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Abstract

A new two-step high algebraic order (tenth order) two-step hybrid (Runge-Kutta type)
method is developed in this paper. For this new method we require the vanishing of its phase-lag
and its first and second derivatives. We will study the effects of the vanishing of the phase-lag
and its first and second derivatives of the specific proposed hybrid two-step method on the
efficiency of the method. In more details in this paper we will investigate the following:

• the development of the method

• the local truncation error of the new method and its comparison with other methods in
the literature (comparative local truncation error analysis)

• the stability (interval of periodicity) of the obtained method using frequency for the scalar
test equation different than the frequency used in the scalar test equation for phase-lag
analysis (stability analysis).

• the efficiency of the new produced method applying it on the resonance problem of the
Schrödinger equation

We will prove that this kind of methods are efficient for the numerical solution of the Schrödinger

equation and related initial-value or boundary-value problems with periodic and/or oscillating

solutions.
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1 Introduction

The present paper studies the development of a high order numerical method for the

numerical solution of the Schrödinger equation and related problems. We apply the

new algorithm on the approximate solution of the radial time independent Schrödinger

equation and on the numerical approximation of the coupled Schrödinger equations. It is

very well known that the Schrödinger equation and its numerical solution is very important

in Computational Chemistry (see [1] and references therein).

More specifically, in this paper we will obtain the first time in the literature a new two-

step high algebraic order (tenth order) two-step hybrid (Runge-Kutta type) method. In

the most well known cases in the literature multistep methods need many steps or stages in

order to be high algebraic order. This has cost on the accuracy and/or on computational

cost. This is solved with the new method since it has only three stages and is two-step.

With the method presented in this paper, we give a methodology to obtain high algebraic

order two-step methods (i.e. multistep methods with the fewer step (two)) which also

have other important properties (vanished phase-lag and its derivatives).

The above mentioned method is developed for the numerical solution of special second

order initial value problems of the form:

y′′(x) = f(x, y), y(x0) = y0 and y′(x0) = y′0 (1)

with periodical and/or oscillatory solution.

More specifically, systems of ordinary differential equations of second order in which

the first derivative y′ does not appear explicitly are the models of the above mentioned

problems.

2 Phase-lag analysis of symmetric 2 k multistep

methods

For the the numerical solution of the initial value problem (1), finite difference methods

of the form

k∑
i=−k

ci yn+i = h2
k∑

i=−k

bi f(xn+i, yn+i) (2)
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can be used. In the above mentioned method the integration interval [a, b] is divided into

k equally spaced intervals i.e. {xi}ki=−k ∈ [a, b] and the stepsize of integration h is given

by h = |xi+1 − xi|, i = 1 − k(1)k − 1. These methods are called multistep. For the

specific multistep method the number of steps is equal to 2 k.

Remark 1. The method (2) is called symmetric if and only if c−i = ci and b−i = bi,

i = 0(1)k.

Remark 2. The below mentioned linear operator

L(x) =
k∑

i=−k

ci y(x+ ih)− h2
k∑

i=−k

bi y
′′(x+ ih) (3)

is associated with the Multistep Method (2), where y ∈ C2.

Definition 1. [2] The multistep method (2) is called algebraic of order p if the associ-

ated linear operator L given by (3) vanishes for any linear combination of the linearly

independent functions 1, x, x2, . . . , xp+1.

If we apply the symmetric 2 k-step method, (i = −k(1)k), to the scalar test equation

y′′ = −φ2 y (4)

we have the following difference equation:

Ak(v) yn+k + ...+ A1(v) yn+1 + A0(v) yn + A1(v) yn−1 + ...+ Ak(v) yn−k = 0 (5)

where v = φh, h is the step length and Aj(v) j = 0(1)k are polynomials of v.

The characteristic equation associated with (5) is given by:

Ak(v)λk + ...+ A1(v)λ+ A0(v) + A1(v)λ−1 + ...+ Ak(v)λ−k = 0 (6)

Definition 2. [3] A symmetric 2 k-step method with characteristic equation given by (6) is

said to have an interval of periodicity (0, v20) if, for all v ∈ (0, v20), the roots λi, i = 1(1)2 k

of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi| ≤ 1, i = 3(1)2 k (7)

where θ(v) is a real function of v.
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Definition 3. [4], [5] For any method corresponding to the characteristic equation (6) the

phase-lag is defined as the leading term in the expansion of

t = v − θ(v) (8)

Then if the quantity t = O(vp+1) as v →∞, the order of phase-lag is p.

Definition 4. [6] A method is called phase-fitted if its phase-lag is equal to zero

Theorem 1. [4] The symmetric 2 k-step method with characteristic equation given by

(6) has phase-lag order p and phase-lag constant c given by

−cvp+2 +O(vp+4) =
2Ak(v) cos(k v) + ...+ 2Aj(v) cos(j v) + ...+ A0(v)

2 k2Ak(v) + ...+ 2 j2Aj(v) + ...+ 2A1(v)
(9)

Remark 3. We can use the above mentioned formula for a direct computation of the the

phase-lag of any symmetric 2 k-step method.

