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Abstract 

        High-pressure vapor–liquid equilibrium data of binary mixtures containing supercritical 

fluids and imidazolium ionic liquids were correlated using a thermodynamic model optimized 

with a particle swarm algorithm. The Peng–Robinson (PR) equation of state and the Wong–

Sandler (WS) mixing rules including the van Laar (VL) model for the excess Gibbs free 

energy, were used as thermodynamic model. Forty six binary systems taken from literature 

were selected for this study, and the optimization algorithm was used to determine the binary 

interaction parameters of each system. The algorithm was development to minimize the 

difference between calculated and experimental bubble pressure. The results given by the 

model show that the proposed algorithm is a good tool to correlate and describe the vapor–

liquid equilibrium of this type of systems. 

 

1. Introduction 

        In the recent years, room temperature ionic liquids (RTILs) or just ionic liquids (ILs) 

came into focus because of their potential as alternatives for several engineering applications 

[1]. ILs are typically composed of a large organic cation and an inorganic polyatomic anion. 
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There is virtually no limit in the number of possible ionic liquids since there is a large number 

of cations and anions that can be combined [2]. At ambient room temperature, they exist as 

liquids and have a wide variety of unique properties (for instance, negligible vapor pressure, 

favorable chemical behavior, low viscosity, and high reactivity and selectivity) [3]. The most 

commonly used cation in room-temperature ionic liquids (RILs) is dialkylimidazolium. And 

in recent years, 1-alkyl-3-methylimidazolium ([Cnmim]+) ILs have been intensively studied 

[1]. 

        The increasing utilization of ILs in chemical and industrial processes requires reliable 

and systematic thermophysical properties such as activity coefficients, heats of mixing, 

densities, solubilities, vapor–liquid equilibria (VLE), and liquid–liquid equilibria (LLE). In 

addition, the transport properties are also needed (viscosity, electric conductivity, mutual 

diffusion coefficients, etc.) [4]. For a better understanding of their thermodynamic behavior 

and for the development of thermodynamic models reliable experimental phase equilibrium 

data is required [5]. Phase equilibrium data of mixtures containing ionic liquids are necessary 

for further development of some separation processes involving supercritical fluids. 

Blanchard et al. [6] described several potential applications of supercritical fluids with ILs. 

They demonstrated the possibility of using supercritical carbon dioxide (CO2) to remove a 

solute from an IL, without contamination of the extracted solute, solving one of the 

shortcomings of the use of ionic liquids in solvent extraction processes: the recovery of the 

compounds from the ionic liquid media [7]. Scurto et al. [8] proposed an innovative process 

of separating ILs from organic solvents using supercritical CO2 that induces a phase 

separation, due to the organic liquid phase expansion and the dielectric constant decrease, 

forcing the IL to separate into a second liquid phase [7]. Later, Scurto et al. [9] also 

demonstrated that separation of aqueous solutions of both hydrophobic and hydrophilic ILs 

can be performed using supercritical CO2 [7]. The solubility of carbon dioxide in a variety of 

ILs has been determined at low pressures and high pressures [10]. The gas solubilities data 

provides important information for the characterization of solute-solvent interactions and so 

contribute to understand the mechanisms of dissolution. From a practical point of view, gas 

solubility can be useful in the calculation of vapor-liquid equilibrium (VLE) [11]. 

        On this line, VLE data for binary systems including ionic liquids, although essential for 

the design and operation of separation processes, are still scarce. Recently, some works have 

presented binary VLE data involving several ionic liquids and such organic compounds as 

alkanes, alkenes and aromatics, as well as supercritical fluids [12]. Various models have been 

used to correlate experimental data of phase equilibria of these systems [13]. One of the 
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common approaches used in the literature to correlate and predict phase equilibrium requires 

an equation of state that well relates the variables temperature, pressure and volume and 

appropriate mixing rules to express the dependence of the equation of state parameters on the 

concentration [14]. On equations of state, the Peng–Robinson equation has been used to 

describe the solubility of ILs in supercritical fluids [15]. 

        The existing methods to solve phase equilibrium systems give only local solutions. It has 

been demonstrated that for cases of systems containing supercritical CO2, the optimum values 

of the interaction parameters depend on the searching interval and on the initial value of used 

interaction parameters [16]. 

