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Abstract

High-pressure vapor-liquid equilibrium data of binary mixtures containing supercritical
fluids and imidazolium ionic liquids were correlated using a thermodynamic model optimized
with a particle swarm algorithm. The Peng—Robinson (PR) equation of state and the Wong—
Sandler (WS) mixing rules including the van Laar (VL) model for the excess Gibbs free
energy, were used as thermodynamic model. Forty six binary systems taken from literature
were selected for this study, and the optimization algorithm was used to determine the binary
interaction parameters of each system. The algorithm was development to minimize the
difference between calculated and experimental bubble pressure. The results given by the
model show that the proposed algorithm is a good tool to correlate and describe the vapor—

liquid equilibrium of this type of systems.

1. Introduction
In the recent years, room temperature ionic liquids (RTILs) or just ionic liquids (ILs)
came into focus because of their potential as alternatives for several engineering applications

[1]. ILs are typically composed of a large organic cation and an inorganic polyatomic anion.
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There is virtually no limit in the number of podsilionic liquids since there is a large number
of cations and anions that can be combined [2]Jambient room temperature, they exist as
liquids and have a wide variety of unique propsr{ir instance, negligible vapor pressure,
favorable chemical behavior, low viscosity, andhhigactivity and selectivity) [3]. The most
commonly used cation in room-temperature ionicilguRILs) is dialkylimidazolium. And

in recent years, &lkyl-3-methylimidazolium ([@Gmim]*) ILs have been intensively studied
[1].

The increasing utilization of ILs in chemiand industrial processes requires reliable
and systematic thermophysical properties such &sitaccoefficients, heats of mixing,
densities, solubilities, vapor-liquid equilibria (&), and liquid-liquid equilibria (LLE). In
addition, the transport properties are also neddetosity, electric conductivity, mutual
diffusion coefficients, etc.) [4]. For a better emstanding of their thermodynamic behavior
and for the development of thermodynamic modelsbld experimental phase equilibrium
data is required [5]. Phase equilibrium data oftariés containing ionic liquids are necessary
for further development of some separation procesgwolving supercritical fluids.
Blanchard et al. [6] described several potentiglliaptions of supercritical fluids with ILs.
They demonstrated the possibility of using suptcali carbon dioxide (C¢) to remove a
solute from an IL, without contamination of the raxted solute, solving one of the
shortcomings of the use of ionic liquids in solvemtraction processes: the recovery of the
compounds from the ionic liquid media [7]. Scurtcak [8] proposed an innovative process
of separating ILs from organic solvents using sopécal CQ: that induces a phase
separation, due to the organic liquid phase expanand the dielectric constant decrease,
forcing the IL to separate into a second liquid gghd7]. Later, Scurto et al. [9] also
demonstrated that separation of aqueous solutibb®std hydrophobic and hydrophilic ILs
can be performed using supercritical £@). The solubility of carbon dioxide in a variety
ILs has been determined at low pressures and higgspres [10]. The gas solubilities data
provides important information for the charactetiza of solute-solvent interactions and so
contribute to understand the mechanisms of digsoluFrom a practical point of view, gas
solubility can be useful in the calculation of vatiquid equilibrium (VLE) [11].

On this line, VLE data for binary systemsluding ionic liquids, although essential for
the design and operation of separation processestih scarce. Recently, some works have
presented binary VLE data involving several ionguids and such organic compounds as
alkanes, alkenes and aromatics, as well as supeatfluids [12]. Various models have been

used to correlate experimental data of phase eqailiof these systems [13]. One of the
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common approaches used in the literature to céerelad predict phase equilibrium requires
an equation of state that well relates the var@lésmperature, pressure and volume and
appropriate mixing rules to express the dependehtee equation of state parameters on the
concentration [14]. On equations of state, the PRofpinson equation has been used to
describe the solubility of ILs in supercriticalifiis [15].

The existing methods to solve phase eqiilib systems give only local solutions. It has
been demonstrated that for cases of systems corgainpercritical C@ the optimum values
of the interaction parameters depend on the sewyc¢hierval and on the initial value of used
interaction parameters [16].

