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Abstract

In this paper we study a stochastic model of the enzyme-substrate reaction
system. We investigate the block structure of the transition rate matrix of the
model and find a formula for the exact solution to the chemical master equation of
the model. The solution of the model is represented in terms of the eigenvalues and
eigenvectors of block matrices whose dimensions are much lower than the original
transition rate matrix. The method presented in the paper can reduce greatly
computational complexity when the solution of stochastic enzyme-substrate model is
sought. We show the accuracy and efficiency of the method by simulating examples.

1 Introduction

Stochastic modeling of chemical reaction systems is used when researches focus on the

systems with small number of molecular species. The stochastic models describe the

time evolution of the probability of states defined as n(t) = (n1(t), n2(t), . . . , ns(t))
T and

each ni(t) denotes the number of molecules of ith species at time t. The time-dependent

probability solution is described by the chemical master equation

∂

∂t
p(n, t) =

r∑
k=1

ak(n− Vk) · p(n− Vk, t)−
∑
k

ak(n) · p(n, t), (1)
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where p(n, t) is the probability of n at time t, ak is the propensity function for the kth

reaction and Vk is the kth column vector of the stoichiometric matrix V [1]. Moreover, by

finding the transition rates between all possible states of n, one can construct a Markov

chain whose governing equation is written as the linear system

dp(t)

dt
= Kp(t), (2)

where K is the matrix of transition rates between all states and p is the vector of prob-

abilities of the states. One can see that K is a Markov chain generator that satisfies

Kij ≥ 0 for each i 6= j and Kjj = −
∑
i 6=j

Kij for each j[2]. One can find the solution of (2)

in the formal form

p(t) = eKtp(0). (3)

Note that K in (3) is usually a large dimensional matrix in the stochastic models of com-

plex chemical reaction networks and so it is very difficult(or impossible if K is infinite-

dimensional) to find the solution of (3) computationally. However, if a reaction network

has relatively small number of species and reactions, it may be possible to find the solu-

tion of the stochastic model analytically or computationally. One of such models is the

enzyme-substrate reaction system which is a fundamental and essential enzyme kinetic

model. Enzyme kinetic models are very common in many biochemical systems. Many

biochemical reactions can be considered as enzyme kinetic models, including transcrip-

tion and translation in gene regulatory networks [3, 4], a phase transition in a cell cycle[5]

and the Goldbeter-Koshland ultrasensitive switch[6] . The enzyme-substrate model has

three different reactions; binding of the enzyme E and the substrate S, unbinding of the

enzyme-substrate complex ES and creation of the product P . The mechanism of the

model is described by

E + S −→←− ES → E + P. (4)

After Michaelis and Menten’s pioneering work[7], researches on the deterministic solutions

of the enzyme kinetic models have been made by many researchers even recently[8, 9, 10].

For the stochastic model, an analytic solution of (4) was first obtained for the case of

a single enzyme molecule by Arányi and Tóth[11]. After their works, many researches

have been done for finding the solution of the stochastic model[12, 13, 14]. An analysis

of the statistical moments was recently made for a general linear compartment model of

chemical kinetic systems including enzyme systems[15].
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In this paper we explicitly represent an analytic formula of the solution to the chemical

master equation of (4) with general initial conditions by using the block structure of

the Markov chain generator K. To the authors’ knowledge, the explicit formula of the

solution to the stochastic enzyme-substrate model with general initial conditions has not

been reported yet.

The outline of the paper is as follows. In Section 2, the analytic expressions of the

solution to the master equation of the stochastic enzyme-substrate model are developed.

In Section 3, the computational procedure for finding the solution for any given initial

condition is presented. Also, we discuss the computational complexity of our method and

show the numerical results of examples to illustrate the accuracy and efficiency of our

method. Throughout this paper, vectors are boldfaced and matrices are capitalized.

