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Abstract

We continue [5] by generalizing the indicator–driven evaluation. The mathematical ba-
sis is now a general complete lattice L. We show that this allows a problem–orientation
by choosing a suitable set theory and logic. It leads, for example, to a problem–oriented
subsethood degree relation that generalizes Kosko’s subsethood degree applied in [5]. In
addition we shall discuss an exploration of the evaluation, using tools from data bank the-
ory and formal concept analysis. We give a brief introduction to various mathematical tools
and methods appropriate for dealing with this kind of problems. Having listed the math-
ematical basics we describe in particular the acquisition of knowledge obtainable from an
evaluation. It is illustrated by an evaluation of chemical compounds using ecologically rel-
evant parameters. We demonstrate the use of free software in order to get a basis of all the
attribute implications that can be derived from an evaluation.

1 Orders

Evaluation is needed for ranking objects with respect to certain attributes, and ranking means

to put an order on the set of objects. The order is obtained by first associating with each pair

(o, a) consisting of an object o and an attribute a a value E(o, a), for example, a real number

or a symbol like ⊕ ⊕ /	, and we shall assume that this value belongs to a complete lattice,
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i.e., a partial order, because we need to allow incomparabilities. Having the sequence of values

associated with a fixed object and the sequence of all the attributes at hand, we evaluate this

particular object by this sequence of values. The set of sequences corresponding to the set of

objects is also partially ordered in a canonical way, and it is this order on all these sequences

that we call the canonical partial order or ranking of the objects.

Orders are particular relations on sets, and so we first recall the definition of relation: Let S

denote a set. A relation R on S is a subset of

S × S = {(s, s′) | s, s′ ∈ S},

which means thatR is a set of pairs (s, s′) of elements of S, for short: R ⊆ S×S. If such a pair

(s, s′) is contained in R we write (s, s′) ∈ R or, for short, sRs′. If (s, s′) or (s′, s) are contained

in R, the elements s and s′ of S are related or comparable, otherwise they are unrelated or

incomparable.

1.1 Definition (order, partial order, total order)

A relation R on L is called a partial order, if it is

— reflexive, i.e., if all the pairs (s, s), s ∈ S, are contained in R, sRs, for all s ∈ S,

— antisymmetric, if sRs′ and s′Rs together imply that s = s′, and

— transitive as soon as sRs′ together with s′Rs′′ yields sRs′′.

— A partial order R is a total order if any two elements s, s′ ∈ S are comparable.

Hence, partial order is the general notion, total orders are particular cases. We may simply

speak of an order, when we need not specifiy if it is total or not.

�

Let us collect a few prominent partial orders that show up in the applications: Well known to

the reader is the notation r ≤ s, for two real numbers r and s, which indicates that s− r is not

negative, for short: 0 ≤ s− r. Moreover, the reader knows that r < s indicates that r ≤ s and

in addition r 6= s.

We first restrict attention to the 2–element set S = {0, 1} consisting of the real numbers 0

and 1. It is totally ordered since 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1. We can express this total order in

terms of pairs as

R = {(0, 0), (0, 1), (1, 1)}
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or (as a set) by the following abbreviation:

S = {0 < 1}.

The cartesian square

S2 = S × S = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}

is partially but not totally ordered (since neither (0, 1) ≤ (1, 0) nor (1, 0) ≤ (0, 1)) via

(s, s′) ≤ (s′′, s′′′) ⇐⇒ s ≤ s′′ and s′ ≤ s′′′.

Similarly, we have the total order on {0, 1, 2} that gives a partial order on {0, 1, 2}2. An arbitrar-
ily selected small set of chemicals (cf. [18]) will demonstrate an idea to use it in an evaluation.

No. Chemical name
1 Hexabromobenzene
2 Hexachlorobenzene
3 Perylo[3,4-cd:9,10-c’d’]dipyran-1,3,8,10-tetrone
4 Bis(2,4-dichlorobenzoyl)peroxide
5 Tetradecafluorohexane
6 1,1,2,2,3,3,4,4,5,5,5-Undecafluoropentane-1-sulfonyl fluoride
7 1,1,2,2,3,3,4,4,5,5,6,6,6-Tridecafluorohexane-1-sulfonyl fluoride
8 3’,6’-Bis(diethylamino)-spiro[isobenzofuran-1(3H),9’-[9H]xanthen]-3-one

We use the parameters

nBCF , the normalized bioconcentration factor, and

nBDP , the normalized and correctly oriented biodegradation potential.

Note that large values of the parameters nBCF and nBDP indicate an environmental hazard.

A discretization into three intervals with equal length was performed, just to obtain objects with

indicator values taken from the set {0, 1, 2}. The data matrix, i.e., the evaluation obtained is

No. nBCF nBDP
1 0 1
2 0 0
3 0 0
4 0 0
5 0 2
6 2 1
7 0 2
8 2 0

This means that, for example, the chemical compound of number 5 is evaluated by the element

(0, 2) ∈ S2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
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A visualization of this evaluation can be obtained from the Hasse diagram of the partially

ordered set S2. It shows the elements of S2, connected by lines with their immediate neighbors.

The smallest elements are usually shown at the bottom. E.g., the Hasse diagram of the partial

order on {0, 1, 2}2 looks as follows:

(0, 0)

@@ ��

(0, 1) (1, 0)
@@ ��@@ ��

(0, 2) (1, 1) (2, 0)
��@@ ��@@

(1, 2) (2, 1)
��@@

(2, 2)

Replacing pairs of parameter values by the labels of the compounds with these parameter values

and the other pairs by bullets we obtain

2,3,4
@@ ��

1 •
@@ ��@@ ��

5,7 • 8
��@@ ��@@

• 6
��@@

•

It demonstrates the relation between the compounds with respect to the chosen parameters. The

compounds numbered 2, 3 and 4 cannot be distinguished by their parameter values, the same

holds for 5 and 7. Hence, we obtain the sets of numbers of compounds that are ‘equivalent’:

{2, 3, 4}, {5, 7}, {1}, {6} and {8}. The result is the following ranking of the compounds:

{2, 3, 4}
@@

{1}
@@ �

�
�
�

{5, 7} {8}
�

�
�
�

@@

{6}

It shows that the compounds with numbers 5 and 7 are of the same quality, and they are worst

with respect to these parameters. Another compound that is also worst (but incomparable with

5 and 7) is the compound number 6. Moreover, the compounds with numbers 2, 3 and 4 are

best, and of the same quality.
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Another well–known example of a partial order that is a cartesian power of a total order is

obtained from the closed interval S = [0, 1] of real numbers between 0 and 1, including 0 and 1.

There is the total order ≤ on [0, 1] as well, also defined by s ≤ s′ if and only if the real number

s′− s is nonnegative. Thus, the third cartesian power [0, 1]3 of [0, 1] is partially ordered by≤, if

we define that order in the following way: [0, 1]3 consists of triples (r, s, t) of elements in [0, 1],

and the definition of ≤ in this case is

(r, s, t) ≤ (r′, s′, t′) ⇐⇒ r ≤ r′ and s ≤ s′ and t ≤ t′.