Parameter estimation procedures are vemoitant in engineering, industrial, and
chemical process for development of mathematicadletsy since design, optimization and
advanced control of bioprocesses depend on modedmeder values obtained from
experimental data. The aim of optimization is tdedmine the best-suited solution to a
problem under a given set of constraints. Mathesalyi, an optimization problem involves a
fithess function describing the problem, under taaseconstraints representing the solution
space for the problem. The optimization problenw+aedays, is represented as an intelligent
search problem, where one or more agents are eetplty determine the optimum on a
search landscape [17]. Modern optimization techesduave aroused great interest among the
scientific and technical community in a wide vayief fields recently, because of their ability
to solve problems with non-linear and non-convepetielence of design parameters [18].
Thus, the use of heuristic optimization methodshsparticle swarm optimization (PSO) [19],
for the parameter estimation is very promising [2This biologically-deriver method
represents an excellent alternative to find a dlopbmum for phase equilibrium calculations
[14-18].

In this work, forty-six binary vapor-liquiphase systems containing supercritical fluids
(COz or CHRs) + l-alkyl-3-methylimidazolium ILs were correlated using &rthodynamic
model optimized with a PSO algorithm. The Peng-Rsdtm (PR) equation of state and the
Wong-Sandler (WS) mixing rules including the varat /L) model for the excess Gibbs
free energy were used as thermodynamic model. [Hoeitam was development to calculate
the binary interaction parameters, and used foimmze the difference between calculated

and experimental bubble pressure.
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2. Particle swarm optimization

Adjustable parameters are a common feature of thestnodynamic models for phase
equilibrium calculations. Most of the existing medls for solving phase equilibrium and
stability problems are local in nature and at bastd only local solutions. Use of global
techniques in these problems is relatively unexqaland deserves greater investigation [21].
Because of the difficulties in evaluating the fidgrivatives, to locate the optima for many
rough and discontinuous optimization surfacesgirent times, several derivative algorithms
have emerged [20]. Particle swarm optimization (P$0a relatively recently devised
population-based stochastic global optimizationoatgm. As described by Eberhart and
Kennedy, the PSO algorithm is an adaptive algoritbased on a social-psychological
metaphor; a population of individuals (referred &s particles) adapts by returning
stochastically toward previously successful regidSg.

The PSO algorithm is initialized with a pitgtion of random particles and the algorithm
searches for optima by updating generations [2Rh PSO system, each particle is “flown”
through the multidimensional search space, adgstinposition in search space according to
its own experience and that of neighboring parsiclehe particle therefore makes use of the
best position encountered by itself and that ofnésghbors to position itself toward an
optimal solution [23]. The performance of each iglatis evaluated using a predefined fitness
function, which encapsulates the characteristidh®@bptimization problem [24].

Each particle is associated with veloditgttindicates where the particle is traveling. Let
k be a time instant. The new particle position is potad by adding the velocity vector to the
current position

Se1= 9t Y N
when's and v denote a particle position and its correspondinipoiy in a search space,
respectively. Beings, particlei position,i = 1, ...p, at time instank, v,,, new velocity (at
time k+1) andp is population size.

The velocity update equation is given by:
Vea =W+ gi( A= §)+ cg( A- ) @
wherek is the current step number, is the inertia weightci and c2 are the acceleration
constants, and, rz are element from two random sequences in the rihgd. The current

position of the particle is determined By, pis the best one of the solutions this particle has

reached,p/is the best one of the solutions all the partiblese reached [22].
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The variablev [25] is responsible for dynamically adjusting tredocity of the particles,
so it is responsible for balancing between local giobal search, hence requiring fewer
iterations for the algorithm to converge. A lowwlof inertia weight implies a local search,
while a high value leads to a global search. Apmya large inertia weight at the start of the
algorithm and making it decay to a small value tigto the PSO execution makes the
algorithm search globally at the beginning of tkarsh, and search locally at the end of the
execution [23]. The following weighting functiamis used in Eq. (2):

w=w, —Dmax ™ Woin @)

Generally, the value of each component itan be clamped to the range&nfax,vmad control
excessive roaming of particles outside the segpelees[17]. After calculating the velocity,
the PSO algorithm performs repeated applicationshef update equations above until a
specified number of iteration has been exceededntirthe velocity updates are close to zero
[23]. The PSO algorithm is presented in detail &bl 1. Figure 1 shows the update systems
of the PSO algorithm. Figure 2 shows the flow diagrof the PSO algorithm used.