Remark 4. For the purpose of our paper , the symmetric two-step method has phase-lag

order p and phase-lag constant c given by:

−cvp+2 +O(vp+4) =
2A1(v) cos(v) + A0(v)

2A1(v)
(10)

3 The new high algebraic order hybrid two–step

method with vanished phase–lag and its first

and second derivatives

Consider the family of methods

ŷn = yn − a0 h2
(
fn+1 − 2 fn + fn−1

)
− 2 a1 h

2 fn

ỹn = yn − a2 h2
(
fn+1 − 2 f̂n + fn−1

)
yn+1 − 2 yn + yn−1 = h2

[
b1 (fn+1 + fn−1) + b0 f̃n

]
(11)

where fi = y′′ (xi, yi) , i = −2(1)2 and aj, j = 0(1)2 and bi, i = 0, 1 are free parameters.
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3.1 Development of the Method

We will investigate the family of methods (11), with:

b0 =
5

6
, b1 =

1

12
(12)

In order the above mentioned method (11) with coefficients (12) to have vanished

phase-lag and its first and second derivatives the following equations must hold:

Phase− Lag(PL) =
1

2

T0

1 + v2
(

1
12

+ 5
6
a2v2 (−2 a0v2 + 1)

) = 0 (13)

First Derivative of the Phase− Lag =
T1

(20 v6a0a2 − 10 v4a2 − v2 − 12)2
= 0 (14)

Second Derivative of the Phase− Lag =
T2

(20 v6a0a2 − 10 v4a2 − v2 − 12)3
= 0 (15)

where

T0 = 2
(
1 + v2

(
1/12 + 5/6 a2v

2
(
−2 a0v

2 + 1
)))

cos (v)

−2 + v2
(
5/6 + 5/6 a2v

2
(
4 a0v

2 − 4 a1v
2 − 2

))
T1 = −400 sin (v) v12a0

2a2
2 + 400 sin (v) v10a0a2

2 − 400 v9a1a2
2

+40 sin (v) v8a0a2 − 100 sin (v) v8a2
2 + 480 sin (v) v6a0a2 + 480 v7a0a2

−80 v7a1a2 − 20 sin (v) v6a2 − 1440 v5a1a2 − 240 sin (v) v4a2

−120 v5a2 − sin (v) v4 − 24 sin (v) v2 − 144 sin (v) + 144 v

T2 = −1728− 60 cos (v) v10a0a2 − 1440 cos (v) v8a0a2

−8640 cos (v) v6a0a2 + 86400 v4a1a2 + 240 v8a1a2

+4000 v12a1a2
3 + 300 cos (v) v10a2

2 + 8160 v6a1a2

+4320 cos (v) v4a2 + 1200 v10a1a2
2 + 1000 cos (v) v12a2

3

−72000 v6a0a2 + 3600 cos (v) v8a2
2 + 30 cos (v) v8a2 + 720 cos (v) v6a2

−48000 v12a0
2a2

2 + 21600 v10a0a2
2 − 1440 v8a0a2

−3600 v8a2
2 + 120 v6a2 + 17280 v4a2 + 36 cos (v) v4 + cos (v) v6 + 432 v2

+1728 cos (v) + 1200 cos (v) v14a0
2a2

2 − 6000 cos (v) v14a0a2
3
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+14400 cos (v) v12a0
2a2

2 − 1200 cos (v) v12a0a2
2 − 14400 cos (v) v10a0a2

2

+24000 v14a0a1a2
3 + 8000 v12a0a1a2

2 + 201600 v10a0a1a2
2

−8000 cos (v) v18a0
3a2

3 + 12000 cos (v) v16a0
2a2

3 + 432 cos (v) v2

Solving the above system of equations (13)-(15), the coefficients of the new proposed

hybrid method are obtained :

a0 =
1

4

T3
T4
, a1 =

1

2

T5
T6

a2 = −1

5

T7
T8

(16)

where

T3 = − (cos (v))2 v4 + 7 sin (v) cos (v) v3 + 11 cos (v) v4

+5 v3 sin (v)− 16 (cos (v))2 v2 + 2 v4 + 216 cos (v) v sin (v)

+8 cos (v) v2 − 216 v sin (v) + 288 (cos (v))2 + 8 v2 − 576 cos (v) + 288

T4 = v3
(
− (cos (v))2 v3 + 5 sin (v) cos (v) v2

+5 cos (v) v3 + 25 sin (v) v2 − 18 (cos (v))2 v

+2 v3 + 126 sin (v) cos (v)− 18 cos (v) v − 126 sin (v) + 36 v
)

T5 = (cos (v)− 1)
(

3 cos (v) v4 + 15 v3 sin (v)

−4 (cos (v))2 v2 + 6 v4 − 16 cos (v) v2 − 144 (cos (v))2

+20 v2 + 288 cos (v)− 144
)

T6 = v3
(
− (cos (v))2 v3 + 5 sin (v) cos (v) v2

+5 cos (v) v3 + 25 sin (v) v2 − 18 (cos (v))2 v

+2 v3 + 126 sin (v) cos (v)− 18 cos (v) v − 126 sin (v) + 36 v
)