        Parameter estimation procedures are very important in engineering, industrial, and 

chemical process for development of mathematical models, since design, optimization and 

advanced control of bioprocesses depend on model parameter values obtained from 

experimental data. The aim of optimization is to determine the best-suited solution to a 

problem under a given set of constraints. Mathematically, an optimization problem involves a 

fitness function describing the problem, under a set of constraints representing the solution 

space for the problem. The optimization problem, now-a-days, is represented as an intelligent 

search problem, where one or more agents are employed to determine the optimum on a 

search landscape [17]. Modern optimization techniques have aroused great interest among the 

scientific and technical community in a wide variety of fields recently, because of their ability 

to solve problems with non-linear and non-convex dependence of design parameters [18]. 

Thus, the use of heuristic optimization methods, such particle swarm optimization (PSO) [19], 

for the parameter estimation is very promising [20]. This biologically-deriver method 

represents an excellent alternative to find a global optimum for phase equilibrium calculations 

[14-18].  

        In this work, forty-six binary vapor-liquid phase systems containing supercritical fluids 

(CO2 or CHF3) + 1-alkyl-3-methylimidazolium ILs were correlated using a thermodynamic 

model optimized with a PSO algorithm. The Peng–Robinson (PR) equation of state and the 

Wong–Sandler (WS) mixing rules including the van Laar (VL) model for the excess Gibbs 

free energy were used as thermodynamic model. The algorithm was development to calculate 

the binary interaction parameters, and used for minimize the difference between calculated 

and experimental bubble pressure. 
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2. Particle swarm optimization 

        Adjustable parameters are a common feature of most thermodynamic models for phase 

equilibrium calculations. Most of the existing methods for solving phase equilibrium and 

stability problems are local in nature and at best yield only local solutions. Use of global 

techniques in these problems is relatively unexplored and deserves greater investigation [21]. 

Because of the difficulties in evaluating the first derivatives, to locate the optima for many 

rough and discontinuous optimization surfaces, in recent times, several derivative algorithms 

have emerged [20]. Particle swarm optimization (PSO) is a relatively recently devised 

population-based stochastic global optimization algorithm.  As described by Eberhart and 

Kennedy, the PSO algorithm is an adaptive algorithm based on a social-psychological 

metaphor; a population of individuals (referred to as particles) adapts by returning 

stochastically toward previously successful regions [19]. 
        The PSO algorithm is initialized with a population of random particles and the algorithm 

searches for optima by updating generations [22]. In a PSO system, each particle is “flown” 

through the multidimensional search space, adjusting its position in search space according to 

its own experience and that of neighboring particles. The particle therefore makes use of the 

best position encountered by itself and that of its neighbors to position itself toward an 

optimal solution [23]. The performance of each particle is evaluated using a predefined fitness 

function, which encapsulates the characteristics of the optimization problem [24]. 

        Each particle is associated with velocity that indicates where the particle is traveling. Let 

k be a time instant. The new particle position is computed by adding the velocity vector to the 

current position 

1 1
i i i
k k ks s v+ += +  (1) 

when s and v denote a particle position and its corresponding velocity in a search space, 

respectively. Being iks  particle i position, i = 1, …,ρ, at time instant k, 1
i
kv +  new velocity (at 

time k+1) and ρ is population size. 

        The velocity update equation is given by:  

( ) ( )1 1 1 2 2
i i i i g i
k k k k k k kv w v c r p s c r p s+ = + − + −  (2) 

where k is the current step number, w is the inertia weight, c1 and c2 are the acceleration 

constants, and r1, r2 are element from two random sequences in the range [0, 1]. The current 

position of the particle is determined by i
ks ; i

kp is the best one of the solutions this particle has 

reached, g
kp is the best one of the solutions all the particles have reached [22]. 
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        The variable w [25] is responsible for dynamically adjusting the velocity of the particles, 

so it is responsible for balancing between local and global search, hence requiring fewer 

iterations for the algorithm to converge. A low value of inertia weight implies a local search, 

while a high value leads to a global search. Applying a large inertia weight at the start of the 

algorithm and making it decay to a small value through the PSO execution makes the 

algorithm search globally at the beginning of the search, and search locally at the end of the 

execution [23]. The following weighting function w is used in Eq. (2): 

–
– max min

max
max

w w
w= w k

k
 (3) 

Generally, the value of each component in v can be clamped to the range [–vmax ,vmax] control 

excessive roaming of particles outside the search space [17]. After calculating the velocity, 

the PSO algorithm performs repeated applications of the update equations above until a 

specified number of iteration has been exceeded, or until the velocity updates are close to zero 

[23]. The PSO algorithm is presented in detail in Table 1. Figure 1 shows the update systems 

of the PSO algorithm. Figure 2 shows the flow diagram of the PSO algorithm used. 