In PSO, the inertial weight the constant: andcz, the number of particlespart and the
maximum speed of particle summarize the parameiesgnchronize for their application in a
given problem. An exhaustive trial-and—error prazedvas applied for tuning the PSO para
meters. Firstly, the effect @ was analyzed for values from 0.1 to 0.9. FiguaesBows the
values ofw that favored the search of the particles and ecatdd the convergence. Next, the
effect ofNpart was analyzed for values from 100 to 1000 partitidee swarm. Figure 3b

Table 1. Scheme ofhe PSO algorithm development in this study.

Step Description

Initialize algorithm: population size and numbemafights and biases.

1 Set constantdmax, Vmax W, C1, C2
2 Randomly initialize the swarm positiog<1R" fori=1, ...,p
3 Randomly initialize particle velocitieg fori =1, ...,p
4 Setk=1
Evaluate function valug, using design space coordinaggs
5 If F <Fl thenFL =F,p, =5
If Fki < FogthenRl = Fi, pi = -'i
6 If stopping condition is satisfied then stop aition
7 Update all particle velocities fori=1, ...,p
8 Update all particle positiorss fori = 1, ...,p
9 Otherwise sek = k+1goes to step 5
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Figure 1. PSO position and velocity update.

shows that the best population to solve the probierof 25 particles. Table 2 shows the
selected parameters for the PSO algorithm.

3. Equations of vapor—liquid equilibrium

As known, the phase equilibrium problembw® solved consists of the calculation of
some variables of the s@tP—x—y (temperature, pressure, liquid—phase concentratiah
vapor-phase concentration, respectively), when soirteem are known. For a vapor-liquid
mixture in thermodynamic equilibrium, the temperatand the pressure are the same in both
phases, and the remaining variables are defingtieoynaterial balance and thieifidamental
equation of phase equilibriunj26]. The application of this fundamental equatirequires
the use of thermodynamic models which normally udel binary interaction parameters.
These binary parameters must be determined usipgriexental data for binary systems.
Theoretically, once these binary parameters arevknone could predict the behavior of
multicomponent mixtures using standard thermodynanelations and thermodynamics
models [27].

The fundamental equation of vapor—liquid equilibniuvcan be expressed as the

equality of fugacities of each component in thetom& in both phases [26]:

fr=1 @

where the superscriptsandV represent liquid and vapor, respectively.
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Initialize algorithm constants:
Kmax Vimax W, C1, C2

Initialize particles with random
position §, and velocity vectors V.

'

Evaluate objective function f(s) for
particle i.

'

Update particle i and swarm best
values F.o,, F2.

'

Update velocity Vik and position SL

i > total number of
particles?

Stopping criterion
satisfied?

The best particles
are found.

Stop
PSO

Figure 2. Flow diagram of the PSO algorithm used in thisigtu
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Table 2. Parameters used in the PSO algorithm.

PSO Parameter Value
Number of particles in swarniNgart) 25
Number of iterationskinay 1000
Cognitive componenty) 1.494
Social componenty) 1.494
Maximum velocity ¥may) 12
Minimum inertia weight \{min) 0.5
Maximum inertia weightwWmay 0.7

The fugacity of a component in the vapaaigghis usually expressed through the fugacity
coefficient " :
' =yg'P ®)
And the fugacity of a component in the idjyphase is expressed through either the

fugacity coefficient(?L or the activity coefficieny; :
f-=xg'P ®)

fir=xy t° )
In these equationg; is the mole fraction of component in the vaporggha is the mole
fraction of componeni the liquid phase, and is the pressure. The fugacity is related to the
temperature, the pressure, the volume and the ntmatien though a standard thermodynamic
relation[28].