2 Analytic solution of stochastic enzyme-substrate

system

In this section we find an analytic solution of (3) for the stochastic enzyme-substrate

reaction system

E + S
c1−→←−
c−1

ES
c2→ E + P, (5)

where c1, c−1 and c2 are probability constants for each reaction. To describe the stochastic

model, we denote the number of molecules of E, S,ES, P at time t by n1(t), n2(t), n3(t),

n4(t) and let n(t) = (n1(t), n2(t), n3(t), n4(t))T . The stoichiometric matrix is given by

V = [v1|v2|v3] =


−1 1 1

−1 1 0

1 −1 −1

0 0 1

 .
The stochastic dynamics of this system can be completely described by a Markov

chain. For example, if an initial condition is given as n(0) = (2, 3, 0, 0), then the Markov

chain is illustrated as follows;
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(2, 3, 0, 0)
6c1−→←−
c−1

(1, 2, 1, 0)
2c1−→←−
2c−1

(0, 1, 2, 0)

↓c2 ↓2c2

(2, 2, 0, 1)
4c1−→←−
c−1

(1, 1, 1, 1)
c1−→←−

2c−1

(0, 0, 2, 1)

↓c2 ↓2c2

(2, 1, 0, 2)
2c1−→←−
c−1

(1, 0, 1, 2)

↓c2
(2, 0, 0, 3).

(6)

Its governing equation is
dp

dt
= Kp,

where the Markov chain generator K is

K =


K1

K21 K2

K32 K3

K43 K4


and

K1 =

 −6c1 c−1 0

6c1 −(2c1 + c−1 + c2) 2c−1

0 2c1 −(2c−1 + 2c2)

 ,

K2 =


−4c1 c−1 0

4c1 −(c1 + c−1 + c2) 2c−1

0 c1 −(2c−1 + 2c2)

 , K3 =

[
−2c1 c−1

2c1 −(c−1 + c2)

]
, K4 = 0,

K21 =

 0 c2 0

0 0 2c2

0 0 0

 , K32 =

[
0 c2 0

0 0 2c2

]
, and K43 =

[
0 c2

]
.

For the initial condition n(0) = (e0, s0, 0, 0)T , we define the components Di as

Di = {n(0) + av1 + bv2 + (i− 1)v3 ≥ 0, a, b are positive integers},

for i = 1, . . . , N and N is the number of components. Here the inequality ≥ means that all

entries of the vector are nonnegative. We denote the jth state of Di by the states S
(i)
j , j =

1, . . . ,mi, where mi is the number of states in the component Di. For example, the Markov

chain (6) has D1 = {S(1)
1 = (2, 3, 0, 0), S

(1)
2 = (1, 2, 1, 0), S

(1)
3 = (1, 2, 1, 0)}, D2 = {S(2)

1 =
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(2, 2, 0, 1), S
(2)
2 = (1, 1, 1, 1), S

(2)
3 = (0, 0, 2, 1)}, D3 = {S(3)

1 = (2, 1, 0, 2), S
(3)
2 = (1, 0, 1, 2)}

and D4 = {S(4)
1 = (2, 0, 0, 3)}.

One can find that the number of components is N = s0 + 1. Moreover, for the two

cases e0 ≥ s0 and e0 < s0, one can compute the number mi of states in each component

Di and the number J of the total states; If e0 ≥ s0, then

mi = N + 1− i, i = 1, 2, . . . , N

and J = (s0+1)(s0+2)
2

. If e0 < s0, then

mi =

{
e0 + 1, i = 1, . . . , s0 − e0 + 1

s0 + 2− i, i = s0 − e0 + 2, . . . , N

and J = (s0 − e0 + 1)(e0 + 1) + e0(e0+1)
2

.

In a generic case, the Markov chain generator for the enzyme-substrate system is

K =



K1

K2,1 K2

K3,2 K3

. . . . . .
. . . Kn−1

KN,N−1 KN


,

where Ki+1,i is the mi+1×mi block matrix that represents transition rates or propensities

from the states of component Di to those of Di+1. Notice that since K is a block lower

triangular matrix which consists of diagonal blocks Ki and lower triangular blocks Ki+1,i,

all eigenvalues of K consist of the eigenvalues of the diagonal block Ki, i = 1, . . . , N .

Moreover, since each Ki is a real tridiagonal matrix with [Ki]j,j+1 · [Ki]j+1,j > 0, it

has all real and distinct eigenvalue[16] and thus the eigenvectors of each Ki are linearly

independent.