        In PSO, the inertial weight w, the constant c1 and c2, the number of particles Npart and the 

maximum speed of particle summarize the parameters to synchronize for their application in a 

given problem. An exhaustive trial–and–error procedure was applied for tuning the PSO para 

meters. Firstly, the effect of w was analyzed for values from 0.1 to 0.9.  Figure 3a shows the 

values of w that favored the search of the particles and accelerated the convergence. Next, the 

effect of Npart was analyzed for values from 100 to 1000 particles in the swarm. Figure 3b  

 

Table 1. Scheme of the PSO algorithm development in this study. 

Step Description 

1 
Initialize algorithm: population size and number of weights and biases.  
Set constants: kmax, vmax, w, c1, c2 

2 Randomly initialize the swarm positions0
i ns ∈ℝ  for i = 1, …, ρ 

3 Randomly initialize particle velocities0
iv  for i = 1, …, ρ 

4 Set k = 1 

5 

Evaluate function value i
kF  using design space coordinatesi

ks : 

If i i
k bestF F≤ then i i

best kF F= , i i
k kp s=  

If i g
k bestF F≤ then g i

best kF F= , g i
k kp s=  

6 If stopping condition is satisfied then stop algorithm 
7 Update all particle velocitiesikv  for i = 1, …, ρ 

8 Update all particle positionsiks  for i = 1, …, ρ 

9 Otherwise set 1k k= + goes to step 5 
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Figure 1. PSO position and velocity update. 

 

 

shows that the best population to solve the problem is of 25 particles. Table 2 shows the 

selected parameters for the PSO algorithm. 

  

3. Equations of vapor–liquid equilibrium 

        As known, the phase equilibrium problem to be solved consists of the calculation of 

some variables of the set T–P–x–y (temperature, pressure, liquid–phase concentration and 

vapor-phase concentration, respectively), when some of them are known. For a vapor–liquid 

mixture in thermodynamic equilibrium, the temperature and the pressure are the same in both 

phases, and the remaining variables are defined by the material balance and the “fundamental 

equation of phase equilibrium” [26]. The application of this fundamental equation requires 

the use of thermodynamic models which normally include binary interaction parameters. 

These binary parameters must be determined using experimental data for binary systems.  

Theoretically, once these binary parameters are known one could predict the behavior of 

multicomponent mixtures using standard thermodynamic relations and thermodynamics 

models [27]. 

The fundamental equation of vapor–liquid equilibrium can be expressed as the 

equality of fugacities of each component in the mixture in both phases [26]: 

L V
i if f=  (4) 

where the superscripts L and V represent liquid and vapor, respectively. 

i
ks  

g
kp

 

1
i
ks +

i
kp

 

1
i
kv +  

i
kv  

( )1 1
i i
k kc r p s−  

( )2 2
g i
k kc r p s−  

i
kwv  
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Figure 2. Flow diagram of the PSO algorithm used in this study. 
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Figure 3. Convergence graphics. (a) Determination of the best values for w as: 0.3(— —), 
0.5(- - -), 0.7(— · —), 0.9 (— · · —). (b) Effect of Npart for: 25(- - -), 50(— —), 100(— · 
—). 
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Table 2. Parameters used in the PSO algorithm. 

PSO Parameter Value 
Number of particles in swarm (Npart) 25 
Number of iterations (kmax) 1000 
Cognitive component (c1) 1.494 
Social component (c2) 1.494 
Maximum velocity (vmax) 12 
Minimum inertia weight (wmin) 0.5 
Maximum inertia weight (wmax) 0.7 

 

 

        The fugacity of a component in the vapor phase is usually expressed through the fugacity 

coefficient V
iφ : 

V V
i i if y P= φ  (5) 

        And the fugacity of a component in the liquid phase is expressed through either the 

fugacity coefficient L
iφ or the activity coefficient iγ : 

L L
i i if x P= φ  (6) 

0L
i i i if x f= γ  (7) 

In these equations, yi is the mole fraction of component in the vapor phase, xi is the mole 

fraction of component in the liquid phase, and P is the pressure. The fugacity is related to the 

temperature, the pressure, the volume and the concentration though a standard thermodynamic 

relation [28].  