T7 = − (cos (v))2 v3 + 5 sin (v) cos (v) v2 + 5 cos (v) v3

+25 sin (v) v2 − 18 (cos (v))2 v + 2 v3 + 126 sin (v) cos (v)

−18 cos (v) v − 126 sin (v) + 36 v

T8 = v4
(
− (cos (v))2 v + 3 sin (v) cos (v)

− cos (v) v − 3 sin (v) + 2 v
)
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If the above formulae given by (16) are subject to heavy cancellations for some values

of |v| (i.e. if for some values of |v| the denominators T4, T6 and T8 become equal to zero)

then the following Taylor series expansions should be used :

a0 = − 1

112
− 5 v2

14112
− 24229 v4

1695133440
− 2275439 v6

3915758246400

− 6318217679 v8

266537832315955200
− 2613882395959 v10

2699618183157063168000

− 13343835818812619 v12

337249261607259484849766400
− 8522252256417086767 v14

5270015667409910714725908480000

− 1209211901266228749571763 v16

18294690748912147929028120059248640000

− 114171176529808649110433243 v18

42260735629987061716054957336864358400000

+ . . .

a1 =
1

8
− 5 v2

1232
+

13991 v4

147987840
− 257 v6

3155556096

+
2494780423 v8

69807527511321600
+

146040173101 v10

122554095298876200960

+
1475700332690009 v12

29442395854602018518630400
+

213102124861569883 v14

104284966117000349592988876800

+
133435604052085795059337 v16

1597155541571695454121502544855040000

+
503954384415931537115213 v18

147577172041224659960826835144605696000
+ . . .

a2 =
1

300
+

v2

27720
− 227 v4

504504000
− 593 v6

12713500800

− 6343 v8

3072364162560
− 19737049 v10

265605881853312000

− 70569265127 v12

29004162298381670400000
− 13956874326061 v14

184918937149562177802240000

− 22513737506177 v16

9957173538822578804736000000

− 3782807166869 v18

57227544759969768709324800000
+ . . . (17)

The behavior of the coefficients is given in the following Figure 1.

The local truncation error of the new obtained hybrid method (11) (mentioned as

ExpTwoStepPC) with the coefficients given by (16) - (17) is given by:

LTEExplTwoStepPC = − 1

23950080
h12

(
q(12)n +3φ2 q(10)n +3φ4 q(8)n +φ6 q(6)n

)
+O

(
h14
)

(18)
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Figure 1: Behavior of the coefficients of the new proposed method given by (16) for several
values of v = φh.

4 Comparative error analysis

In this section we will study the local truncation error analysis considering the test prob-

lem:

y′′(x) = (V (x)− Vc +G) y(x) (19)

where V (x) is a potential function, Vc a constant value approximation of the potential for

the specific x, G = Vc − E and E is the energy.

The methods mentioned below are investigated :
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4.1 Classical Method (i.e. the method (11) with constant coef-
ficients)

LTECL = − 1

23950080
h12 q(12)n +O

(
h14
)

(20)

4.2 The New Proposed Method with Vanished Phase-Lag and
its First and Second Derivatives Produced in Section 3

LTEExplTwoStepPC = − 1

23950080
h12

(
q(12)n + 3φ2 q(10)n + 3φ4 q(8)n + φ6 q(6)n

)
+O

(
h14
)
(21)

The procedure contains the following stages

• Based on the test problem (19), the derivatives which appear in the formulae of

the Local Truncation Errors are computed. The expressions of some derivatives are

presented in the Appendix.

• Using the expressions of the derivatives presented in the Appendix, we substitute

them in the formulae of the Local Truncation Error. Therefore, we produce formulae

of the local truncation errors which are dependent on the energy E.

• The study is based on the two cases for the parameter G (which will appear in the

expressions of the Local Truncation Error obtained from the above mentioned stage

of the algorithm for the comparative local truncation error analysis) :

1. The energy and the potential are closed each other. Consequently G = Vc−E ≈

0 i.e. the value of the parameter G is approximately equal to zero. Therefore,

all the terms in the expressions of the local truncation error with several powers

of G are approximately equal to zero (the expression of the Local Truncation

Error can be written as: LTE = C0+C1G+C2G
2+C3G

3+. . .+CnG
n. In the

case that G ≈ 0 the terms C1G, C2G
2, C3G

3, . . . , CnG
n are ≈ 0. Therefore

only the term C0 exists). As a result of the above remarks, we consider only

the terms of the expressions of the local truncation error for which the power

to G is equal to zero i.e. the terms which are free from G. In this case (free

from G terms) the local truncation error for the classical method (constant

coefficients) and the methods with vanishing phase-lag and its derivatives are

the same since the expressions free from G of the local truncation errors in
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both cases mentioned above are the same. Therefore, for these values of G, the

methods are of comparable accuracy.

2. G >> 0 or G << 0. Then |G| is a large number. In these cases we wish to

have expressions of the local truncation error with terms with minimum power

of G.

• Finally the asymptotic expansions of the Local Truncation Errors are calculated.