If the fugacity coefficient is used in bgbhases, the method of solution of the phase
equilibrium problem is known astie equation of state metHodrhen, equation of state
(EoS) and a set of mixing rules are needed to egpitee fugacity coefficient as function of
the temperature, the pressure and the concentrg@jn Modern EoS methods include an
excess Gibbs free energy mod@F) in the mixing rules of the EoS, giving origin ttee so—
called“equation of state + Gmodet [27]. This means that an activity coefficient mo¢ig!
is used to describe the complex liquid phase, &edfuigacity coefficient¢ is calculated
using a simple equation of state. If the fugacagféicient is used for the vapor phase and the
activity coefficient is used for the liquid phadeetequilibrium problem is known aghé

gammaphi method ()~¢) [26].
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4. Equation of state method

From the relation between the fugacity, @ibbs free energy, and an EoS, the fugacity

in a vapor can be calculated as:

£ (T.Py)|_ -
'”{ T }'”“* ©®
— 1~ [RT (9P -
'”“?'mv-{v [awl,v,mldv " ©

whereV is the total volume, and = Py( R'I')’1 is the compressibility factor calculated from
as EoS, an is the molar volume of the mixture [27].

The most common EoS used for the correlation of phase equifibmixtures at high
and low pressure are the cubic equations derived from vaWwaals EoS [29]; among these,
the Peng—Robinson equation has proven to combine the simplicity emm@d@crequired for
the prediction and correlation of volumetric and thermodynamic propertiegdsf [30].

The Peng—Robinson EoS was expressed as follows [30]:

po RT | a
V-b V(V+b +b(V-1b (10)
with
212
a= 0.45723?—}} a(T) (11
b= 0.077796F% (12)

a(T)= [+ k(2T )T (13)

Kk =0.37646+1.54226— 0.26982 (14)
where Tr = T/Tc is the reduced temperature. In this form, the PBopinson EoS is
completely predictive once the constants (critieahperatureTc, critical pressurePc, and
acentric factorw) are given. Consequently, this equation is a taameter EoSa(andb)
that depends upon the three constafidsR, andw) [27].

For mixtures, the parametersndb are expressed as functions of the concentration of
the different components in the mixture, through $b-called mixing rules [26]. Until recent

years, most of the applications of EoS to mixturessidered the use of the classical van der
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Waals mixing rules, with the inclusion of an intetfan parameter for the force constarend
volume constarh. The Peng—Robinson EoS for a mixture is:
= RT + am
V-h, V(V+h)+b,(V-b)

The classical van der Waals mixing rules[ar]:

&y = ZIZXin% (16)
bm = ZZXinq (17)

and the combining rules fa@; andbj, with interaction parameters for the force anduve

(15)

constants, are:
3 =aa (1-k) (18)
b= IC’( ) (19)

The parameters; and lij in the above combining rules for the equation aftestare
usually calculated by regression analysis of expental phase equilibrium data.

The modern equation of state includes aeex Gibbs free energy model in the mixing
rules of the EoS. Thus, the connection betweentimsaof state + excess Gibbs free energy,
seem to be the most appropriate for modeling coxmpigtures [29].

The WongSandler mixing rule is an example of these typesiaing rules, and can be

summarized as follows [31]:

bm_ E (20)
_3xa _AT(Y)
1 Z‘lq T ORT
_a) _1 _\/aia]' _
(=) =30 +0)- 5 (10%) ey
xa , A ()
a,=b [Zh =5 J (22)

In these equatiore, and bm are the equation of state constants witras adjustable

parameter, 2=0.34657 for the PR EoS, andAf(x) is calculated assuming

thatA; (X)=A; (X)=G; (x).
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For a binary mixture:

Aol A )

_%a _%a _G;(x)
bRT BRT ORT

(b alz Z(b,+b,)- \/@(1 k) (24)

RT

(23)

. [xa, xa, G (%
a“_bm(blRT+QRT+ ) } (25)

The excess Gibbs free enaajy( x) in the mixing rules is calculated using an
appropriate liquid—phase model. In this wo@¢ (x) has been calculated using the van Laar
model that has been shown to perform well in higkspure phase equilibrium calculations
[15].