        If the fugacity coefficient is used in both phases, the method of solution of the phase 

equilibrium problem is known as “the equation of state method”. Then, equation of state 

(EoS) and a set of mixing rules are needed to express the fugacity coefficient as function of 

the temperature, the pressure and the concentration [26]. Modern EoS methods include an 

excess Gibbs free energy model (GE) in the mixing rules of the EoS, giving origin to the so–

called “equation of state + GE model” [27]. This means that an activity coefficient model (γ) 

is used to describe the complex liquid phase, and the fugacity coefficient (φ) is calculated 

using a simple equation of state. If the fugacity coefficient is used for the vapor phase and the 

activity coefficient is used for the liquid phase the equilibrium problem is known as “the 

gamma–phi method” (γ–φ) [26].  
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4.  Equation of state method 

        From the relation between the fugacity, the Gibbs free energy, and an EoS, the fugacity 

in a vapor can be calculated as: 

( ), ,
ln ln

V
i i

i
i

f T P y

y P
φ

 
= 

 
 (8) 

, ,

1
ln ln

i j

V V
i V

i T V N

RT P
dV Z

RT V N
φ

≠

=∞

  ∂
 = − − ∂   

∫  (9) 

where V is the total volume, and ( ) 1
Z PV RT

−=  is the compressibility factor calculated from 

as EoS, and V  is the molar volume of the mixture [27]. 

        The most common EoS used for the correlation of phase equilibria in mixtures at high 

and low pressure are the cubic equations derived from van der Waals EoS [29]; among these, 

the Peng–Robinson equation has proven to combine the simplicity and accuracy required for 

the prediction and correlation of volumetric and thermodynamic properties of fluids [30]. 

        The Peng–Robinson EoS was expressed as follows [30]: 

( ) ( )
RT a

P = +
V b V V +b +b V b− −

 (10) 

with 

( )0.457235
2 2

c
r

c

R T
a = α T

P
 (11) 

0.077796 c

c

RT
b =

P
 (12) 

( ) ( ) 2

1 1r rα T = + κ T −
 

 (13) 

2= 0.37646 +1.54226 0.26992ω ω−κ  (14) 

where Tr = T/Tc is the reduced temperature. In this form, the Peng–Robinson EoS is 

completely predictive once the constants (critical temperature Tc, critical pressure Pc, and 

acentric factor ω) are given. Consequently, this equation is a two-parameter EoS (a and b) 

that depends upon the three constants (Tc, Pc, and ω) [27]. 

        For mixtures, the parameters a and b are expressed as functions of the concentration of 

the different components in the mixture, through the so-called mixing rules [26]. Until recent 

years, most of the applications of EoS to mixtures considered the use of the classical van der  
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Waals mixing rules, with the inclusion of an interaction parameter for the force constant a and 

volume constant b. The Peng–Robinson EoS for a mixture is: 

( ) ( )
m

m m m m

aRT
P = +

V b V V +b +b V b− −
 (15) 

        The classical van der Waals mixing rules are [27]:  

m i j ij
i j

a = x x a∑∑  (16) 

m i j ij
i j

b = x x b∑∑  (17) 

and the combining rules for aij and bij, with interaction parameters for the force and volume 

constants, are:  

( )1ij i j ija = a a k−  (18) 

( )1
2

i j
ij ij

b b
b = l

+
−  (19) 

        The parameters kij and l ij in the above combining rules for the equation of state are 

usually calculated by regression analysis of experimental phase equilibrium data. 

        The modern equation of state includes an excess Gibbs free energy model in the mixing 

rules of the EoS. Thus, the connection between equations of state + excess Gibbs free energy, 

seem to be the most appropriate for modeling complex mixtures [29].  

        The Wong–Sandler mixing rule is an example of these types of mixing rules, and can be 

summarized as follows [31]: 

( )
1

N N

i j
i j ij

m EN
i i

i i

a
x x b

RT
b =

A xx a

b RT ΩRT
∞

 − 
 

− −

∑∑

∑
 (20) 

( ) ( )1
1

2
i j

i j ij
ij

a aa
b = b +b k

RT RT
 − − − 
 

 (21) 

( )EN
i i

m m
i i

A xx a
a = b +

b Ω

∞ 
 
 
∑  (22) 

        In these equations am and bm are the equation of state constants with kij as adjustable 

parameter, Ω=0.34657 for the PR EoS, and ( )EA x∞  is calculated assuming 

that ( )EA x∞ ≈ ( )0
EA x ≈ ( )0

EG x .  
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        For a binary mixture: 

( )

2 2
1 1 2 2

1 12 2

01 1 2 2

1 2

2

1
m E

a a a
x b + x x b + x b

RT RT RT
b =

G xx a x a

b RT b RT ΩRT

     − − −     
     

− − −
 (23) 

( ) ( )1 2
1 2 12

12

1
1

2

a aa
b = b +b k

RT RT
 − − − 
 

 (24) 

( )01 1 2 2

1 2

E

m m

G xx a x a
a = b + +

b RT b RT Ω

 
 
 

 (25) 

        The excess Gibbs free energy( )0
EG x  in the mixing rules is calculated using an 

appropriate liquid–phase model. In this work, ( )0
EG x  has been calculated using the van Laar 

model that has been shown to perform well in high pressure phase equilibrium calculations 

[15]. 