The following asymptotic expansions of the Local Truncation Errors are obtained

based on the analysis presented above :

4.3 Classical Method

LTECL = − 1

23950080
h12

(
y (x) G6 + · · ·

)
+O

(
h14
)

(22)

4.4 The New Proposed Method with Vanished Phase-Lag and
its First and Second Derivatives Produced in Section 3

LTEExplTwoStepPC = − 1

5987520
h12

((
d2

dx2
g (x)

)
y (x) G4 + · · ·

)
+O

(
h14
)

(23)

From the above equations we have the following theorem:

Theorem 2. • Classical Method (i.e. the method (11) with constant coefficients):

For this method the error increases as the sixth power of G.

• High Algebraic Order Two-Step Method with Vanished Phase-lag and its First and

Second Derivatives developed in Section 3: For this method the error increases as

the fourth power of G.

So, for the approximate integration of the time independent radial Schrödinger equation

the New Obtained High Algebraic Order Method with Vanished Phase-Lag and its First

and Second Derivatives is the most efficient from theoretical point of view, especially for

large values of |G| = |Vc − E|.
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5 Stability analysis

In order to investigate the stability of the new obtained method, we apply it to the scalar

test equation:

q′′ = −ω2 q. (24)

where ω 6= φ, i.e. the frequency of the scalar test equation of the phase-lag analysis (φ)

- studied above - is different with the frequency of the scalar test equation used for the

stability analysis, which will be studied here.

The application to the scalar test equation (24) leads to the following difference equa-

tion:

A1 (s, v) (yn+1 + yn−1) + A0 (s, v) yn = 0 (25)

where

A1 (s, v) =
1

12

T9

v7
(
(cos (v))2 v − 3 sin (v) cos (v) + cos (v) v + 3 sin (v)− 2 v

)
A0 (s, v) =

1

6

T10

v7
(
(cos (v))2 v − 3 sin (v) cos (v) + cos (v) v + 3 sin (v)− 2 v

) (26)

where

T9 = −288 (cos (v))2 s6 + 576 cos (v) s6 + 72 s4v4

−2 s6v4 + 4 s4v6 − 2 s2v8 − 8 s6v2 + 12 (cos (v))2 v8

+12 cos (v) v8 + 36 sin (v) v7 − 288 s6 − 24 v8

−7 sin (v) cos (v) s6v3 + 10 sin (v) cos (v) s4v5

−3 sin (v) cos (v) s2v7 − 216 sin (v) cos (v) s6v

+252 sin (v) cos (v) s4v3 − 8 cos (v) s6v2

+50 sin (v) s4v5 − 36 sin (v) cos (v) v7 + 10 cos (v) s4v6

−36 cos (v) s4v4 − 5 sin (v) s6v3 − 2

(cos (v))2 s4v6 + 3 sin (v) s2v7

+ (cos (v))2 s2v8 − 36 (cos (v))2 s4v4

−252 sin (v) s4v3 − 11 cos (v) s6v4

+16 (cos (v))2 s6v2 + (cos (v))2 s6v4

+ cos (v) s2v8 + 216 sin (v) s6 v

T10 = −576 (cos (v))2 s6 + 288 cos (v) s6
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−72 s4v4 + 14 s6v4 − 4 s4v6 − 10 s2v8 + 48 s6v2

−12 (cos (v))2 v8 − 12 cos (v) v8 − 36 sin (v) v7 + 24 v8

+8 (cos (v))3 s6v2 − 23 sin (v) cos (v) s6v3

−10 sin (v) cos (v) s4v5 − 15 sin (v) cos (v) s2v7

+216 sin (v) cos (v) s6v − 252 sin (v) cos (v) s4v3

+288 (cos (v))3 s6 − 64 cos (v) s6v2

−50 sin (v) s4v5 + 36 sin (v) cos (v) v7 − 10 cos (v) s4v6

+36 cos (v) s4v4 + 35 sin (v) s6v3 + 2 (cos (v))2 s4v6

+15 sin (v) s2v7 + 5 (cos (v))2 s2v8

+36 (cos (v))2 s4v4 + 252 sin (v) s4v3

+5 cos (v) s6v4 + 8 (cos (v))2 s6v2

−7 (cos (v))2 s6v4 + 5 cos (v) s2v8 − 216 sin (v) s6v

s = ω h and v = φh

Based on the analysis presented in Section 2, we have the following definitions:

Definition 5. (see [3]) We call P-stable a multistep method with interval of periodicity

equal to (0,∞).

Definition 6. We call singularly almost P-stable a multistep method with interval of

periodicity equal to (0,∞)−S 2. The term singularly almost P-stable method is used only

in the cases when the frequency of the scalar test equation for the phase-lag analysis is

equal to the frequency of the scalar test equation for the stability analysis, i.e. ω = φ.

The s− v plane for the method obtained in this paper is shown in Figure 2.

Remark 5. On the s− v region:

• The shadowed area denotes where the method is stable,

• The white area denotes the region where the method is unstable.