Remark 1. Since each diagonal block Ki is a tridiagonal matrix, one can find the eigenval-

ues of each Ki by solving the recursive equations presented in [16]. To compute the eigen-

vectors of Ki, one can use numerical methods such as Inverse iteration[17], Divide and

Conquer method[18] and Multiple Relatively Robust Representations algorithm(MR3)[19].

Now we let Λ be the diagonal matrix of eigenvalues

Λ = diag
(
Λ(1),Λ(2), · · · ,Λ(N)

)
,
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where Λ(i) = diag
(
λ

(i)
1 , · · · , λ

(i)
mi

)
, i = 1, . . . , N and λ

(i)
p , p = 1, . . . ,mi are eigenvalues of

Ki. To find the eigenvectors of K, let us denote V as the matrix of eigenvectors of K

V =
[
V (1)|V (2)| · · · |V (N)

]
,

where each V (i), i = 1, . . . , N is a submatrix whose columns are the eigenvectors v
(i)
p

corresponding to λ
(i)
p , p = 1, . . . ,mi, denoted by

v(i)
p =


v

(1,i)
p

v
(2,i)
p

...

v
(N,i)
p

 ,

where each v
(j,i)
p , j = 1, . . . , N is the mj × 1 column vector. Now we construct the lower

triangular block matrix V ; To find the eigenvectors v
(1)
p , p = 1, . . . ,m1, corresponding to

the eigenvalue λ
(1)
p of K1, we use Kv

(1)
p = λ

(1)
p v

(1)
p and obtain

K1v
(1,1)
p = λ(1)

p v(1,1)
p , Ki,i−1v

(i−1,1)
p +Kiv

(i,1)
p = λ(1)

p v(i,1)
p , i = 2, . . . , N (7)

From (7), note that v
(1,1)
p , p = 1, . . . ,m1 are the eigenvectors of K1 corresponding to λ

(1)
p

and also one finds the recursive equations for v
(i,1)
p , i = 2, . . . , N ;(

Ki − λ(1)
p Imi

)
v(i,1)
p = −Ki,i−1v

(i−1,1)
p , i = 2, . . . , N. (8)

To find v
(2)
p , p = 1, . . . ,m2, corresponding to the eigenvalue λ

(2)
p of K2, we write

K1v
(1,2)
p = λ(2)

p v(1,2)
p , Ki,i−1v

(i−1,2)
p +Kiv

(i,2)
p = λ(2)

p v(i,2)
p , i = 2, . . . , N. (9)

If we choose v
(1,2)
p as a zero vector, then K2,1v

(1,2)
p = 0 and thus (9) can be rewritten as

K2v
(2,2)
p = λ(2)

p v(2,2)
p ,

(
Ki − λ(2)

p Imi

)
v(i,2)
p = −Ki,i−1v

(i−1,2)
p , i = 3, . . . , N. (10)

One can see from (10) that v
(2,2)
p is the eigenvector corresponding to the eigenvalue λ

(2)
p

of K2. If we repeat the similar procedure for the eigenvalues λ
(j)
p , j = 3, . . . , N − 1, we

find the eigenvector v
(j)
p of K corresponding to λ

(j)
p in the form of

v(j)
p =



01

...

0j−1

v
(j,j)
p

...

v
(N,j)
p


,
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where 0i, i = 1, · · · , j − 1 is the mi × 1 zero vector, v
(j,j)
p is the eigenvector of Kj

corresponding to λ
(j)
p , and each v

(i,j)
p , i = j + 1, · · · , N , satisfies(

Ki − λ(j)
p Imi

)
v(i,j)
p = −Ki,i−1v

(i−1,j)
p (11)

Since KN = 0, the eigenvector v
(N)
1 corresponding to the zero eigenvalue can be chosen

as the mN × 1 vector (0, . . . , 0, 1)T .

Through the above construction of eigenvectors of K, we have the matrix V as

V =
[
V (1)|V (2)|V (3)| · · · |V (N)

]
=



V (1,1) 0 0 · · · 0

V (2,1) V (2,2) 0 · · · 0

V (3,1) V (3,2) V (3,3) . . . 0
...