We used this partial order for an evaluation of 18 refrigerants in [5]. More generally, we can

obtain partial orders by forming cartesian powers like [0, 1]n of totally ordered sets, using ≤

‘coordinatewise’. Such partial orders of cartesian products of totally ordered sets are called

canonical partial orders.

Here is a further canonical partial order that the interested reader may have met reading a

test of electronic devices that can be found in the computer journal ‘c’t’. As reading and writing

devices for CDs as well as for DVDs run under two different norms±R, tests of such machines

may look as follows, and this table may be considered as an evaluation of such devices:

Label wDV D wCD rDV D rCD eDV D/CD nDVD/CD
a ⊕⊕ /⊕ 	/	 		 /# ⊕/	 		 /	 ⊕/#
b ⊕/	 ⊕/	 	/	 #/	 		 /⊕ 	/#
c #/# ⊕⊕ /⊕⊕ #/⊕ ⊕/# ⊕⊕ /		 	/	
d ⊕/⊕ #/	 #/# 	/	 ⊕/⊕ ⊕/#

The set of objects is {a, b, c, d}, a set of devices (but the table of the test is fictive). The set of

attributes consists of wDVD and wCD, the qualities in writing DVDs or CDs, of rDV D and

rCD, the qualities in reading, eDV D/CD for electronic quality, while nDV D/CD evaluates

the noise. The values in the table are elements of the following partial order:

S2 = {		 < 	 < # < ⊕ < ⊕⊕}2

= {	 	 /		,		 /	, . . . ,⊕⊕ /⊕⊕}.
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Its Hasse diagram looks as follows, showing that there are many incomparabilities:

		 /		
@@��

	/		 		 /	
@@��

#/		 	/	
@@��

		 /#
@@�� @@�� @@��

⊕/		 #/	 	/# 		 /⊕
@@�� @@�� @@�� @@��

⊕⊕ /		 ⊕/	 #/# 	/⊕ 		 /⊕⊕
��@@ ��@@ ��@@ ��@@

⊕⊕ /	 ⊕/# #/⊕ 	/⊕⊕
��@@ ��@@ ��@@

⊕⊕ /	 ⊕/#

⊕⊕ /# ⊕/⊕ #/⊕⊕
��@@ ��@@

⊕⊕ /⊕ ⊕/⊕⊕
��@@

⊕⊕ /⊕⊕

For example, s = 	/# and s′ = #/	 are clearly incomparable. At first glance, this order may

look strange, but it can be identified — up to the labels used — with the cartesian square of the

total order {−2 < −1 < 0 < 1 < 2}.

In the following we shall use the symbol≤ as a general symbol for an order, and we indicate

an ordered set S, together with its order ≤, as a pair (S,≤). Particular elements in an ordered

set S, related to a subset M ⊆ S, are of special interest:

1.2 Definition (lower, upper bounds, least, greatest element, minimal, maximal elements)

— s ∈ S is called a lower (upper) bound of M ⊆ S if s ≤ s′ (s′ ≤ s), for all s′ ∈M .

— s′ ∈M is the least (the greatest) element of M if s′ ≤ s′′ (s′′ ≤ s′) for each s′′ ∈M . It is

easy to see that such elements are uniquely determined if they exist.

— s′ ∈M is a minimal (a maximal) element of M if s′′ ∈M together with s′′ ≤ s′ (s′ ≤ s′′)

implies that s′ = s′′. Such elements need not be uniquely defined. Least elements are

minimal, greatest elements are maximal.

— If a least element exists in M ⊆ S, it will be denoted by minM , and a greatest element

will be indicated by maxM , if it exists.

�
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Obviously, the interval [0, 1] ⊂ R, equipped with its total order≤, contains a least and a greatest

element: min[0, 1] = 0 and max[0, 1] = 1, while the open interval (0, 1) ⊂ R contains neither

a least nor a greatest element.

In particular, we shall consider situations where sets of lower (upper) bounds have a greatest

(a least) element:

1.3 Definition (infimum and supremum)

Consider a set S, a subset M ⊆ S and a partial order ≤ on S. In the case when the set of

lower (upper) bounds of M in S contains a greatest (least) element, then we call this element

the infimum (the supremum) of M and denote it by
∧
M (by

∨
M).

�

We note that infima and suprema need not exist. For example, if S = M = (0, 1), the open

interval, then the subset M = S has the empty set as set of lower bounds as well as set of upper

bounds, and the empty set contains, by definition, neither a greatest nor a least element.

2 Lattices
The values or ‘degrees’ that we associate in an evaluation with the pairs (o, a) consisting of

an object o and an attribute a will usually be taken from a completely distributive lattice, an

ordered set where suprema and infima exist, and which we denote by the letter L. In order to

emphasize that we consider lattices we shall use small Greek letters for their elements.

2.1 Definition (complete and completely distributive lattices)

Consider an ordered set (L,≤).

— (L,≤) is a lattice, if 2-element subsets {α, β} ⊆ L possess an infimum and a supremum,

denoted by α ∧ β and α ∨ β, respectively.

— We note the close relationship between infimum, supremum and partial order, expressed

by the equivalences

α ≤ β ⇐⇒ α ∧ β = α ⇐⇒ α ∨ β = β.

It means that we may either speak of the lattice (L,≤), i.e. of the pair consisting of the

set L and its partial order ≤, or of the triple (L,∧,∨), consisting of L and the mappings

∧:L× L→ L: (α, β) 7→ α ∧ β and ∨:L× L→ L: (α, β) 7→ α ∨ β.
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For short, we may simply speak of the lattice L.

— The lattice L is a complete lattice, if each subset M ⊆ L possesses an infimum and a

supremum,
∧
M and

∨
M , respectively. The infimum and the supremum of L itself will

be denoted by 0 and by 1, or, more explicitly, by 0L and 1L,∧
L = 0L and

∨
L = 1L.

— If, in addition, the following equations hold for all subsets M ⊆ L and every α in the

lattice L,∨
{β ∧ α | β ∈M} =

(∨
M
)
∧ α and

∧
{β ∨ α | β ∈M} =

(∧
M
)
∨ α,

the lattice is called a completely distributive lattice.

�

Complete distributivity is needed if the sets are not finite and suprema or infima have to be cal-

culated. Complete lattices contain an element 0 and an element 1, and so all of them contain the

complete lattice {0, 1} if they contain more than one element. Therefore, the use of a suitable

completely distributive lattice L generalizes the classical binary (or Boolean) approach, and, in

addition, it allows a problem–driven choice of methods in order to attack evaluation problems,

as we shall see in a minute. The choice of L is mostly obvious from the evaluation in question.

Examples of lattices are, of course, the totally ordered sets, since the infimum α ∧ β is

the smallest of the elements α, β, correspondingly, the supremum ist the biggest one. So, for

example, [0, 1] is a lattice. Moreover, cartesian products of total orders are lattices, and so

[0, 1]3 is a lattice (with 0L = (0, 0, 0) and 1L = (1, 1, 1)) as well as {	 	 / 	 	, . . .}, where

0L = 	 	 / 	 	, while 1L = ⊕ ⊕ / ⊕ ⊕. We have seen how these lattices can be used

for evaluation of chemical compounds as well as of electronic devices. Next, we show further

examples where evaluation is of interest.