Remark 6. There are a lot of real problems in sciences and engineering for which their

mathematical models require the frequencies s and v to be equal. Therefore, it is necessary

2where S is a set of distinct points
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Figure 2: s − v plane of the new obtained two-step high order method with vanishing
phase-lag and its first and second derivatives

to observe the surroundings of the first diagonal of the s− v plane. These are the

cases of the mathematical models which have only one frequency per differential equation

in the model. For these problems we have to examine the case where the frequency of

the scalar test equation used for the phase-lag analysis is equal with the frequency of the

scalar test equation used for the stability analysis. See for example the time independent

Schrödinger equation and the coupled equations arising from the Schrödinger equation.

Based on the above remark, we study the case where the frequency of the scalar test

equation used for the phase-lag analysis is equal with the frequency of the scalar test

equation used for the stability analysis, i.e. we investigate the case where s = v (i.e. see

the surroundings of the first diagonal of the s − v plane). The above mentioned study

leads to the conclusion that the new obtained method has interval of periodicity equal to:

(0,∞), i.e. is P-stable.

The above study leads to the following theorem:

Theorem 3. The method obtained in section 3:

• is of tenth algebraic order,

• has the phase-lag and its first and second derivatives equal to zero
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• has an interval of periodicity equals to: (0,∞), i.e. is P-stable when the frequency

of the scalar test equation used for the phase-lag analysis is equal with the frequency

of the scalar test equation used for the stability analysis

6 Numerical results

The efficiency of the new proposed numerical scheme will be investigated in this section,

studying:

• the numerical solution of the radial time-independent Schrödinger equation and

• the numerical solution of coupled differential equations of the Schrödinger type

6.1 Radial time–independent Schrödinger equation

The radial time independent Schrödinger equation can be written as :

y′′(r) = [l(l + 1)/r2 + V (r)− k2] y(r). (27)

where

1. The function W (r) = l(l+1)/r2+V (r) is called the effective potential. This satisfies

W (x)→ 0 as x→∞,

2. The quantity k2 is a real number denoting the energy,

3. The quantity l is a given integer representing the angular momentum,

4. V is a given function which denotes the potential.

This is a boundary value problem which has the following boundary conditions :

y(0) = 0 (28)

and another boundary condition, for large values of r, determined by physical properties

and characteristics of the specific problem.

Since the proposed method in this paper belongs to the category of the frequency

dependent methods, it is necessary the parameter φ of the coefficients of the method

(v = φh) to be determined. For the category of problems of the radial Schrödinger

equation, the parameter φ (for l = 0) is given by :
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φ =
√
|V (r)− k2| =

√
|V (r)− E| (29)

where V (r) is the potential and E is the energy.

6.1.1 Woods–Saxon potential

The well known Woods-Saxon potential is used for our numerical experiments. The model

of the Woods-Saxon potential is given by :

V (r) =
u0

1 + q
− u0 q

a (1 + q)2
(30)

with q = exp
[
r−X0

a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in Figure 3.

Figure 3: The Woods-Saxon potential.

We use the approximation of the potential using some critical points on the description

of the potential. We use these critical points in order to determine the value of the

parameter φ (see for details [7]).

For the purpose of our tests, we choose φ as follows (we use the methodology presented

in [8] and [9]) :

φ =



√
−50 + E, for r ∈ [0, 6.5− 2h],
√
−37.5 + E, for r = 6.5− h
√
−25 + E, for r = 6.5
√
−12.5 + E, for r = 6.5 + h
√
E, for r ∈ [6.5 + 2h, 15]

(31)
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For example, in the point of the integration region r = 6.5− h, the value of φ is equal

to:
√
−37.5 + E. So, w = φh =

√
−37.5 + E h. In the point of the integration region

r = 6.5− 3h, the value of φ is equal to:
√
−50 + E, etc.

6.1.2 Radial Schrödinger equation – the resonance problem

The first numerical test for the efficiency of the obtained new high order hybrid is the

numerical solution of the radial time independent Schrödinger equation (27) with the

Woods-Saxon potential (30).

In order to proceed with the numerical solution of the above mentioned problem, it is

necessary to approximate the true interval of integration, which is equal to r ∈
(

0,∞
)

,

by a finite one. We use the integration interval r ∈ [0, 15]. The domain of energies in

which we will solve the above problem is equal to: E ∈ [1, 1000].

For r greater than some value R and for the case of positive energies, E = k2, the

radial Schrödinger equation effectively reduces to

y′′ (r) +

(
k2 − l(l + 1)

r2

)
y (r) = 0 (32)

The reason for this is faster decrease of the potential than the term l(l+1)
r2

.

In the above mathematical model, the differential equation has linearly independent

solutions krjl (kr) and krnl (kr), where jl (kr) and nl (kr) are the spherical Bessel and

Neumann functions respectively. Thus, the solution of equation (27) (when r →∞), has

the asymptotic form

y (r) ≈ Akrjl (kr)−Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(33)

where δl is the phase shift that may be calculated from the formula

tan δl =
y (r2)S (r1)− y (r1)S (r2)

y (r1)C (r1)− y (r2)C (r2)
(34)

for distinct r1 and r2 points in the asymptotic region (we choose r1 as the right-hand

end point of the interval of integration and r2 = r1 − h) with S (r) = krjl (kr) and

C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need

yj, j = 0, 1 before starting a two-step method. From the initial condition, we obtain

y0. The value y1 is obtained by using high order Runge-Kutta-Nyström methods(see [10]
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and [11]). With these starting values, we evaluate at r2 of the asymptotic region the phase

shift δl.