...
...

. . . 0

V (N,1) V (N,2) · · · · · · V (N,N)


,

where each V (i,i) denotes the square matrix whose columns are eigenvectors of the block

Ki, i = 1, . . . , N , that is, V (i,i) =
[
v

(i,i)
1 | · · · |v

(i,i)
mi

]
, i = 1, . . . , N − 1 and V (N,N) =

1. Moreover, V (i,j) =
[
v

(i,j)
1 | · · · |v(i,j)

mj

]
for i ≥ j = 1, . . . , N − 1. Next we show the

independence of eigenvectors of K, which is crucial for finding the exact formula for the

solution of (2).

Theorem 2. The eigenvectors of K are linearly independent.

Proof. To show the independence of the eigenvectors v
(i)
p , i = 1, . . . , N, p = 1, . . . ,mi of

K, we prove that if
N∑
i=1

mi∑
p=1

ai,pv
(i)
p = 0J , we must have ai,p = 0 for all i = 1, . . . , N, p =

1, . . . ,mi. Here 0J denotes the J × 1 zero vector. Since

N∑
i=1

mi∑
p=1

ai,p =



m1∑
j=1

a1,pv
(1,1)
p

2∑
k=1

mk∑
p=1

ak,pv
(2,k)
p

3∑
k=1

mk∑
p=1

ak,pv
(3,k)
p

...
N∑
k=1

mk∑
p=1

ak,pv
(N,k)
p


= 0J ,

m1∑
p=1

a1,pv
(1,1)
p = 0m1 , which leads to all a1,p = 0 for p = 1, . . . ,m1. Moreover, since

2∑
k=1

mk∑
p=1

ak,pv
(2,k)
p =

m1∑
j=1

a1,pv
(2,1)
p +

m2∑
p=1

a2,pv
(2,2)
p = 0m2
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and a1,p = 0, a2,p = 0 for p = 1, . . . ,m2. A similar argument can be applied to show that

ai,p = 0 for i = 3, . . . , N − 1 and p = 1, . . . ,mi. Lastly, since

N∑
k=1

mk∑
p=1

ak,pv
(N,k)
p =

N−1∑
k=1

mk∑
p=1

ak,pv
(N,k)
p +

mN∑
p=1

aN,pv
(N,N)
p = 0mN

and a1,p = a2,p = · · · = aN−1,p = 0, we must have aN,p=0.

Due to Theorem 2, the matrix V of eigenvectors of K is invertible and the matrix K

is diagonalizable. Thus, we can write from (3)

P (t) = eKt = V eΛtV −1. (12)

To compute V −1 more conveniently, we define the matrices C(i,j), i ≥ j = 1, . . . , N as

C(i,i) = Imi
and C(i,j) = (V (i,i))−1V (i,j) for i > j = 1, . . . , N − 1. (13)

If c
(i,j)
p and C

(i,j)
k,p denote the pth column vector of C(i,j) and the (k, p)th entry of C(i,j),

respectively, then (13) can be written as

v(i,j)
p = V (i,i)c(i,j)

p =

mi∑
k=1

C
(i,j)
k,p v

(i,i)
k for i > j. (14)

Using (11) and (14), we compute c
(i,j)
p by solving

(
Ki − λ(j)

p Imi

) [
V (i,i)

] [
c(i,j)
p

]
= −Ki,i−1v

(i−1,j)
p . (15)

for i = 2, . . . , (N − 1), j = 1, . . . , (i− 1) and p = 1, . . . ,mj, and

c(N,j)
p =

KN,N−1v
(N−1,j)
p

λ
(j)
p

, (16)

for j = 1, . . . , N − 1. After computing (15) and (16), one can find all C(i,j), i > j. Since

the inverse of V is also a block lower triangular matrix, one can write

V −1 =



W (1,1)

W (2,1) W (2,2)

W (3,1) W (3,2) W (3,3)

...
...

. . . . . .