3 Two typical examples

A model of a linguistic expression

In order to model the linguistic expression ‘strong acid’, we use a mapping

SA:R→ [0, 1]
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that evaluates expressions of the form pKa(p, T, x) = − log10(Ka). Ka means the thermody-

namical equilibrium constant, describing the dissociation of an acid x in water at temperature

T = 273.15 K and pressure p = 1 bar, see for instance [21], Table 9.2.

Such a mapping can serve as a mathematical model for the evaluation of ‘x is a strong acid’

by associating to x via its pKa(T, p, x)–value the real number SA(pKa(T, p, x)) between 0 and

1, a degree that says in which sense the statement is true according to that particular mapping

or model. For example, we may use the following mapping:

- pKa

degree

6

2 4-10 6 8 10 12

SA
. . .

. . .

1
A
A
A
A
A
A
AA

It takes, e.g., the values

SA(2) = 1, SA(4) = 0.5, SA(8) = 0.

And this means, that a compound x with pKa(p, T, x) = 2 is considered a strong acid, while in

the case when pKa(p, T, x) = 4 there is some doubt if x should be called a strong acid, and it

is certainly not a strong acid if pKa(p, T, x) = 8.

An evaluation of refrigerants

Another case is the evaluation of chemical compounds, for example of refrigerants, with respect

to environmental properties. In [5, 17, 19, 20] refrigerants RE are evaluated using triples

(RE(ODP ), RE(GWP ), RE(ALT )) ∈ [0, 1]3

of parameter values, where ODP means ozone depletion potential, GWP means global warm-

ing potential, and ALT stands for the atmospheric lifetime. The parameter values are real

numbers. We used a normalized and properly oriented version of the parameters, i.e., each

value is contained in the interval [0, 1] and smaller values are the better ones: RE is at least as

good as RE ′ if and only if the following is true:

RE(ODP ) ≤ RE ′(ODP ) and RE(GWP ) ≤ RE ′(GWP )) and RE(ALT ) ≤ RE ′(ALT ).
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This kind of evaluation using real–valued parameters allows an embedding into ‘fuzzy mathe-

matics’ (a terrible name that should never be used since not the mathematics is fuzzy but the

situations that are modeled), using ideas due to [15]. We shall give details below.

The evaluation of 18 refrigerants in [5] (motivated by [17]) used the following table of

normalized and oriented values of the parameters, taken from [17]:

Label Name ODP GWP ALT
1 R11 0.19608 0.31622 0.01406
2 R12 0.16078 0.72432 0.03125
6 R141b 0.02353 0.04818 0.00290
7 R142b 0.01275 0.15338 0.00559
8 R23 0.00008 0.96689 0.08437
16 R290 0 0.00135 0.00001
21 R744 0 0.00007 0.03750
22 R1281 1 0.08784 0.00343
23 RC318 0 0.67568 1
29 HFE-125 0 1 0.05156
32 R40 0.00392 0.00108 0.00040
33 R113 0.17647 0.40541 0.02656
35 R114 0.16667 0.66216 0.09375
36 R13/1 0 0.00007 0.00003
37 – 0 0.00007 0
38 R717 0 0 0.00007
39 HFE-143 0 0.04432 0.00178
40 HFE-245 0 0.04709 0.00125

The first column contains the labels i of the 18 refrigerants REi, chosen from the 40 re-

frigerants that were evaluated in [17]. The second column contains the standard abbreviations,

the technical names of these refrigerants, while the third, fourth, and fifth column contain the

parameter values, the evaluation of the refrigerants that we use. More formally and more gen-

erally, we can introduce ‘evaluation’ as follows:

3.1 Definition (evaluation of a set of objects with respect to given attributes)

Consider a finite set O of objects o ∈ O and a finite set A of attributes a ∈ A, together with a

complete lattice L of values (e.g., of parameter values). Then an evaluation of the objects with

respect to the attributes is a table of the following form:

E = (E(o, a)).

It can be considered as a mapping

E :O × A→ L: (o, a) 7→ E(o, a)
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from O×A to L, or, as an L–subset (see below, Definition 4.1) of the cartesian product O×A.

The entry E(o, a) of this matrix, contained in the row corresponding to the object o and the

column corresponding to the attribute a is the result of evaluating to which degree object o has

attribute a.

�

For example, the evaluation of the refrigerants is a matrix consisting of 18 rows, a column con-

taining labels, and three columns containing parameter values. In the row of the third refrigerant

(with its label 6) and in the column that corresponds to the parameterGWP it contains the value

0.04818, supposed we choose L = [0, 1]. If we choose L = [0, 1]3, the matrix will consist of

18 rows and besides the column with the labels just a single column, its entries being triples of

real numbers. For example, the third row contains the triple (0.02353, 0.04818, 0.00290). So

we have to choose if L is [0, 1], which means that we want to separate the parameters, or if we

put L = [0, 1]3, i.e., to put the parameters together. If we choose L = [0, 1]3 then the evaluation

(or ranking) is just the order of the triples of values being elements of the lattice.

Having decided which lattice we use, the next question is if we want to use a problem–

orientation that is different from the standard one, arising from the standard Boolean set theory

and the corresponding logic. So let us discuss a few of the many possible choices that we have.

4 Set theory over L

Having chosen a lattice L as set of admissible values in an intended evaluation, the second

step is the choice of a suitable set theory, a generalization of the standard ‘binary’ or ‘Boolean’

set theory allowing only an ‘either or’, i.e., it admits the values 0 and 1 only. Here is the

corresponding notion:

4.1 Definition (L–subsets of crisp sets)

Assume that L was chosen, together with a crisp set X , i.e., a set in the classical sense where

an object x either belongs to X or not.

— Crisp subsets of X can be identified with mappings from X to {0, 1}, where the mapping

S:X → {0, 1} corresponds to the subset of objects x in X mapped onto 1, S(x) = 1.

— More generally, an L–subset of X can be recognized as an element of

LX = {S | S : X → L},
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the set of mappings from X to L. The value S(x) ∈ L of S at x ∈ X is an element in L

that evaluates the statement ‘x belongs to S’.

— We define the L–inclusion ⊆L of L–subsets S, T ∈ LX by the equivalence

S ⊆L T ⇐⇒ ∀ x ∈ X: S(x) ≤ T (x).

�

Our next step is the definition of various intersections of L–subsets using mappings that have

the most important properties an intersection should have:

4.2 Definition (t–norms, intersections of L–subsets)

Consider a lattice L.

— A t–norm on L is a mapping τ : L× L→ L with the following properties:

– τ is symmetric, τ(α, β) = τ(β, α),

– τ satisfies the boundary conditions: τ(α, 1L) = α and τ(α, 0L) = 0L,

– τ is monotonous, β ≤ γ implies τ(α, β) ≤ τ(α, γ),

– τ is associative, τ(α, τ(β, γ)) = τ(τ(α, β), γ).

— The τ–intersection S∩τT of S, T ∈ LX is the L–subset I ∈ LX with

I(x) = (S∩τT )(x) = τ(S(x), T (x)).

The most important t–norms are the following ones:

— The standard norm is

s(α, β) = α ∧ β, so that (S ∩s T )(x) = S(x) ∧ T (x) .