The van Laar model f@; (x) is described by the following equation [26]:

2

GE N leﬁ )l(z)fﬁ
0 |

R X e b : o

For a binary mixture, the model reduces to:

G A%X%
RT ( A, j % @7
Ay

Thus, the problem is reduced here to deterrthe interaction parametedsz, Az1, and
the ki2 parameter included in the combining thermodynammdeh (PR-WS-VL), using
available high pressufB-P—xdata of vapor-liquid phase equilibrium of complaktures.
These optimal interaction parameters were detewrisyeminimizing the following objective
function in data regression, using a hybrid al¢ponitbased on particle swarm optimization
and ant colony optimization:

1003

D i=1

Pcalc _ Pexp
poe

min F = (28)
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whereNb is the number of points in the experimental d&aandP is the pressure of the
ionic liquid in the vapor phase, the superscripiales the experimentatXp data point and
calculated ¢alc) values. Figure 4 shows the flow diagram of thaltalgorithm development
for the vapor-liquid equilibrium modeling.

Forty-six binary vapor-liquid phase systeroataining supercritical carbon dioxide and
imidazolium-based ionic liquids were considered ithis study. The anions:
bis(trifluoromethylsulfonyl)imide ([TAN]), hexafluorophosphate ([}, tetrafluoroborate
([BF4)), ethyl sulfate ([EtSO4]), dicyanamide ([DCA]), itrate ([NO3]),
trifuoromethanesulfonate ([TfO]), and tris(trifl@methylsulfonyl)methide ([methide]), are
the ones presenting the highest supercritical cadioxide solubility. Although both anion
and cation influence the carbon dioxide solubilitye anion has the strongest influence [32].
And the most common 4&kyl-3-methylimidazolium cations were used: 1-ethyl-3-
methylimidazolium  ([Gmim]), 1-butyl-3-methylimidazolium ([@nim]), 1-pentyl-3-
methylimidazolium ([Gmim]), 1-hexyl-3-methylimidazolium ([@nim]), and 1-octyl-3-
methylimidazolium ([Gmim]).

Table 3 shows the thermodynamic properdfethe substances involved in the study. In
this Table,Tc is the critical temperatur@ is the critical pressure, amdis the acentric factor.
The data for the ionic liquids were taken from titerature [33]. The data for supercritical
fluids were taken from Daubest al [34]. The details of the experimental vapor—liquid
equilibrium data taken from references [35-40] gnesented in Table 4. As seen in the Table,
the temperature and pressure ranges are narrogaafrdm 313K to 333K and from O to 43

MPa, respectively.

5. Results and discussion
The PR-WS-VL model and the PSO algorithmiemgsed to calculatieiz, A1z and Azs,

and P by minimizing the Eqg. (28), and considering thesalbte deviations between
experimental and calculated values of bubble pwinthe vapor-liquid phase of the ionic
liquids on the supercritical carbon dioxide. In@rdo provide a substantial margin of safety,
the range for the interaction parameteks @ndAc1 for VL model for the excess Gibbs free
energy) was defined as [-5, 5]. This wide range hased on physical considerations [27],
and is extremely likely that it will contain thetopal parameter values. In addition, the range

for the WS parametddaz2 with theoretical bases [31] was defined as [-1Figure 5 shows
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the interaction parameters determined with the @seg algorithm and based on the

minimization

Specify the parameter for PSO.
Specify mole fractions x; and T.

!

Generate initial population.
Possible values of the activity coefficient model.
Guess bubble-point pressure P.
Guess set of K= y; /x; for all components.

Time-domain simulation.

'

Find the fitness of each particle
d in the current population.

Calculate T "for all components.

'

Calculate " for all components.

The best particles are
k=k+1 found.

7y Yes

No
Stop
Update PSO operators: PSO
position and velocity.

Optimum parameters for
PR-WS-VL model
are obtained




-677-

Figure 4. Flow diagram of the total algorithm used for ttaper—liquid equilibrium modeling.