W (N−1,1) W (N−1,2) . . . W (N−1,N−1)

W (N,1) W (N,2) . . . W (N,N−1) W (N,N)


. (17)
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Using V V −1 = I, one can compute the blocks of V −1 as

W (i,j) =



(
V (i,i)

)−1
, if i = j

−C(i+1,i)W (i,i) if i = j + 1

−

[
i−1∑
k=j

C(i,k)W (k,j)

]
if i > j + 1

(18)

where i, j = 1, 2, . . . , N . Thus, we can write

P (i,j)(t) =
(
eKt
)(i,j)

=


V (i,i)eΛ(i)tW (i,i) for i = j
i∑

k=j

V (i,k)eΛ(k)tW (k,j) for i > j
(19)

where P (i,j)(t) denotes the (i, j) block matrix of P (t) = eKt for i, j = 1, . . . , N . That is,

P (i,j)
r,q (t) =

i∑
k=j

mk∑
h=1

mi∑
g=1

C
(i,k)
g,h V (i,i)

r,g W
(k,j)
h,q eλ

(k)
h t, (20)

where P
(i,j)
r,q , C

(i,j)
r,q , W

(i,j)
r,q denote the (r, q)th entry of P (i,j), C(i,j) and W (i,j), respectively.

Suppose the initial condition p(0) is given usually as p(0) = (1, 0, 0, · · · , 0)T , which is

equivalent to the deterministic condition n(0) = (e0, s0, 0, 0)T . If the kth state is the `th

state S
(i)
` of ith component, i.e., k = ` +

∑i−1
j=1mj, then the exact probability of the kth

state is

pk(t) = p
(i)
` (t) =

i∑
k=j

mk∑
h=1

mi∑
g=1

C
(i,k)
g,h V

(i,i)
`,g W

(k,1)
h,1 eλ

(k)
h t. (21)

Moreover, we can find the exact probability for any number of each species at any time

as follows; the probability of the number of the product P is

P (n4(t) = i− 1) =

mi∑
`=1

p
(i)
` (t) =

mi∑
`=1

i∑
k=1

mk∑
h=1

mi∑
g=1

C
(i,k)
g,h V

(i,i)
`,g W

(k,1)
h,1 eλ

(k)
h t,

for i = 1, . . . , s0 + 1.

For the substrate S, if e0 ≥ s0, then

P (n2(t) = j) =

N−j∑
i=1

p`i(t),

where `i =
i∑

k=1

mk − j and j = 0, 1, · · · , s0. If e0 < s0, then

P (n2(t) = j) =


e0+1∑
i=1

pe0+2−i+k(s0−e0+i−j)(t) if j = 0, 1, · · · , s0 − e0,

s0+1−j∑
i=1

ps0+2−i−j+k(i)(t) if j = s0 − e0 + 1, · · · , s0,
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where k(a) =
∑a−1

j=1 mj. Using the conservation quantities n1 +n3 +n4 = e0, n2 +n3 +n4 =

s0 and the above result for probabilities for n2 and n4, we can also find the probability

for n1 and n3.

Note that using the similar procedures as discussed in this section, one can find the

probability solution of all states from (20) for any initial condition p(0);

pk(t) = p
(i)
` (t) =

i∑
s=1

ms∑
n=1

P
(i,s)
`,n (t) pn+k(s)(0)

=
i∑

s=1

ms∑
n=1

i∑
k=s

mk∑
h=1

mi∑
g=1

C
(i,k)
g,h V

(i,i)
`,g W

(k,s)
h,n eλ

(k)
h t pn+k(s)(0),

where k(a) =
a−1∑
j=1

mj.

3 Numerical Computation

In this section, we discuss the numerical efficiency and accuracy of the method presented

in the previous section. We first summarize the computation procedure for finding the

exact probability solution of the stochastic enzyme-substrate model.

Computational Procedure

Step 0 Construct K and identify the block matrices K1, · · · , Kn and K2,1, · · · , KN,N−1.

Step 1. Find the matrix Λ(i) of eigenvalues and the matrix V (i,i) of eigenvectors of Ki.

(Refer to Remark 1.)

Step 2. Find C(i,j) and V (i,j) by (14), (15) and (16) and then compute W (i,j) by (18).

Step 3. Compute P (i,j)(t) using the explicit formula (19) or (20). If the initial condition

n(0) is given, compute the probability of each state by (21).