        The van Laar model for ( )0
EG x  is described by the following equation [26]: 

( )

2

1
1 1

N N

j ij i j ijE N
j j0

i N N
i j

i j ij i i j ij
j j

x A x x A
G

= x
RT x

x x A + x x x A

 
 
 −

−  − 
 

∑ ∑
∑

∑ ∑
 (26) 

        For a binary mixture, the model reduces to: 

12 1 2

12
1 2

21

E
0G A x x

=
RT A

x + x
A

 
 
 

 
(27) 

        Thus, the problem is reduced here to determine the interaction parameters A12, A21, and 

the k12 parameter included in the combining thermodynamic model (PR-WS-VL), using 

available high pressure T–P–x data of vapor–liquid phase equilibrium of complex mixtures.        

These optimal interaction parameters were determined by minimizing the following objective 

function in data regression, using a hybrid algorithm based on particle swarm optimization 

and ant colony optimization: 

1

100
min

DN calc exp

exp
i=D i

P P
 F =

N P

−
∑  (28) 

-674-



 

where ND is the number of points in the experimental data set and P is the pressure of the 

ionic liquid in the vapor phase, the superscript denotes the experimental (exp) data point and 

calculated (calc) values. Figure 4 shows the flow diagram of the total algorithm development 

for the vapor–liquid equilibrium modeling. 

        Forty-six binary vapor–liquid phase systems containing supercritical carbon dioxide and 

imidazolium-based ionic liquids were considered in this study. The anions: 

bis(trifluoromethylsulfonyl)imide ([Tf2N]), hexafluorophosphate ([PF6]), tetrafluoroborate 

([BF4]), ethyl sulfate ([EtSO4]), dicyanamide ([DCA]), nitrate ([NO3]),  

trifuoromethanesulfonate ([TfO]), and tris(trifluoromethylsulfonyl)methide ([methide]), are 

the ones presenting the highest supercritical carbon dioxide solubility. Although both anion 

and cation influence the carbon dioxide solubility, the anion has the strongest influence [32]. 

And the most common 1-alkyl-3-methylimidazolium cations were used: 1-ethyl-3-

methylimidazolium ([C2mim]), 1-butyl-3-methylimidazolium ([C4mim]), 1-pentyl-3-

methylimidazolium ([C5mim]), 1-hexyl-3-methylimidazolium ([C6mim]), and 1-octyl-3-

methylimidazolium ([C8mim]).  

        Table 3 shows the thermodynamic properties of the substances involved in the study. In 

this Table, Tc is the critical temperature, Pc is the critical pressure, and ω is the acentric factor. 

The data for the ionic liquids were taken from the literature [33]. The data for supercritical 

fluids were taken from Daubert et al [34]. The details of the experimental vapor–liquid 

equilibrium data taken from references [35-40] are presented in Table 4. As seen in the Table, 

the temperature and pressure ranges are narrow and go from 313K to 333K and from 0 to 43 

MPa, respectively.  

 

5. Results and discussion 

        The PR-WS-VL model and the PSO algorithm were used to calculate k12, A12 and A21, 

and P by minimizing the Eq. (28), and considering the absolute deviations between 

experimental and calculated values of bubble point in the vapor–liquid phase of the ionic 

liquids on the supercritical carbon dioxide. In order to provide a substantial margin of safety, 

the range for the interaction parameters (A12 and A21 for VL model for the excess Gibbs free 

energy) was defined as [–5, 5]. This wide range was based on physical considerations [27], 

and is extremely likely that it will contain the optimal parameter values. In addition, the range 

for the WS parameter k12 with theoretical bases [31] was defined as [–1, 1]. Figure 5 shows 
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the interaction parameters determined with the proposed algorithm and based on the 

minimization 
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Figure 4. Flow diagram of the total algorithm used for the vapor–liquid equilibrium modeling. 
 

Table 3. Thermodynamic properties of the substances involved in this study. 