Table 3. Thermodynamic properties of the substances ingbiwehis study

Substance Tc (K) P: (MPa) w
[Comim][Tf2N] 1214.2 3.37 0.2818
[Camim][Tf2N] 1265.0 2.76 0.2656
[Csmim][Tf2N] 1249.4 2.63 0.4123
[Cemim][Tf2N] 1287.3 2.39 0.3539
[Csmim][Tf2N] 1311.9 2.10 0.4453

[Camim][PFe] 708.9 1.73 0.7553
[Cemim][PFe] 800.1 1.40 0.9069
[Camim][BF4] 632.3 2.04 0.8489
[Csmim][BF4] 726.1 1.60 0.9954
[Camim][EtSOy] 1061.1 40.40 0.3368
[Camim][DCA] 1035.8 2.44 0.8419
[Camim][NO3] 946.3 2.73 0.6000
[Camim][TfO] 1158.0 2.90 0.4118
[Camim][methide] 1571.4 2.40 0.1320
CO2 304.2 7.38 0.2236
CHREs 299.30 4.79 0.2640

of bubble pressure. These results show that thespres of the ionic liquids in the vapor
phase were correlated with low deviations betwerpeemental and calculated values
(deviations are below 4%iResults of the modeling are presented in Tables® Table 5 shows
the optimum values and deviations calculated ferltimary interaction parametess, A;> and

Az at 313K (19 systems). Table 6 shows the optimulmesaand deviations calculated for the
binary interaction parameteks, A, andAz; at 323K (8 systems). Table 7 shows the optimum
values and deviations calculated for the binargranttion parameteis,, A1 andA.; at 333K
(19 systems). From the results contained in theakle§, is possible to determine the
capability of the algorithm to correlate the expental data according to the anion type:
[Tf2N] (1.5%) ~ [methide] (1.5%) < [RF(2.0%) < [EtSQ] (2.2%) < [NQ] (2.4%) < [DCA]
(2.8%) < [BR] (2.9%) < [TfO] (3.7%). And for the case of catitype: [Gmim] (1.5%) <
[Czmim] (1.6%) ~ [Gmim] (1.6%) < [Gmim] (2.0%) < [Gmim] (2.4%). One reason for the
better results is the election of the thermodynamidel selected. In particular the parameters
of the van Laar model included in the Wong—-Sandieding rules. Among the many cubic
EoS of van der Waals type nowadays available, treepyoposed by Peng—Robinson EoS is
widely used because of its simplicity and flexiyilii27]. This equation has proven to

combine the simplicity and accuracy required foe firediction and correlation of fluid
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properties, in particular of phase equilibria [30,3he effect of the uncertainty of the critical
properties in the phase equilibria calculationsg$tR-EoS has been investigated for several
Table 4.Details on the phase equilibrium data of all systeised in this study.

Component (1) Component (2)  T(K)  AXsce AP (MPa)  Ref
CHRs [Comim][PFe] 313 0.5-1.0 5-22 [35]
[Camim][PFe] 323 0.1-0.8 118 [36]
COx [Camim][Tf2N] 313 0.2-0.8 128 [37]
323 0.20.8 134
333 0.2-0.8 239
[Camim][Tf2N] 313 0.3-0.8 2-13 [38]
333 0.2-0.6 1-10
333 0.2-0.7 2-13
[Csmim][Tf2N] 313 0.20.8 27 [37]
323 0.2-0.8 138
333 0.20.8 243
[Cemim][Tf2N] 333 0.0-0.7 0-10 [39]
313 0.3-0.7 1-10 [38]
313 0.3-0.8 2-12
333 0.2-0.7 2-11
[Cemim][Tf2N] 313 0.3-0.8 1-11 [38]
333 0.2-0.8 2-11
[Camim][NO3] 313 0.20.5 29 [39]
323 0.2-0.5 29
333 0.20.5 29
313 0.1-0.5 1-9 [38]
333 0.1-0.4 1-9
[Camim][PFg] 313 0.0-0.7 0-10 [39]
323 0.0-0.7 09
333 0.0-0.7 09
313 0.3-0.7 2-15 [38]
333 0.2-0.5 2-12
313 0.0-0.6 0-10 [40]
333 0.0-0.5 0-9
[Camim][PFs] 313 0.0-0.8 09 [39]
323 0.0-0.7 09
333 0.0-0.7 09
[Camim][BF4] 313 0.1-0.5 1-8 [38]
333 0.1-0.4 1-9
[Cemim][BF4] 313 0.0-0.7 09 [39]
323 0.0-0.7 09
333 0.0-0.7 09
[Camim][DCA] 313 0.2-0.6 1-10 [38]
333 0.2-0.5 2-11
[Camim][TfO] 313 0.1-0.6 1-9 [38]
333 0.1-0.5 2-10
[Cmim][EtSQy] 313 0.0-0.4 6-9 [39]
323 0.0-0.4 09
333 0.0-0.5 09
[Camim][methide] 313 0.3-0.8 2-11 [38]
333 0.3-0.7 2-11