— The drastic norm is defined by

d(α, β) =


α if β = 1L,
β if α = 1L,
0L otherwise.

Thus, the d–intersection reads as follows:

(S ∩d T )(x) =


T (x) if S(x) = 1L,
S(x) if T (x) = 1L,
0L otherwise .
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— If L = [0, 1], there is the algebraic product

a(α, β) = α · β , in which case (S ∩a T )(x) = S(x) · T (x) ,

and in addition the bounded difference

b(α, β) = max{0, α + β − 1}, hence (S ∩b T )(x) = max{0,S(x) + T (x)− 1}.

�

Let us rephrase one of the examples in terms of these notions.

The model of a linguistic expression

Besides the model SA of the linguistic expression strong acid, we may also want to model the

linguistic expressions weak acid by another [0,1]–subsetWA, say in the following way:

-

6

2 4 6 8

SA WA
. . .

. . .

1
A
A
A
A
A
A

. . .
�
�
�
�
�
�

Thus if we use the standard norm, we evaluate the statement ‘an acid with pKa–value 4 is both

strong acid and weak acid’ by 0.5, while the use of the drastic norm implies that we do not

accept that there is any acid being both a strong acid and a weak acid, since, by definition of the

drastic norm, we have, for every real number r that

(SA ∩dWA)(r) = 0

(although SA(4) = WA(4) = 0.5). We are in fact using kind of semantic notion of truth,

based on the chosen t-norm, the truth value is obtained via a fixed mathematical formalism, the

definition of d–intersection. In chemistry certainly the standard norm seems better to describe

the transition zone between a strong acid and a weak one. Nevertheless, a problem–driven

choice might sometimes be useful, in particular since for each t–norm τ : [0, 1]× [0, 1]→ [0, 1]

we have

d(α, β) ≤ τ(α, β) ≤ s(α, β).
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We may in fact say that the choice of the drastic intersection is advisible if a pessimistic or a

precautious thinking might be better, while the choice of the standard intersection is the most

optimistic one (all the others are in between these two). The introduction of unions of L–

subsets is similar, it uses conorms σ, but we do not need that now. We just mention that usually

particular pairs (τ, σ) are chosen that fit together (which means that, e.g., Morgan’s laws of set

theory hold).

So this is the second chance to do a problem–driven choice. The first one was the choice of

L, the second one is the choice of a suitable t–norm τ . The third one is the choice of a logic.

We shall see that the choice of a logic is more or less automatic after the choice of a t–norm.

5 A corresponding logic over L

It is crucial to note that to the t–norms s, d, a and b (and various other norms and conorms) a

unique mapping of the following form exists:

5.1 Definition (residuum of a t–norm)

A mapping τ̃ : L× L → L is called a residuum corresponding to a t–norm τ , if it satisfies the

following condition: For all α, β, γ ∈ L,

τ(α, β) ≤ γ ⇐⇒ α ≤ τ̃(β, γ).

A t–norm with a residuum is called a residual t–norm.
�

There may be several residua, but in many cases, depending on the chosen L, the residuum is

uniquely defined. In particular, if L is completely distributive, the residuum of τ has the values

τ̃(α, β) =
∨
{γ | τ(γ, α) ≤ β}. (1)

For example, if L = [0, 1], the residua of the standard norm s, the drastic norm d, the algebraic

product a and the bounded difference b are unique and they have the following values:

s̃(α, β) =

{
1 if α ≤ β,
β otherwise,

d̃(α, β) =

{
β if α = 1,
1 otherwise,

ã(α, β) =

{
β/α if α 6= 0,
1 otherwise,

b̃(α, β) = min{1, 1− α + β}.
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In order to generalize the Boolean logic over L = {0, 1}, we can argue as follows: The classical

table of truth values of statements that are composed from statement A (with given truth value

α) and statement B (with its truth value β) is

A B ¬A A ∧B A ∨B A⇒ B

α β 1− α min{α, β} max{α, β} min{1, 1− α + β}
.

In terms of the bounded difference this reads as follows:

A B ¬A A ∧B A ∨B A⇒ B

α β b̃(α, 0) min{α, β} max{α, β} b̃(α, β)
.

Hence, it can be generalized as follows: Assume a residual t-norm τ and use the following

evaluation of compositions of statements in terms of the residuum τ̃ :

τ̃(¬A) = τ̃(α, o) and τ̃(A ⇒ B) = τ̃(α, β), (2)

supposed the value of A is α and that of B is β. This leads to the following table of values that

we obtain once we have chosen a residual t–norm τ and a suitable t-conorm σ:

A B ¬A A ∧B A ∨B A⇒ B

α β τ̃(α, 0) τ(α, β) σ(α, β) τ̃(α, β)
. (3)

And it is the choice of suitable logic described by this table that we call ‘problem–orientation’.

In this way, we obtain, for example, a problem–oriented evaluation of subsethood of two L–

subsets A,B ∈ LX :

5.2 Definition (the subsethood degree)

Consider two L–subsets A and B of X and a residual t–norm τ . The evaluation of A ⊆L B,

the truth value of A being contained in B, with respect to τ̃ , is clearly∧
x∈X

τ̃(A(x),B(x)) ∈ L.

It yields the mapping

SH:LX × LX → L: (A,B) 7→
∧
x∈X

τ̃(A(x),B(x)) ∈ L,

the τ–subsethood degree on LX .

�
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The implication A ⊆L B is true if and only if this value is 1, i.e., if and only if∧
x∈X

τ̃(A(x),B(x)) = 1,

or, more explicitly, if and only if

∀ x ∈ X: τ̃(A(x),B(x)) = 1.

For example, if L = [0, 1] we have τ̃ = b̃, and so

τ̃(A(x),B(x)) = min{1, 1−A(x) + B(x)} = 1 ⇐⇒ A(x) ≤ B(x),

in accordance with the definition of [0, 1]–subset.

In summary, we can say that evaluation generalizes the Boolean situation. It opens an

approach to further applications, for example, modeling of linguistic expressions. In particular

we can use a problem–driven (or at least problem–oriented) way of mathematical modeling in

many cases. The method is to

— choose a suitable lattice L as set of values, truth values or degrees,

— take a suitable residual t-norm τ in order to establish a set theory over L,

— use the corresponding residuum τ̃ in order to get a logic that can be applied in the evalu-

ation of statements.

Thus, we mean by problem–orientation the suitable choice of a quintuple (L,∧,∨, τ, τ̃), Pol-

landt calls it an L–fuzzy algebra, see [16] for more details. Let us go back to our main example.

The evaluation of the refrigerants

We used the parameters ODP , GWP , ALT , obtaining for a refrigerant RE the triple of param-

eter values

RE = (RE(ODP ), RE(GWP ), RE(ALT )) ∈ [0, 1]{ODP,GWP,ALT}.