Substance Tc (K) Pc (MPa) ω 
[C2mim][Tf 2N] 1214.2 3.37 0.2818 
[C4mim][Tf 2N] 1265.0 2.76 0.2656 
[C5mim][Tf 2N] 1249.4 2.63 0.4123 
[C6mim][Tf 2N] 1287.3 2.39 0.3539 
[C8mim][Tf 2N] 1311.9 2.10 0.4453 
[C4mim][PF6] 708.9 1.73 0.7553 
[C8mim][PF6] 800.1 1.40 0.9069 
[C4mim][BF4] 632.3 2.04 0.8489 
[C8mim][BF4] 726.1 1.60 0.9954 

[C2mim][EtSO4] 1061.1 40.40 0.3368 
[C4mim][DCA] 1035.8 2.44 0.8419 
[C4mim][NO3] 946.3 2.73 0.6000 
[C4mim][TfO] 1158.0 2.90 0.4118 

[C4mim][methide] 1571.4 2.40 0.1320 
CO2 304.2 7.38 0.2236 

CHF3 299.30 4.79 0.2640 
 

 

of bubble pressure. These results show that the pressures of the ionic liquids in the vapor 

phase were correlated with low deviations between experimental and calculated values 

(deviations are below 4%). Results of the modeling are presented in Tables 5 to 7. Table 5 shows 

the optimum values and deviations calculated for the binary interaction parameters k12, A12 and 

A21 at 313K (19 systems). Table 6 shows the optimum values and deviations calculated for the 

binary interaction parameters k12, A12 and A21 at 323K (8 systems). Table 7 shows the optimum 

values and deviations calculated for the binary interaction parameters k12, A12 and A21 at 333K 

(19 systems). From the results contained in these Tables, is possible to determine the 

capability of the algorithm to correlate the experimental data according to the anion type: 

[Tf 2N] (1.5%) ~ [methide] (1.5%) < [PF6] (2.0%) < [EtSO4] (2.2%) < [NO3] (2.4%) < [DCA] 

(2.8%) < [BF4] (2.9%) < [TfO] (3.7%). And for the case of cation type: [C5mim] (1.5%) < 

[C2mim] (1.6%) ~ [C6mim] (1.6%) < [C8mim] (2.0%) < [C4mim] (2.4%).  One reason for the 

better results is the election of the thermodynamic model selected. In particular the parameters 

of the van Laar model included in the Wong–Sandler mixing rules. Among the many cubic 

EoS of van der Waals type nowadays available, the one proposed by Peng–Robinson EoS is 

widely used because of its simplicity and flexibility [27]. This equation has proven to 

combine the simplicity and accuracy required for the prediction and correlation of fluid 
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properties, in particular of phase equilibria [30,31]. The effect of the uncertainty of the critical 

properties in the phase equilibria calculations using PR-EoS has been investigated for several 

Table 4. Details on the phase equilibrium data of all systems used in this study. 

Component (1) Component (2) T (K) ∆xSCF ∆P (MPa) Ref 
CHF3 [C2mim][PF6] 313 0.5–1.0 5–22 [35] 

[C4mim][PF6] 323 0.1–0.8 1–18 [36] 
CO2 [C2mim][Tf 2N] 313 0.2–0.8 1–28 [37] 

323 0.2–0.8 1–34 
333 0.2–0.8 2–39 

[C4mim][Tf 2N] 313 0.3–0.8 2–13 [38] 

333 0.2–0.6 1–10 
333 0.2–0.7 2–13 

[C5mim][Tf 2N] 313 0.2–0.8 1–27 [37] 

323 0.2–0.8 1–38 
333 0.2–0.8 2–43 

[C6mim][Tf 2N] 333 0.0–0.7 0–10 [39] 

313 0.3–0.7 1–10 [38] 

313 0.3–0.8 2–12 
333 0.2–0.7 2–11 

[C8mim][Tf 2N] 313 0.3–0.8 1–11 [38] 

333 0.2–0.8 2–11 
[C4mim][NO3] 313 0.2–0.5 2–9 [39] 

323 0.2–0.5 2–9 
333 0.2–0.5 2–9 
313 0.1–0.5 1–9 [38] 

333 0.1–0.4 1–9 
[C4mim][PF6] 313 0.0–0.7 0–10 [39] 

323 0.0–0.7 0–9 
333 0.0–0.7 0–9 
313 0.3–0.7 2–15 [38] 

333 0.2–0.5 2–12 
313 0.0–0.6 0–10 [40] 

333 0.0–0.5 0–9 
[C8mim][PF6] 313 0.0–0.8 0–9 [39] 

323 0.0–0.7 0–9 
333 0.0–0.7 0–9 

[C4mim][BF4] 313 0.1–0.5 1–8 [38] 

333 0.1–0.4 1–9 
[C8mim][BF4] 313 0.0–0.7 0–9 [39] 

323 0.0–0.7 0–9 
333 0.0–0.7 0–9 

[C4mim][DCA] 313 0.2–0.6 1–10 [38] 

333 0.2–0.5 2–11 
[C4mim][TfO] 313 0.1–0.6 1–9 [38] 

333 0.1–0.5 2–10 
[C2mim][EtSO4] 313 0.0–0.4 0–9 [39] 

323 0.0–0.4 0–9 
333 0.0–0.5 0–9 

[C4mim][methide] 313 0.3–0.8 2–11 [38] 

333 0.3–0.7 2–11 

 
 

systems, but the general trend and curvature of the phase equilibrium curve is not altered [41]. 