systems, but the general trend and curvature gbtlase equilibrium curve is not altered [41].
The interaction parameters represent the funciiynafl the constants of the equation with the

concentration. It has been recognized that vanWeals mixing rules with one or two
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parameters do not give good results for systemspn{42]. The Wong—Sandler mixing
rules have shown to be successful in these apipiitsatin other works to improve the

Figure 5. Deviations of the binary interaction parametetsvegted by minimization of the
objective function with PSO algorithm.

predictions in mixtures, a third interaction parénéas been introduced and has been shown
that these mixing rules allow an accurate represient that when the van der Waals mixing
rules are used [29]. Figure 6 shows the variatibthe binary interaction parameters as a
function of the absolute temperature. It can beepke=i the behavior of the parameters
included in the PR-WS-VL model. The paramétgrdecreases with the temperature in most
of the cases studied. For the mixing rules, paranfak shows a smooth behavior, afe:
shows a dynamical behavior. This is not unusuatdmplex systems and in particular in
mixtures containing ionic liquids. Figure 7 showe inner behavior among the parameters.
The different influence of the parameters and tregige of variation provide the PR-WS-VL
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model greater flexibility in the sense that the elochn better capture the different behavior

of the mixtures studied.

Table 5.Optimum values and deviations calculated for theraction parameters at 313K.

No. Comp. (1) Comp. (2) No ki2 As2 Az F

1 CQO [Comim][Tf2N] 9  0.02250° 1.373719 -0.432528 0.7
2 CO [Camim][Tf2N] 8  0.328200 -0.208918 -0.34316 1.5
3 Co [Csmim][TfN] 9 005163 0485197 -0.172968 1.4
4 CO [Cemim][TfoN] 6 0.28643 0573135 -0.314959 1.0
5 CQ [Cemim][Tf2N] 8 0.30621: -1.616238 -0.520215 1.0
6 CO [Cemim][Tf2N] 8 0.28713' 0277280 -0.429227 1.5
7 CO [Csmim][NO3] 15 058002  0.170878 2.091295 2.1
8 CO [Csmim][NO3] 6 0.45301 0554586 2.300081 3.3
9 CO [Camim][PFs] 8 026381  0.597590 4.271429 2.0
10 CQ [Camim][PFs] 7 041164 0.329473 1.794402 2.6
11 CQ [Camim][PFs] 7 057413 0.346160 0.064369 1.4
12 Cco [Cemim][PFs] 8 052003  0.702086 2.060538 1.2
13 CQ [Csmim][BF4] 8 0.71171: 0.416026 1.542849 3.1
14 Cco [Csmim][BF.] 15 024668  0.566494 3.368683 3.6
15 CQ [Camim][DCA] 8 056197 0.072210 0.209615 3.1
16 CQ [Camim][TfO] 8 0.26126! 0.243863 1.683275 34
17 co [C:mim][EtSQy] 7 024636,  0.633591 1.485990 1.9
18 Co [Camim][methide] 8 0.45332  -3.706182 -0.148095 2.0
19 CHR [Czmim][PFs] 9 0.42568 1.887282 0.801336 1.7

Table 6.Optimum values and deviations calculated for theraction parameters at 323K.

No. Comp. (1) Comp. (2) Nb k2 Arz Az F
1 CO [Comim][TfN] 9  0.01306. 1.136329 -0.40023| 0.9
2 Co [Csmim][TfN] 9  0.03954 0.424277  -0.14909; 2.0
3 Co [Camim][NO3] 15  0.44688; 0.098396  3.98243' 2.7
4 CO [Camim][PFs] 8  0.29745 0.403482  4.42551: 2.3
5  CO [Cemim][PFs] 9 0.44200 0.483123  2.14867! 2.2
6 CO [Cemim][BF4] 15 0.23352 0.520944  3.91037: 3.3
7 CO [Comim][EtSQy] 7 0.17894 0.462659  1.98002( 2.3
8 CHR [Csmim][PFg] 12 0.43971 -0.468050 0.84105. 3.5
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Table 7.Optimum values and deviations calculated for theraction parameters at 333K.