Putting L = [0, 1] we can easily formulate the following discussion in terms of the theory of

[0, 1]–subsets. Of course, we can also formulate it in terms of [0, 1]3–subsets.
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The data base used in [5] for the evaluation of the refrigerants was

0.19608 0.31622 0.01406
0.16078 0.72432 0.03125
0.02353 0.04818 0.00290
0.01275 0.15338 0.00559
0.00008 0.96689 0.08437

0 0.00135 0.00001
0 0.00007 0.03750
1 0.08784 0.00343
0 0.67568 1
0 1 0.05156

0.00392 0.00108 0.00040
0.17647 0.40541 0.02656
0.16667 0.66216 0.09375

0 0.00007 0.00003
0 0.00007 0
0 0 0.00007
0 0.04432 0.00178
0 0.04709 0.00125

,

a table consisting of 18 [0, 1]–subsets of the parameter set {ODP,GWP,ALT}, supposed we

choose L = [0, 1]. And we note the main result that the ranking of the refrigerants can be

modeled in terms of [0, 1]–subsets and [0, 1]–inclusion of the parameter sets by the following

equivalence:

RE is at least as good as RE ′ ⇐⇒ RE ⊆[0,1] RE ′. (4)

In words: RefrigerantRE is at least as good as refrigerantRE ′ if and only if the corresponding

evaluationRE is a [0, 1]–subset ofRE ′.

If we choose L = [0, 1]3 we interpret the table as a set of 18 [0, 1]3–subsetsRE i of the set of

refrigerants and obtain the following result: Refrigerant RE is at least as good as refrigerant

RE ′ if and only if the corresponding element of the latticeRE ∈ [0, 1]3 is less than or equal to

the elementRE ′ ∈ [0, 1]3.

RE is at least as good as RE ′ ⇐⇒ RE ≤ RE ′. (5)

This is, of course, trivial since we use the canonical partial order where smaller values are the

better ones. Similarly, of course, for more than three real–valued, normalized and properly

oriented parameters.

In the next section we consider certain chains of subsets ofX that arise from a given S ∈ LX

and correspond to chains of elements in the lattice L. When applied to an evaluation they yield
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chains of rankings that become successively coarser and successivley less dependent of the

precision of measurement of the parameters.

6 Cutsets of L–subsets
We consider particular crisp subsets of X induced by an S ∈ LX and the α ∈ L:

6.1 Definition (cutsets and level sets)

The cutset of S ∈ LX that corresponds to α ∈ L is defined as

S≥α = {x ∈ X | S(x) ≥ α},

a crisp subset of X . (Correspondingly, there are open cutsets S>α := {x ∈ X | S(x) > α} and

level sets Sα := {x ∈ X | S(x) = α}, but they will not be used here.)

�

The crucial point is that chains in L yield chains of cutsets, as clearly

α ≤ β =⇒ S≥α ⊇ S≥β. (6)

Here is a simple example: Choose L = [0, 1] ⊂ R, put X = R and consider the following

‘fuzzy 2’ that can be expressed in terms of the functions

l : (−∞, 2]→ [0, 1] : x 7→ 1

1 + 3(x− 2)2
,

r : [2,∞)→ [0, 1] : x 7→ 1

1 + 3(x− 2)2
.

The drawing shows the cutsets S≥0.25 = [1, 3] and S>0.25 = (1, 3), together with the level set

S0.25 = {1, 3}.

-

61

0,25

1 2 3

It is most important for our purposes that in many cases chains of cutsets of structures yield

chains of useful structures, as the example later in the text will clarify. In fact, the partial orders

that we shall finally obtain in an evaluation come from cutsets of equivalence relations. Hence

our next step is the introduction of relations and in particular of equivalence relations.
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7 L-Relations

We introduced crisp relations on crisp sets, in particular orders. The corresponding notions over

a given complete lattice L are obtained by replacing the lattice {0, 1} by a complete lattice L.

7.1 Definition (L–relations, L–equivalence relations, L–partial orders)

Consider a crisp set X and a complete lattice L.

— We recall that a crisp relation on X is a mapping R ∈ {0, 1}X×X and that the elements

(x, x′) ∈ X ×X with R(x, x′) = 1 are usually called the elements of R.

— Correspondingly, an L-relation on X is an L–subset R ∈ LX×X . We introduce its sup-

port as

supp(R) = {(x, x′) | R(x, x′) > 0} ⊆ X ×X,

so that the support ofR consists, in a sense, of the ‘elements’ ofR. It is

— reflexive, if and only ifR(x, x) = 1L, for every x ∈ X ,

— it is symmetric, if and only if alwaysR(x, y) = R(y, x),

— and it is transitive, if and only ifR(x, y) ≤ τ(R(x, z),R(z, y)), for all x, y, z ∈ X .

— L–equivalence relations are the L–relations that are reflexive, symmetric and transitive.

�

8 Cutsets yield partial orders

We assume an evaluation E = (E(o, a)) of a finite number of objects o ∈ O, with respect to

a finite number of attributes a ∈ A, together with the lattice L containing the values E(o, a),

the results of the evaluation. The rows E(o,−) of this matrix are the evaluations of the objects,

where the entry E(o, a) evaluates the degree of a being an attribute of object o. Hence, we

consider the mappings

E(o,−):A→ L: a 7→ E(o, a).

These L–subsets form a finite crisp subset S of LA, the set of all the mappings from A to L,

S = {E(o,−) | o ∈ O} ⊆ LA.
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We form the cartesian product S × S and consider the subsethood degree:

SH:S × S → L: (E(o,−), E(o′,−)) 7→
∧
a∈A

τ̃(E(o, a), E(o′, a)).

Thus, SH is an L–subset of S × S, an L–relation on S. It is reflexive, τ̃(E(o, a), E(o, a)) = 1.

There exists a transitive closure of this relation, according to the following theorem, due to [8]:

8.1 Theorem (the transitive closure of an L–relation on a finite set)

A reflexive relation R:S2 → L on a finite set S of order |S| = n has the following transitive

closure T R with respect to a t–norm τ :

T R =
n−1⋃
k=1

R(k)
τ ,

where the relationR(k)
τ is recursively defined by

R(1)
τ = R and, for k ≥ 2, by R(k)

τ = R(k−1)
τ ◦τ R(1)

τ ,

and where the τ–composition of such matrices is defined by

R(k)
τ (s, s′) = (R(k−1)

τ ◦τ R(1)
τ )(s, s′) =

∨
s′′∈S

τ(R(k−1)
τ (s, s′′),R(1)

τ (s′′, s′)).

�

Having constructed the transitive closure T R we obtain on each of its cutsets T R≥α an equiv-

alence relation ET Rα by collecting pairs in order to obtain a symmetric relation:

(x, y) ∈ ET Rα ⇐⇒ (x, y) ∈ T R≥α and (y, x) ∈ T R≥α.

These equivalence relations form a chain, since obviously

α ≤ β =⇒ ET Rα ⊇ ET Rβ,

which implies that each equivalence class of ET Rβ is a subset of an equivalence class in ET Rα.

