematical formulation of the boundary value problems 

The mass transport in heterogeneous catalysts is described by following general nonlinear 

reaction diffusion equation [13]: 
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Where uA(mol/m3
 ) and Deff(m2/s) are the molar concentration and effective diffusion 

coefficients of species A, respectively, kv(molp-1 m-3(p-1) s-1) is the reaction rate concentration 

and KA(m3/mol) is the rate parameter for adsorption inhibition of species A. p=1 or 2 and m=2 

or 3 are the numerical constant. The boundary conditions are: 
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Where  ( ) )/( 3mmolu SA  is the concentration at the external surface of the catalyst, L (m) is 

the thickness of flat of catalyst. The following dimensionless variables are introduced: 
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The dimensionless parameter Thiele modulus ϕ for three shapes with characteristic length is 

defined as the ratio of the particle volume to surface area. The characteristic length LС (m) for 

sphere, infinite cylinder and flat plate is equal to R/3, R/2 and L (m), respectively, where R 

(m) is the radius and L is the plate thickness. Using the dimensionless variables (35), now the 

Eq. (33) becomes 
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The dimensionless effectiveness factor is 
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4. Concentration and effectiveness factor using the shifted second 

kind Chebyshev wavelet transform method 

 

Non-linear differential equations play a vital role in many engineering and sciences. Finding 

the solution of non-linear problems is difficult or complicated. Now we can apply the 

numerical method, shifted second kind Chebyshev Wavelet transform method described in 

section (2) 

Solving the Eq. (36) by using the method described in section (2 ) we obtain concentration as 

follows 

 

LIMITING CASES 

Limiting Case (i) (For m = 2 and p = 1)  

Substituting the value m = 2 and p = 1 in Eq. (36), and apply the method SSKCW 

described in Section (2 )   for M=2 in to Eq.(36)  

We can obtain the concentration as follows: 
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T φ   (39) 

Where  ( ) 264CxCT =Ψ    and  ( ) 210 28285.22 CCCxC T +−=Ψ  
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and applying the the boundary conditions  

 

0)0( =ΨDCT      ,   1)1( =ΨTC  

Which implies    20 11
2

1
CC −=   and  21 4CC =  

Substitute theses values in to the Eq.(39) we obtain  
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The concentration )(xu (from Eq.(41))  and the effectiveness factor η (from Eq.(38)) for 

various values of  Γ  and  φ  .  

In the Tables 1 and 2, the dimensionless concentration are compared with simulation results 

for various values of  Γ  and  φ  . 

Limiting Case (ii) ( For m = 3 and p = 1)  

Substituting the value m = 3 and p = 1 in Eq. (36), and apply the method SSKCW in to 

Eq.(36)  

we can obtain the concentration as follows: 
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Where  ( ) 264CxCT =Ψ    and  ( ) 210 28285.22 CCCxC T +−=Ψ  

and applying the the boundary conditions  

 

0)0( =ΨDCT      ,   1)1( =ΨTC  

Which implies    20 11
2

1
CC −=   and  21 4CC =  

Substitute theses values in to the Eq.(42) we obtain  

 

( )[ ] [ ] 03140.3113140.311164 2
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Solving Eq.(43) for various values of  Γ  and  φ  we get 2C  

Using   210 ,, CCC   values in to  ( ) [ ]0 1 2

2

2

( ) , , 8 4

32 32 6

Tu x C x C C C x

x x

 
 = Ψ = − 
 − + 

  (44) 

The concentration )(xu (from Eq.(44))  and the effectiveness factor η (from Eq.(38)) for various 

values of  Γ  and  φ  . 

 

In the Tables 3 and 4, the dimensionless concentration are compared with simulation results 

for various values of  Γ  and  φ  . 
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Fig. 1. Dimensionless concentration u(x) when m = 2 and p = 1 using  5=τ  ; where ---- denotes SSKCW 
(Eq.(41)) and   __ denotes the numerical simulation 
 
 
 

 
 Fig. 2. Dimensionless concentration u(x)  when m = 2 and p = 1 using  50=τ  ; where ---- denotes SSKCW 
(Eq.(41)) and __ denotes the numerical simulation 
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Fig. 3. Dimensionless concentration u(x) when m = 3 and p = 1 using  1=τ  ; where ---- denotes SSKCW 
(Eq.(44)) and __ denotes the numerical simulation 
 

 
Fig. 4. Dimensionless concentration u(x)  when m = 3 and p = 1 using  10=τ  ; where ---- denotes SSKCW 
(Eq.(44)) and __ denotes the numerical simulation 
 

5. Results and discussion 

Using the SSKCWM, the dimensionless concentration is described in Eq.(41) and 

Eq.(44).Tables (1-4) describe the dimensionless concentration for various parameter values of 

ϕ and Γ .Variation of the Thiele modulus depends the changes either the thickness of the 

membrane or the concentration of species in the external solution. Thiele modulus describes 

the relative importance of diffusion and reaction in the enzyme layer. The kinetics is the 

-723-



leading resistance when Thiele modulus is small. Under these conditions, the concentration 

profile across the membrane is essentially identical.    

The overall kinetics is determined by the maximal reaction rate. In the other side, 

when the Thiele modulus is large, diffusion limitations are the primary determining factor. 

Figure 1 and 2 represents the dimensionless concentration u(x) for various values of η and ϕ 

when m = 2 and p = 1. From this figures, it is obviously that the value of the concentration 

increases when ϕ or thickness of the membrane decrease. At x=1 the dimensionless 

concentration u(x) reaches the maximum value. In Fig.3 and 4, the dimensionless 

concentration u(x) is plotted when m = 3 and p = 1. In this case also the concentration 

increases when ϕ and Γ increases. The effectiveness factor can be calculated by using Eq.(38) 

easily. Applying the various values of ϕ and Γ for m=2 and p=1 in the Eq.(38), we confirmed 

that  effectiveness factor increases when both Γ and ϕ increases. When m = 3 and p = 1 , it is 

inferred that η increases when ϕ increases and Γ decreases. 

In the Tables 1 and 2, the dimensionless concentration using the proposed method result is 

compared with simulation results for various values of Γ and ϕ. Applying the various values 

of Γ and ϕ and all the above results are also inveterate in the Tables 3 and 4. 

 All the 

numerical experiments demonstrated in this section were computed in with some MATLAB 

codes on a personal computer System Vostro 1400 Processor x86 Family 6 Model 15 

Stepping 13 Genuine Intel 1596 Mhz. 

 

6. Conclusion 

 In the 

system of nonlinear steady-state reaction-diffusion (RDEs) equations of the modal has been 

solved by the shifted second kind Chebyshev wavelets method (SSKCWM) numerically. The 

accuracy of the proposed method has been demonstrated by using the numerical examples. 

Infact, the proposed SSKCWM provides direct scheme for obtaining the approximation of the 

solution. The proposed SSKCWM  is capable for solving a variety of nonlinear BVPs arising 

in various science and engineering. 

 

Acknowledgment: The authors would like to thank the referee for his valuable comments and 
suggestions which improved the paper in its present form. 
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