For the case of positive energies we have the problem known as resonance problem.

Two forms for this problem:

• finding the phase-shift δl or

• finding those E, for E ∈ [1, 1000], at which δl = π
2
.

We actually solve the latter problem, known as the resonance problem.

The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)

for large r. (35)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance

problem using:

• The eighth order multi-step method developed by Quinlan and Tremaine [12], which

is indicated as Method QT8.

• The tenth order multi-step method developed by Quinlan and Tremaine [12], which

is indicated as Method QT10.

• The twelfth order multi-step method developed by Quinlan and Tremaine [12], which

is indicated as Method QT12.

• The fourth algebraic order method of Chawla and Rao with minimal phase-lag [13],

which is indicated as Method MCR4

• The exponentially-fitted method of Raptis and Allison [14], which is indicated as

Method MRA

• The hybrid sixth algebraic order method developed by Chawla and Rao with mini-

mal phase-lag [15], which is indicated as Method MCR6

• The classical form of the Two-Step Hybrid Method developed in Section 3, which

is indicated as Method NMCL 3.

3with the term classical we mean the method of Section 3 with constant coefficients
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• The Phase-Fitted Method (Case 1) developed in [2], which is indicated as Method

NMPF1

• The Phase-Fitted Method (Case 2) developed in [2], which is indicated as Method

NMPF2

• The Method developed in [16] (Case 2), which is indicated as Method NMC2

• The Method developed in [16] (Case 1), which is indicated as Method NMC1

• The New Obtained Two-Step Hybrid Method developed in Section 3, which is in-

dicated as Method NM2SH2DV

CPU time (in seconds)

E
rr

m
a
x

Figure 4: Accuracy (Digits) for several values of CPU Time (in Seconds) for the eigenvalue
E2 = 341.495874. The nonexistence of a value of Accuracy (Digits) indicates that for this
value of CPU, Accuracy (Digits) is less than 0

We defined some reference values using the well known two-step method of Chawla

and Rao [15] with small step size for the integration. We then compared the numerically

calculated eigenenergies with these reference values. In Figures 4 and 5, we present the

maximum absolute error Errmax = |log10 (Err) | where

Err = |Ecalculated − Eaccurate| (36)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several values

of CPU time (in seconds). We note that the CPU time (in seconds) counts the computa-

tional cost for each method.
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CPU time (in seconds)

E
rr

m
a

x

Figure 5: Accuracy (Digits) for several values of CPU Time (in Seconds) for the eigenvalue
E3 = 989.701916. The nonexistence of a value of Accuracy (Digits) indicates that for this
value of CPU, Accuracy (Digits) is less than 0

6.1.3 Remarks on the numerical results for the radial Schrödinger equation

From the numerical tests mentioned above, we have the following :

1. The classical form of the Two-Step Hybrid Method developed in Section 3, which is

indicated as Method NMCL is more efficient than the fourth algebraic order

method of Chawla and Rao with minimal phase-lag [13], which is indicated as

Method MCR4, the exponentially-fitted method of Raptis and Allison [14], which

is indicated as Method MRA, the Phase-Fitted Method (Case 1) developed in

[2], which is indicated as Method NMPF1, the Phase-Fitted Method (Case 2)

developed in [2], which is indicated as Method NMPF2, the Method developed

in [16] (Case 2), which is indicated as Method NMC2 and the eighth order multi-

step method developed by Quinlan and Tremaine [12], which is indicated as Method

QT8.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine

[12], which is indicated as Method QT10 is more efficient than the fourth algebraic

order method of Chawla and Rao with minimal phase-lag [13], which is indicated as

Method MCR4. The Method QT10 is also more efficient than the eighth order

multi-step method developed by Quinlan and Tremaine [12], which is indicated as

Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth

algebraic order method developed by Chawla and Rao with minimal phase-lag [15],

which is indicated as Method MCR6 for large CPU time and less efficient than
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the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine

[12], which is indicated as Method QT12 is more efficient than the tenth order

multistep method developed by Quinlan and Tremaine [12], which is indicated as

Method QT10

4. The Phase-Fitted Method (Case 1) developed in [2], which is indicated as Method

NMPF1 is more efficient than the exponentially-fitted method of Raptis and Allison

[14] and the Phase-Fitted Method (Case 2) developed in [2], which is indicated as

Method NMPF2

5. The Method developed in [16] (Case 2), which is indicated as Method NMC2 is

more efficient than the exponentially-fitted method of Raptis and Allison [14] and

the Phase-Fitted Method (Case 2) developed in [2], which is indicated as Method

NMPF2 and the Phase-Fitted Method (Case 1) developed in [2], which is indicated

as Method NMPF1

6. The Method developed in [16] (Case 1), which is indicated as Method NMC1, is

the more efficient than all the other methods mentioned above.