The cutsets are important since each one of them permits to assess the order relationships be-

tween the objects to rank at certain levels of data relaxation linked to α (cf. [13]). Thus, the

bigger α, the lower the data relaxation. De Baets/De Meyer used in [8] the following helpful

formulation for this interesting fact:

‘Incomparability disappears at the cost of increasing indifference’.
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The final step is the introduction of a partial order ≤α on the classes of the equivalence

relation ET Rα that corresponds to α ∈ L. We denote the equivalence class of x in ET Rα by

[x]α

and define the partial order as follows: For each [x]α 6= [y]α we put

[x]α <α [y]α ⇐⇒ (x, y) ∈ T R≥α and (y, x) /∈ T R≥α. (7)

This completes our collection of notions and results that we need in order to do the first steps in

the evaluation of a finite collection of objects o ∈ O according to a given finite set of attributes

a ∈ A, and a complete lattice L of ‘truth values’. The application to the set of 18 refrigerants

REi, the set of parameters A = {ODP,GWP,ALT} and the lattice L = [0, 1] using the

software package PyHasse [3] was described in [5]. The application to evaluation reads as

follows:

— If we are given finite sets O of objects, A of attributes, we choose a suitable complete

lattice L of values and a residual t-norm τ on the set LO×A. The evaluation yields a

matrix

E = (E(o, a)),

i.e., an L–subset of O × A, where the value E(o, a) is the degree of a ∈ A as an attribute

of the object o ∈ O.

— The ranking directly obtained from E is the canonical order of the rows of E .

As this result of the evaluation, the canonical order, depends of the precision of the measure-

ments that gave the parameter values, we may procede as follows, in order to obtain a chain of

rankings that form a chain of rankings, order homomorphisms of the canonical order:

— We consider a suitable chain of values in L, say

0L = α1 < α2 < . . . < αn−1 < αn = 1L.

and the corresponding equivalence relations

ET SHαi
,

obtained from the cutsets of the transitive closure of SH, the relation subsethood degree.
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The canonical partial order obtained by an application of PyHasse, cf. [5], to the 18 refriger-

ants looked as follows:
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where the 18 nodes represent the refrigerants and the lines lead from a refrigerant to its neigh-

bors in the partial order. The neighborhood relation can be checked via the button ‘show cover

relation’. The coarser ranking obtained for α = 0.9 leads to 15 equivalence classes of refriger-

ants since RE2 turned out to be equivalent to RE35, RE8 to RE29 and RE39 to RE40:
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9 Exploring an evaluation
In this section we discuss the application of an important result from data bank theory, cf. [9,

10, 11, 16]. It allows the exploration of the knowledge contained in an evaluation by providing a

‘basis’ of the set of attribute implications, a set of implications from which we can derive every

attribute implication that can be obtained from the evaluation. This is also of general interest

since it formalizes a common model of learning and even of doing research. The idea is the

following:

— Assume a possibly infinite class Ω of interesting objects, e.g., the set of refrigerants, and

a finite set A of their attributes, e.g. values of parameters. We want to derive conditions

for the attributes a ∈ A to hold in Ω, but Ω might be infinite or at least too big to evaluate.

The plan is to evaluate a suitable finite subset of O ⊂ Ω, obtaining

E ∈ LO×A,

for a suitably chosen L, to derive attribute implications from E and then to check if they

hold in Ω or at least in a subset of Ω that is bigger than O.

— A typical example would be the class Ω of all refrigerants known or used today, and the

set of attributesA = {ODP,GWP,ALT}. Having the evaluation E of the 18 refrigerants

at hand, we may ask for its implications in order to find chemical properties of refrigerants

that are not among the 18.

— This means, that we want to explore E , i.e., to find a description of the knowledge that it

contains. By ‘knowledge’ we usually mean attribute implications (implications between

sets of attributes) that follow from E . The description will be the Duquenne/Guigues

basis, a set of attribute implications from which we can derive every attribute implication

that can be obtained from E . The elements of this basis can be considered as hypotheses

on Ω. Thus, the exploration of E can be considered as a generator of hypotheses on Ω.

— Once we constructed this basis for the implications of E , we check its elements on Ω.

If we can find counterexamples, contradictions, we may extend O to O′ ⊆ Ω by adding

the counterexamples, evaluate O′ obtaining E ′, calculate the implication basis of the new

evaluation E ′, and so on until we end up with a subset O∗ ⊆ Ω, where we do not find

any further counterexample or contradiction. If the remaining implications can be proven
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for the whole class O∗ we are ready as far as the objects in O∗ and the attributes in A are

concerned, ‘we have understood the situation, and the evaluation E∗ properly describes

the relationship between O∗ and A’. The Duquenne/Guigues basis of E ′ is a reasonable

set of hypotheses on Ω, and we should try to prove them.

Moreover, it should be emphasized that we obtain this basis automatically, e.g., by computer,

and it ‘contains’ the whole knowledge covered by the evaluation. Note what that means: We

have an automatic generator of a full set of hypotheses! So let us introduce the notions and

methods that we can use:

— Consider E ∈ LO×A. We say that object o has attribute a if and only if E(o, a) > 0.

— An L–subset A of the given set of attributes is evaluated at o ∈ O and with respect to the

evaluation E by the truth value of ‘A holds for o ∈ O in E’, which is

A′(o) = τ̃(A =⇒E E) =
∧
a∈A

τ̃(A(a), E(o, a)).

This defines an L–subset A′ of O, since A′ ∈ LO. Correspondingly, for each L–subset

O ∈ LO, there is the set O′ ∈ LA, where

O′(a) = τ̃(O =⇒E E) =
∧
o∈O

τ̃(O(o), E(o, a)).

Iterating this we obtain the L–subsets A′′,O′′ that we shall use in a minute.

— If A,B ∈ LA then we evaluate ‘A implies B in the evaluation E’, in formal terms:

A =⇒E B.

This implication is evaluated by:

τ̃(A =⇒E B) =
∧
o∈O

τ̃(A′(o),B′(o))

=
∧
o∈O

τ̃
(∧
a∈A

τ̃(A(a), E(o, a)),
∧
a∈A

τ̃(B(a), E(o, a))
)
.

— Clearly,A =⇒E B holds in E if and only if τ̃(A =⇒E B) = 1, i.e., if and only ifA′⊆L B′.

And the problem is to find a set of implications that gives the set of all the implications

that hold in E . Such a set will be described next.

-601-



— Consider an evaluation E with finite object and attribute sets, so that we can recursively

define L–subsets P ∈ LA, called pseudo–contents, by

P 6= P ′′ and for each pseudo–content Q ⊂L P we have that Q′′⊆LP .

— The decisive result is the following set of implications which implies every attribute im-

plication following from E . This set is the Duquenne/Guigues–basis, cf. [9]:

P = {P =⇒E (P ′′ \ P) | P pseudo–content}.

There is a way of successively constructing the pseudo–contents, and so it remains to explain

what ‘follows’ means.

— We say that D ∈ LA respects the implication A =⇒ B, if and only if

SH(A,D) ≤ SH(B,D).

— Assume a set I of L–attribute implications I. D ∈ LA respects I if D respects every

I ∈ I. Moreover, we say that A =⇒ B follows from I if every D ∈ LA that respects I

also respectsA =⇒ B. The point is that such an I from which every attribute implication

follows can be given, at least for finite sets of objects and attributes!