The interaction parameters represent the functionality of the constants of the equation with the 

concentration. It has been recognized that van der Waals mixing rules with one or two 
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parameters do not give good results for systems complex [42]. The Wong–Sandler mixing 

rules have shown to be successful in these applications. In other works to improve the 
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Figure 5. Deviations of the binary interaction parameters estimated by minimization of the 
objective function with PSO algorithm. 
 

 

predictions in mixtures, a third interaction parameter has been introduced and has been shown 

that these mixing rules allow an accurate representation that when the van der Waals mixing 

rules are used [29]. Figure 6 shows the variation of the binary interaction parameters as a 

function of the absolute temperature. It can be observed the behavior of the parameters 

included in the PR-WS-VL model. The parameter k12 decreases with the temperature in most 

of the cases studied. For the mixing rules, parameter A12 shows a smooth behavior, and A21 

shows a dynamical behavior. This is not unusual in complex systems and in particular in 

mixtures containing ionic liquids. Figure 7 shows the inner behavior among the parameters. 

The different influence of the parameters and their range of variation provide the PR-WS-VL 
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model greater flexibility in the sense that the model can better capture the different behavior 

of the mixtures studied. 

 

Table 5. Optimum values and deviations calculated for the interaction parameters at 313K. 

No. Comp. (1) Comp. (2) ND k12 A12 A21 F 

1 CO2 [C2mim][Tf 2N] 9 0.022507 1.373719 –0.432528 0.7

2 CO2 [C4mim][Tf 2N] 8 0.328208 –0.208918 –0.343116 1.5

3 CO2 [C5mim][Tf 2N] 9 0.051633 0.485197 –0.172968 1.4

4 CO2 [C6mim][Tf 2N] 6 0.286430 –0.573135 –0.314959 1.0

5 CO2 [C6mim][Tf 2N] 8 0.306212 –1.616238 –0.520215 1.0

6 CO2 [C8mim][Tf 2N] 8 0.287135 –0.277280 –0.429227 1.5

7 CO2 [C4mim][NO3] 15 0.580020 0.170878 2.091295 2.1

8 CO2 [C4mim][NO3] 6 0.453010 0.554586 2.300081 3.3

9 CO2 [C4mim][PF6] 8 0.263818 0.597590 4.271429 2.0

10 CO2 [C4mim][PF6] 7 0.411644 0.329473 1.794402 2.6

11 CO2 [C4mim][PF6] 7 0.574130 0.346160 0.064369 1.4

12 CO2 [C8mim][PF6] 8 0.520032 0.702086 2.060538 1.2

13 CO2 [C4mim][BF4] 8 0.711712 0.416026 1.542849 3.1

14 CO2 [C8mim][BF4] 15 0.246681 0.566494 3.368683 3.6

15 CO2 [C4mim][DCA] 8 0.561975 0.072210 0.209615 3.1

16 CO2 [C4mim][TfO] 8 0.261265 0.243863 1.683275 3.4

17 CO2 [C2mim][EtSO4] 7 0.246364 0.633591 1.485990 1.9

18 CO2 [C4mim][methide] 8 0.453328 –3.706182 –0.148095 2.0

19 CHF3 [C2mim][PF6] 9 0.425688 1.887282 0.801336 1.7

 

Table 6. Optimum values and deviations calculated for the interaction parameters at 323K. 

No. Comp. (1) Comp. (2) ND k12 A12 A21 F 

1 CO2 [C2mim][Tf 2N] 9 0.013064 1.136329 –0.400236 0.9

2 CO2 [C5mim][Tf 2N] 9 0.039546 0.424277 –0.149092 2.0

3 CO2 [C4mim][NO3] 15 0.446882 0.098396 3.982439 2.7

4 CO2 [C4mim][PF6] 8 0.297458 0.403482 4.425513 2.3

5 CO2 [C8mim][PF6] 9 0.442001 0.483123 2.148675 2.2

6 CO2 [C8mim][BF4] 15 0.233528 0.520944 3.910373 3.3

7 CO2 [C2mim][EtSO4] 7 0.178948 0.462659 1.980020 2.3

8 CHF3 [C4mim][PF6] 12 0.439714 –0.468050 0.841052 3.5
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Table 7. Optimum values and deviations calculated for the interaction parameters at 333K. 