7. The New Obtained Method developed in Section 3, which is indicated as Method

NM2SH2DV, is the most efficient one.

6.2 Error estimation

Last decades many methods have been proposed for the estimation of the local truncation

error (LTE) in the numerical solution of systems of differential equations (see for example

[2]- [60]).

In the present paper we base our local error estimation technique on an embedded pair

of multistep methods and on the fact that when the algebraic order is maximal then we

have better approximation for the solution for the problems with oscillatory or periodical

behavior.

We use as lower order solution yLn+1, for the purpose of local error estimation, the

method developed in [60] - which is of eight algebraic order. As higher-order solution

yHn+1 we use the method developed in this paper - which is of tenth algebraic order. Now,

-638-



the local truncation error in yLn+1 is estimated by

LTE =| yHn+1 − yLn+1 | (37)

If the local error of acc is requested and the step size used for the nth step is hn, the

estimated step size for the (n+1)st step, which would give a local error equal to acc, must

be

hn+1 = hn

( acc

LTE

) 1
q

(38)

where q is the algebraic order of the method.

We mention that the local truncation error estimate is based on the lower order solution

yLn+1. However, if the error estimate is less than acc, we adopt the widely used procedure of

performing local extrapolation. Thus, although an estimate of the local error is controlled

in lower order solution yLn+1, it is the higher-order solution yHn+1 which is accepted at each

point.

6.3 Coupled differential equations

There are many problems in quantum chemistry, material science, theoretical physics,

atomic physics, physical chemistry and chemical physics which can be transformed to the

solution of coupled differential equations of the Schrödinger type

We write the close-coupling differential equations of the Schrödinger type as:[
d2

dx2
+ k2i −

li(li + 1)

x2
− Vii

]
yij =

N∑
m=1

Vimymj (39)

for 1 ≤ i ≤ N and m 6= i.

In the present illustrations we investigate the case in which all channels are open. So

we have the following boundary conditions (see for details [17]):

yij = 0 at x = 0 (40)

yij ∼ kixjli(kix)δij +

(
ki
kj

)1/2

Kijkixnli(kix) (41)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively. The

present method can also be used for problems involving closed channels.

Based on the detailed analysis developed in [17] and defining a matrix K ′ and diagonal

matrices M , N by:

K ′ij =

(
ki
kj

)1/2

Kij
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Mij = kixjli(kix)δij

Nij = kixnli(kix)δij

we find that the asymptotic condition (41) may be written as:

y ∼M + NK′

One of the most well-known methods for the numerical solution of the coupled differ-

ential equations arising from the Schrödinger equation is the Iterative Numerov method

of Allison [17].

A real problem in quantum chemistry, theoretical physics, material science, atomic

physics and molecular physics which can be transformed to close-coupling differential

equations of the Schrödinger type is the rotational excitation of a diatomic molecule

by neutral particle impact. Denoting, as in [17], the entrance channel by the quantum

numbers (j, l), the exit channels by (j′, l′), and the total angular momentum by J =

j + l = j′ + l′, we find that[
d2

dx2
+ k2j′j −

l′(l′ + 1)

x2

]
yJjlj′l′ (x) =

2µ

~2
∑
j′′

∑
l′′

< j′l′; J | V | j′′l′′; J > yJjlj′′l′′(x) (42)

where

kj′j =
2µ

~2
[E +

~2

2I
{j(j + 1)− j′(j′ + 1)}] (43)

E is the kinetic energy of the incident particle in the center-of-mass system, I is the

moment of inertia of the rotator, and µ is the reduced mass of the system.

Following the analysis of [17], the potential V can be expanded as

V (x, k̂j′jk̂jj) = V0(x)P0(k̂j′jk̂jj) + V2(x)P2(k̂j′jk̂jj), (44)

and the coupling matrix element may then be written as

< j′l′; J | V | j′′l′′; J >= δj′j′′δl′l′′V0(x) + f2(j
′l′, j′′l′′; J)V2(x) (45)

where the f2 coefficients can be obtained from formulas given by Bernstein et al. [18]

and k̂j′j is a unit vector parallel to the wave vector kj′j and Pi, i = 0, 2 are Legendre

polynomials (see for details [19]). The boundary conditions are

yJjlj′l′ (x) = 0 at x = 0 (46)

yJjlj′l′ (x) ∼ δjj′δll′ exp[−i(kjjx− 1/2lπ)]−
(
ki
kj

)1/2

SJ(jl; j′l′) exp[i(kj′jx− 1/2l′π)] (47)
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where the scattering S matrix is related to the K matrix of (41) by the relation

S = (I + iK)(I− iK)−1 (48)

To calculate the cross sections for rotational excitation of molecular hydrogen by

impact of various heavy particles an algorithm in which the numerical method for step-

by-step integration from the initial value to matching points is included. This algorithm is

based on an analogous algorithm which has been developed for the numerical applications

of [17].

For numerical purposes we choose the S matrix which is calculated using the following

parameters

2µ

~2
= 1000.0,

µ

I
= 2.351, E = 1.1,

V0(x) =
1

x12
− 2

1

x6
, V2(x) = 0.2283V0(x).