A binary evaluation of the refrigerants

We consider again the 18 refrigerants, a subset of the altogether 40 refrigerants evaluated in

[17]. The intention is to establish an evaluation E over L = {0, 1} of the refrigerants in order to

demonstrate its exploration using available free software. Attributes will be parameters ODP ∗,

GWP ∗ and ALT ∗, obtained from ODP , GWP and ALT as follows: Using that the third

quartiles (as we want to find out the reasons for refrigerants being bad with respect to the

ecological properties) of the refrigerants are 0.162 for ODP , 0.666 for GWP and 0.041 for

ALT , we obtain the following definition of the new binary parameters:

RE(ODP ∗) =

{
1 if RE(ODP ) > 0.162 (=3.quartile),
0 otherwise,

RE(GWP ∗) =

{
1 if RE(GWP ) > 0.666 (=3.quartile),
0 otherwise,

RE(ALT ∗) =

{
1 if RE(ALT ) > 0.041 (=3.quartile),
0 otherwise.
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In addition we consider as attributes the existence of Cl, F , Br, I in RE, the Ether–function,

i.e., if RE is an ether, and whether or not RE is CO2 or NH3. Moreover we use a parameter

nC which is defined as follows:

RE(nC) =

{
1 if RE contains at least two sp3-C-atoms,
0 otherwise.

In order to derive the evaluation we consider the molecular formulas of the refrigerants. They

are shown in the next table, together with the names of the corresponding substances, needed in

order to specify the respective structural formula. It might be interesting for the reader to check

the constitutional isomers corresponding to the molecular formulas via the online version of the

molecular structure generator MOLGEN, available via

http://www.molgen.de

in order to identify the refrigerants. Click there at MOLGEN–ONLINE, press the button 2D,

submit a molecular formula of one of the refrigerants, and all corresponding structures will be

displayed immediately. Slightly more time is required to generate the structures in a 3D view.

For details on the molecular structure generator, its various versions and their applications see

[12, 14]. The following table provides the molecular formulas and names of the refrigerants

considered.

Label Formula Name
1 CCl3F Trichlorofluoromethane
2 CCl2F2 Dichlorodifluoromethane
6 C2H3Cl2F 1,1-Dichloro-1-fluoroethane
7 C2H3ClF2 1-Chloro-1,1-difluoroethane
8 CHF3 Trifluoromethane
16 C3H8 Propane
21 CO2 Carbon dioxide
22 CBrClF2 Bromochlorodifluoromethane
23 C4F8 Octafluorocyclobutane
29 C2HF5O Pentafluorodimethyl ether
32 CH3Cl Chloromethane
33 C2Cl3F3 1,1,2-Trichloro-1,2,2-trifluoroethane
35 C2Cl2F4 1,2-Dichloro-1,1,2,2-tetrafluoroethane
36 CF3I Trifluoroiodomethane
37 C2H6O Dimethyl ether
38 NH3 Ammonia
39 C2H3F3O Methyl trifluoromethyl ether
40 C3H3F5O Methyl pentafluoroethyl ether

Use MOLGEN–Online in order to check how many connectivity isomers of these compounds

exist. For example, you will find that there are 30 isomers with the molecular formulaC3H3F5O.
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Which of them is the technically applied refrigerant methyl pentafluoroethyl ether? Here is a

picture of it:

A placement in 3D space, obtained by an application of a reduced version of the MM2 energy

model (click 3D instead of 2D) looks as follows:

We obtain the following evaluation:

E ODP ∗ GWP ∗ ALT ∗ nC Cl F Br I Ether CO2 NH3

1 1 0 0 0 1 1 0 0 0 0 0
2 0 1 0 0 1 1 0 0 0 0 0
6 0 0 0 1 1 1 0 0 0 0 0
7 0 0 0 1 1 1 0 0 0 0 0
8 0 1 1 0 0 1 0 0 0 0 0
16 0 0 0 1 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 1 0
22 1 0 0 0 1 1 1 0 0 0 0
23 0 1 1 1 0 1 0 0 0 0 0
29 0 1 1 1 0 1 0 0 1 0 0
32 0 0 0 0 1 0 0 0 0 0 0
33 1 0 0 1 1 1 0 0 0 0 0
35 1 0 1 1 1 1 0 0 0 0 0
36 0 0 0 0 0 1 0 1 0 0 0
37 0 0 0 1 0 0 0 0 1 0 0
38 0 0 0 0 0 0 0 0 0 0 1
39 0 0 0 1 0 1 0 0 1 0 0
40 0 0 0 1 0 1 0 0 1 0 0

In order to explore this evaluation, the interested reader should download conexp-1.3, devel-

oped by S. A. Yevtushenko [23], from

-604-



http://www.sourceforge.net

and doubly click conexp.jar so that the following screen opens:

Enter, on the left hand side, the numbers of objects and attributes that you want to enter, 18

as number of objects, and 11 for the number of attributes. Enter also the notations of the

refrigerants and the attributes, as well as× where in our table the entry is 1. You will obtain the

table of the evaluation, the upper left hand corner of which is shown in the following screenshot:
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You may want to save this evaluation under conexp1.cex somewhere. The final step is the

evaluation of the Duquenne/Guigues–basis of implications and its reduction due to chemical

arguing.

In the binary case, i.e., when L = {0, 1}, an L–subset A of the set of attributes is a crisp

subset, and similarly for the L–subsets O of the set of objects. Moreover we easily obtain the

corresponding subsets A′ and O′ as well as A′′ and O′′: The evaluation is binary, and so A′ is

the set of objects that have all the attributes contained inA whileO′ consists of all the attributes

that all the objects o ∈ O have. For example, the following setsA consisting of a single attribute

yield

{ODP ∗}′ = {1, 22, 33, 35},

{GWP ∗}′ = {2, 8, 23, 29},

{ALT ∗}′ = {8, 23, 29, 35}.

These equations are in fact abbreviations. For example, the first equation means that exactly the

objects labeled 1, 22, 33 and 35 have the attribute ODP ∗, i.e., the equation indicates that just

RE1(ODP
∗) = RE22(ODP

∗) = RE33(ODP
∗) = RE35(ODP

∗) = 1.

An application of the mapping −′ to {ODP ∗}′ yields

{ODP ∗}′′ = {ODP ∗, Cl, F}, {GWP ∗}′′ = {GWP ∗, F}, {ALT ∗}′′ = {ALT ∗, F}.

Now we note that

P = {ODP ∗} 6= {ODP ∗}′′ = P ′′.

This inequality, together with ∅ = ∅′′ (which implies that the empty set is not a pseudo–content)

shows that the set of attributes {ODP ∗} is a pseudo–content, and similarly for {GWP ∗} and

{ALT ∗}. Thus, we obtain the following attribute implications contained in the basis of the

attribute implications, the Duquenne/Guigues–basis:

{ODP ∗} =⇒E {Cl, F},

{GWP ∗} =⇒E {F},

{ALT ∗} =⇒E {F}.
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They show that REi(ODP ∗) = 1, i.e., a high ODP implies the existence of Cl and F , while a

high GWP or a high ALT needs the presence of F but not of Cl. But we should carefully note

that this is true for just the 18 refrigerants evaluated by the binary evaluation shown above.