No. Comp. (1) Comp. (2) Nb k12 Arz Az F

1 CQ [Comim][Tf2N] 9 0.006276 0.99648! -0.375292 1.0
2 Co [Camim][Tf2N] 6 0194922  0.38708! -0.321831 2.4
3 Co [Camim][Tf2N] 8  0.220644 -1.03064' -0.518951 1.8
4  Co [Csmim][Tf2N] 9 0028576  0.45010: -0.138636 1.2
5 CO [Cemim][Tf2N] 7 0.443719  0.56800 0.592748 3.1
6 CQ [Cemim][Tf2N] 8 0.176286  -0.01762° -0.005778 1.3
7 CO [Csmim][Tf,N] 8  0.225224  _0.49477. 0.774673 1.0
8 CO [Camim][NO3] 15  0.426896  0.02265 2.126675 2.7
9 CO [Csmim][NO3] 6 0014869  0.83750. 1.609614 1.3
10 CQ [Camim][PFs] 8 0341022  0.22375/ 3.535592 2.6
1 CcQo [Camim][PFs] 7 0488527  0.31029( 0.742218 2.9
12 CQo [Camim][PFs] 10 0.620025  0.44362' 0.040391 0.4
13 COo [Csmim][PFs] 8 0414298  0.38450: 0.792178 1.3
14 Co [Camim][BF] 7  0.444785  0.89190: 2.868427 2.7
15 CQ [Csmim][BF4] 15 0.451623 0.281491 2.145473 2.0
16 CQ [Camim][DCA] 8 0599104 -0.97708 -0.028139 25
17 CQ [Camim][TfO] 7 0111228  0.25648. 1.682555 4.0
18 (e [Comim][EtSOy] 7 0.151572 0.12128. 1.154691 2.4
19 co [Camim][methide] 8 0339021 -2.83779' -0.520582 1.0

A comparison was made between of the esbitained with the PSO algorithm and
results obtained with Levenberg—Marquart algoriitufl). Note that, LM [43] is commonly
used in these problems. Figure 8 shows the avenapsure deviations found with PSO and
LM for all ionic liquids considered in this study.sAs observed in the figures, the best
method to estimate the vapor—liquid equilibriuntteg systems used is the PSO algorithm.

Thus, the results show that the applicatib®SO algorithm on thermodynamic model
(PR-WS-VL), was crucial, and that the proposed r@lgm is a good tool to optimize the
interaction parameters to describe the vapor-liggjdilibrium of several systems containing

supercritical fluids and ionic liquids at high-pseses.
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Figure 7. Innerbehavior among the parameters of the PR-WS-VL model

6. Conclusions

In this studyhigh-pressure vapor-liquid equilibrium data of ljnenixtures containing
supercritical fluids and imidazolium ionic liquidsere correlated using a thermodynamic
model optimized with a particle swarm algorithm eTiPreng—Robinson (PR) equation of state
the Wong-Sandler (WS) mixing rules including then Maaar (VL) model for the excess
Gibbs free energy, were used as thermodynamic mbdely-six binary systems taken from
literature were selected for this study, and thénapation algorithm was used to determine
the binary interaction parameters of each systete @lgorithm was development to
minimize the difference between calculated and exgntal bubble pressure.

Based on the results and discussion predeirt this study, the following main
conclusions were derived: (i) PSO algorithm is appiate to describe the vapor-liquid

equilibrium of binary systems containing supercaitifluids and ionic liquids; (ii) the low
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Figure 8. Comparison between PS®)(and LM @) optimizations used in the VLE modeling.

(a) Systems at 313K, (b) systems at 323K, andy&tpms at 333K. In these figures, the
systems are listed as in Table 5 to 7.
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deviations obtained with the proposed PSO algoritiiicate that it can estimate the binary

interaction parameters with better accuracy thderoalgorithms available in the literature;

(iii) the values calculated with the PSO algoritlame believed to be accurate enough for

engineering calculations, among other uses.
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