As is described in [1], we take J = 6 and consider excitation of the rotator from the

j = 0 state to levels up to j′ = 2, 4 and 6 giving sets of four, nine and sixteen coupled

differential equations, respectively. Following the procedure obtained by Bernstein [19]

and Allison [17] the potential is considered infinite for values of x less than some x0. The

wave functions then zero in this region and effectively the boundary condition (46) may

be written as

yJjlj′l′ (x0) = 0 (49)

For the numerical solution of this problem we have used the most well known methods

for the above problem:

• the Iterative Numerov method of Allison [17] which is indicated as Method I,

• the variable-step method of Raptis and Cash [20] which is indicated as Method II,

• the embedded Runge-Kutta Dormand and Prince method 5(4) [11] which is indi-

cated as Method III,

• the embedded Runge-Kutta method ERK4(2) developed in Simos [21] which is

indicated as Method IV,

• the new developed embedded two-step method which is indicated as Method V
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Table 1: Coupled Differential Equations. Real time of computation (in seconds)
(RTC) and maximum absolute error (MErr) to calculate | S |2 for the variable-step
methods Method I - Method V. acc=10−6. We note that hmax is the maximum stepsize

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2× 10−3

9 0.014 23.51 5.7× 10−2

16 0.014 99.15 6.8× 10−1

Method II 4 0.056 1.55 8.9× 10−4

9 0.056 8.43 7.4× 10−3

16 0.056 43.32 8.6× 10−2

Method III 4 0.007 45.15 9.0× 100

9
16

Method IV 4 0.112 0.39 1.1× 10−5

9 0.112 3.48 2.8× 10−4

16 0.112 19.31 1.3× 10−3

Method V 4 0.448 0.20 1.1× 10−6

9 0.448 2.07 5.7× 10−6

16 0.448 11.18 8.7× 10−6

In Table 3 we present the real time of computation required by the methods mentioned

above to calculate the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled

differential equations. We present also the maximum error in the calculation of the square

of the modulus of the S matrix. In Table 1 N indicates the number of equations of the

set of coupled differential equations.

7 Conclusions

In this paper, we investigated a family of high algebraic order two-step methods. The

main subjects of this study was:

• the investigation of the vanishing of the phase-lag and its first and second derivatives

• the comparative error analysis

• the stability analysis.

• the computational behavior of the new produced method and its effectiveness on the

numerical solution of the radial Schrödinger equation and of the coupled Schrödinger

equations both of which are of high importance for Chemistry.
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Based on the above mentioned results, it is easy to see the efficiency of the new

obtained method for the numerical solution of the radial Schrödinger equation and of the

coupled Schrödinger equations.

All computations were carried out on a IBM PC-AT compatible 80486 using double

precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix: Formulae of the derivatives of yn

Formulae of the derivatives which are presented in the formulae of the Local Truncation

Errors:

y(2)n = (V (x)− Vc +G) y(x)

y(3)n =

(
d

dx
g (x)

)
y (x) + (g (x) +G)

d

dx
y (x)

y(4)n =

(
d2

dx2
g (x)

)
y (x) + 2

(
d

dx
g (x)

)
d

dx
y (x)

+ (g (x) +G)2 y (x)

y(5)n =

(
d3

dx3
g (x)

)
y (x) + 3

(
d2

dx2
g (x)

)
d

dx
y (x)

+4 (g (x) +G) y (x)
d

dx
g (x) + (g (x) +G)2

d

dx
y (x)

y(6)n =

(
d4

dx4
g (x)

)
y (x) + 4

(
d3

dx3
g (x)

)
d

dx
y (x)

+7 (g (x) +G) y (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

y (x)

+6 (g (x) +G)

(
d

dx
y (x)

)
d

dx
g (x)

+ (g (x) +G)3 y (x)

y(7)n =

(
d5

dx5
g (x)

)
y (x) + 5

(
d4

dx4
g (x)

)
d

dx
y (x)

+11 (g (x) +G) y (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
y (x)

d2

dx2
g (x) + 13 (g (x) +G)

(
d

dx
y (x)

)
d2

dx2
g (x)

+10

(
d

dx
g (x)

)2
d

dx
y (x) + 9 (g (x) +G)2 y (x)

d

dx
g (x) + (g (x) +G)3

d

dx
y (x)
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y(8)n =

(
d6

dx6
g (x)

)
y (x) + 6

(
d5

dx5
g (x)

)
d

dx
y (x)

+16 (g (x) +G) y (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
y (x)

d3

dx3
g (x) + 24 (g (x) +G)

(
d

dx
y (x)

)
d3

dx3
g (x)

+15

(
d2

dx2
g (x)

)2

y (x) + 48

(
d

dx
g (x)

)
(
d

dx
y (x)

)
d2

dx2
g (x) + 22 (g (x) +G)2 y (x)

d2

dx2
g (x) + 28 (g (x) +G) y (x)

(
d

dx
g (x)

)2

+12 (g (x) +G)2
(
d

dx
y (x)

)
d

dx
g (x)

+ (g (x) +G)4 y (x)
. . .
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