No. Comp. (1) Comp. (2) ND k12 A12 A21 F 

1 CO2 [C2mim][Tf 2N] 9 0.006276 0.996485 –0.375292 1.0 

2 CO2 [C4mim][Tf 2N] 6 0.194922 –0.387085 –0.321831 2.4 

3 CO2 [C4mim][Tf 2N] 8 0.220644 –1.030649 –0.518951 1.8 

4 CO2 [C5mim][Tf 2N] 9 0.028576 0.450108 –0.138636 1.2 

5 CO2 [C6mim][Tf 2N] 7 0.443719 0.568007 0.592748 3.1 

6 CO2 [C6mim][Tf 2N] 8 0.176286 –0.017627 –0.005778 1.3 

7 CO2 [C8mim][Tf 2N] 8 0.225224 –0.494772 –0.774673 1.0 

8 CO2 [C4mim][NO3] 15 0.426896 0.022651 2.126675 2.7 

9 CO2 [C4mim][NO3] 6 0.014869 0.837501 1.609614 1.3 

10 CO2 [C4mim][PF6] 8 0.341022 0.223758 3.535592 2.6 

11 CO2 [C4mim][PF6] 7 0.488527 0.310290 0.742218 2.9 

12 CO2 [C4mim][PF6] 10 0.620025 0.443629 0.040391 0.4 

13 CO2 [C8mim][PF6] 8 0.414298 0.384503 0.792178 1.3 

14 CO2 [C4mim][BF4] 7 0.444785 0.891908 2.868427 2.7 

15 CO2 [C8mim][BF4] 15 0.451623 0.281490 2.145473 2.0 

16 CO2 [C4mim][DCA] 8 0.599104 –0.977082 –0.028139 2.5 

17 CO2 [C4mim][TfO] 7 0.111228 0.256481 1.682555 4.0 

18 CO2 [C2mim][EtSO4] 7 0.151572 0.121284 1.154691 2.4 

19 CO2 [C4mim][methide] 8 0.339021 –2.837799 –0.520582 1.0 

 

        A comparison was made between of the results obtained with the PSO algorithm and 

results obtained with Levenberg–Marquart algorithm (LM). Note that, LM [43] is commonly   

used in these problems. Figure 8 shows the average pressure deviations found with PSO and 

LM for all ionic liquids considered in this study. As is observed in the figures, the best 

method to estimate the vapor–liquid equilibrium of the systems used is the PSO algorithm.  

        Thus, the results show that the application of PSO algorithm on thermodynamic model 

(PR-WS-VL), was crucial, and that the proposed algorithm is a good tool to optimize the 

interaction parameters to describe the vapor–liquid equilibrium of several systems containing 

supercritical fluids and ionic liquids at high-pressures. 
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Figure 7. Inner behavior among the parameters of the PR-WS-VL model. 
 

 

6. Conclusions 

        In this study, high-pressure vapor–liquid equilibrium data of binary mixtures containing 

supercritical fluids and imidazolium ionic liquids were correlated using a thermodynamic 

model optimized with a particle swarm algorithm. The Peng–Robinson (PR) equation of state 

the Wong–Sandler (WS) mixing rules including the van Laar (VL) model for the excess 

Gibbs free energy, were used as thermodynamic model. Forty-six binary systems taken from 

literature were selected for this study, and the optimization algorithm was used to determine 

the binary interaction parameters of each system. The algorithm was development to 

minimize the difference between calculated and experimental bubble pressure. 

        Based on the results and discussion presented in this study, the following main 

conclusions were derived: (i) PSO algorithm is appropriate to describe the vapor-liquid 

equilibrium of binary systems containing supercritical fluids and ionic liquids; (ii) the low  
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Figure 8. Comparison between PSO (●) and LM (□) optimizations used in the VLE modeling. 
(a) Systems at 313K, (b) systems at 323K, and (c) systems at 333K. In these figures, the 
systems are listed as in Table 5 to 7. 
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deviations obtained with the proposed PSO algorithm indicate that it can estimate the binary 

interaction parameters with better accuracy than other algorithms available in the literature; 

(iii) the values calculated with the PSO algorithm are believed to be accurate enough for 

engineering calculations, among other uses. 
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