Concerning the computational complexity, if e0 ≥ s0, one can see that the matrix

exponential solution (12) has O(J3) = O(s6
0), because the number of all states is J =

(s0+1)(s0+2)/2, but the block form (19) has O(s4
0), because the maximal number of states

in any component is s0+1. If e0 < s0, then the number of all states is J = (s0−e0+1)(e0+

1) + e0(e0 + 1)/2 and thus the matrix exponential solution (12) has O(J3) = O(e3
0s

3
0), but

(19) has O(s4
0), since the maximal number of states in any component is s0−1. Moreover,

solving (12) is often computationally intractable for most complex chemical systems due
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to the large dimension of state space. However, our exact block formula (19) has only

(s0 + 1)2 as the maximum dimension of block matrices, which means that our method is

less constrained from the curse of dimensionality.

We perform numerical experiments for the two cases, e0 < s0 and e0 > s0 in Figures 1

and 2. For the case that e0 < s0, we assume two initial conditions n(0) = (8, 10, 0, 0)(the

total number of states is J = 63) and n(0) = (10, 15, 0, 0)(J = 121), respectively. In

Figure 1, we compare the time evolution of P (n2(t) = i) from the original matrix expo-

nential solution (12) and our exact block solution (19). In the computation of the matrix

exponential solution, we use expm function of MATLAB.

(a) n2 = 0 (b) n2 = 3 n2 = 5

(d) n2 = 0 (e) n2 = 4 (f) n2 = 7

Figure 1: Under the initial condition n(0) = (8, 10, 0, 0) and J = 63(upper three figures) and
the condition n(0) = (10, 15, 0, 0) and J = 121(lower three curves), comparison of the time
evolution of the probability of n2(t) between the matrix exponential method(circles) and our
method(solid curve).The reaction rate parameters are c1 = 1, c2 = 2, c3 = 0.1.

For the case that e0 > s0, we assume two initial conditions n(0) = (30, 20, 0, 0) (thus

J = 231) and n(0) = (40, 25, 0, 0)(J = 351), respectively. In Figure 2, we compare the

time evolution of P (n2(t) = i) from the original matrix exponential solution (12) and our

exact block solution (19).

In Table 1, we compare CPU times taken by computations using the matrix exponen-

tial method and our exact method.

One can see from Figures 1, 2 and Table 1 that our method is accurate and more effi-
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(a) n2 = 0 (b) n2 = 3 n2 = 20

(d) n2 = 0 (e) n2 = 3 (f) n2 = 7

Figure 2: Under the initial condition n(0) = (30, 20, 0, 0) and J = 231(upper three figures)
and the condition n(0) = (40, 25, 0, 0) and J = 351(lower three curves), comparison of the time
evolution of the probability of n2(t) between the matrix exponential method(circles) and our
method(solid curve). The reaction rate parameters are c1 = 1, c2 = 2, c3 = 0.1.

Cases e0 < s0 e0 > s0

Number of states J 63 121 231 351

Exact formula 0.79 1.61 3.03 4.99

Matrix exponential 0.96 3.26 17.74 58.37

Table 1: Comparison of CPU time (in seconds) elapsed by the exact formula and the matrix
exponential when we compute all the probability solutions of the four models described in Figures
1 and 2 in the time interval [0, 100].

cient than the matrix exponential method. Especially, as the dimension of the system gets

large, our method gives much faster computation than the matrix exponential method.

4 Conclusion

In this paper, we proposed an analytic method of the chemical master equation for the

stochastic enzyme-substrate model. Using the block structure of the Markov chain gen-

erator K of Equation (2), we found a formula for the analytic solution of (2) for given

initial initial conditions. Using the computational procedure for finding the solution, we

showed the numerical accuracy and efficiency of the method with comparison of the ma-
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trix exponential computation by simulating four cases of the enzyme-substrate system.

We observed that our method reduces the computational complexity much and as the

dimension of the system gets larger, our method shows much better efficiency. We expect

that the result presented in this paper will be used for analysis and computation of the

stochastic model of the important enzyme-substrate system or any similar systems.
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