Of course, this is more or less trivial. Our focus here is not the set of implications per se but

the fact that they were obtained automatically and that they contain the whole knowledge about

attribute implications contained in the evaluation of the 18 refrigerants that we consider. The

complete Duquenne/Guigues–basis is obtained as follows: Open conexp1.cex and look at its

toolbar:

Click the button P → C and you will get the screen with 24 implications shown on the follow-

ing page. These 24 implications form the Duquenne/Guigues–basis, and it remains to discuss

which of them have to be taken into account since this basis contains, for example, trivial im-

plications. Consider the implications number 10 and 11 on the table:

Implication number 10, colored in blue, reads as follows:

10 < 1 > ALT ∗ nC F Ether =⇒ GWP ∗;

This means that there is exactly one of the 18 refrigerants fulfilling the condition that its param-

eter values of ALT ∗, nC, F are 1 and that it is an ether. In fact, a glance at E shows that exactly

29 has this property,

RE29(ALT
∗) = RE29(nC) = RE29(F ) = RE29(Ether) = 1.

In contrast to this implication, the eleventh implication is colored in red, it reads as follows:

11 < 0 > nC NH3 =⇒ GWP ∗;

The assumption is {nC,NH3} is valid only for such refrigerants i where

REi(nC) = REi(NH3) = 1.

But there is clearly no chemical compound that has the molecular formula NH3 and contains

at least 2 carbon atoms. Thus, the assumption of implication 11 is contradictory although the
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Table 1: The Duquenne/Guigues basis of attribute implications obtained for the binary evalua-
tion of the 18 refrigerants and the 11 attributes
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implication is true by the laws of formal logic. We can therefore skip this implication as it is

trivial. The same holds for the implications 12, 13 and 14. Similarly for the implications 22, 23

and 24. They can be skipped without loosing information.

The implications 15, . . . , 21 also have assumptions that do not hold for any of the 18 re-

frigerants considered, and so they are true ‘in this evaluation’. But these implications cannot be

skipped because of their assumption since we do not know if there are refrigerants (besides the

18 refrigerants considered) that match these implications. Nevertheless they can be skipped be-

cause of their contradictory conclusions if we restrict attention to the 18 refrigerants. It there-

fore remains to consider the following 10 implications contained in the Duquenne/Guigues–

basis of our evaluation of the 18 refrigerants:

{ODP ∗} =⇒E {Cl, F}

{GWP ∗} =⇒E {F}

{ALT ∗} =⇒E {F}

{nC,Cl} =⇒E {F}

{ALT ∗, Cl, F} =⇒E {ODP ∗, nC}

{GWP ∗, nC, F} =⇒E {ALT ∗}

{Br} =⇒E {ODP ∗, Cl, F}

{I} =⇒E {F}

{Ether} =⇒E {nC}

{ALT ∗, nC, F,Ether} =⇒E {GWP ∗}

This is what we gained from the binary evaluation of the 18 refrigerants using the 11 attributes.

It is expressed in terms of implications that cover every attribute implication that we can deduce

from the evaluation. One might therefore call the calculation of this basis the exploration of the

evaluation expressed by the binary matrix given above. Of course, the binary context is just

one of the contexts that we can obtain. It is quite special since it uses the third quartiles of the

parameter values of ODP , GWP and ALT . We might, of course, also consider a context that

uses 0.5 instead of the third quartiles, and so on. Nevertheless, it is a set of 10 implications

that are true for the 18 refrigerants, and we may use them as conjectures on bigger sets of

refrigerants that we might be interested to check. For example, the last implications means that
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for every refrigerant i among the 18 we found that

REi(ALT
∗) = REi(nC) = REi(F ) = 1

implies that REi(GWP ) = 1.

The next step is a check which of these implications might hold for a bigger set Ω of refrig-

erants. For example, if we extend to the 40 refrigerants that were evaluated, we remain with the

following implications obtained by reduction of the Duquenne/Guigues–basis:

{ODP ∗} =⇒E {Cl, F}

{GWP ∗} =⇒E {F}

{ALT ∗, nC} =⇒E {GWP ∗, F}

{ALT ∗, Cl} =⇒E {ODP ∗, GWP ∗, F}

{nC,Cl} =⇒E {ODP ∗, F}

{ALT ∗, F} =⇒E {GWP ∗}

{GWP ∗, Cl, F} =⇒E {ODP ∗, ALT ∗}

{Br} =⇒E {ODP ∗, Cl, F}

{I} =⇒E {F}

{Ether} =⇒E {nC}

{CO2} =⇒E {ALT ∗}

One reason for the difference between this set of 11 implications and the former set of 10 is

the fact that the quartiles have changed. The third quartiles for the 40 refrigerants are in fact

considerably smaller than those for the 18, here is the corresponding table:

3. quartiles of ODP GWP ALT
40 refrigerants 0.0042 0.282 0.0131
18 refrigerants 0.162 0.666 0.041

The reduced bases show that five of the ten implications that hold for the 18 refrigerants are true

for the 40 refrigerants as well.

The 11 implications may be considered as conjectures on the properties of further refriger-

ants RE. For example we are faced with hypotheses like

RE(ODP ) > 0.0042 implies the presence of both Cl and F in RE,
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RE(GWP ) > 0.282 implies the presence of F in RE,

...

If we doubt such an implication we have to look for refrigerants that do not meet this im-

plication. If this is true, i.e., if we found counterexamples, we better increase the set O by

adding the counterexamples obtaining O′ ⊃ O, consider the corresponding evaluation E ′ and

its Duquenne/Guigues–basis, reduce it and check the resulting set of implications, and so on

until we cannot find any further contradiction. More generally, any new or controversely dis-

cussed refrigerant can be added to the data matrix, the table extended by the corresponding row

and the new reduced Duquenne/Guigues–basis compared with the old basis consisting of the

eleven implications. For example, the interested reader may add R1234yf — if the parameter

values are available — and check what happens.

In contrast to such implications that hold for every object in the evaluation, in data mining

there is also interest in implications that are not that strict, i.e., they need not be true for every

object o ∈ O. They are called association rules. The base of association rules consists of the

Duquenne-Guigues-Basis and additionally the following set of rules or implications:

9.1 Definition (the Luxenburger base)

This base is the set of implications of the following form, for sets of attributes which satisfy

Ai = A′′i ,

A1 =⇒E (A2 \ A1),

where no A3 exists with A1 ⊂ A3 ⊂ A2. �
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conexp allows to calculate this base of association rules. Here is the base for the association

rules of our binary context:

Consider, for example, the 26th association rule:

26 < 10 > nC = [80%]⇒ < 8 > F ;

An easy check shows that {nC}′′ = {nC}, as well as {F}′′ = {F}, for the sets of attributes that

are involved and their second derivation (which is in fact the closure). Clearly there is no other

set of attributes between these sets of attributes. The number 10 that is part of that rule says

that the number of objects for which the assumption A = {nC} holds is 10, while the number

8 shows that there are exactly 8 objects for which both the assumption and the conclusion {F}

hold. The checks are easy.

10 The lattice of concepts
A disadvantage of the attribute implications is that on both sides of the implications just at-

tributes occur but no objects. For this reason we should also consider the main notation of
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Formal Concept Analysis, established by Rudolf Wille and his school at Darmstadt, see [10]

around 1980. It describes a very important connection between particular sets of objects and

particular sets of attributes and is helpful in evaluation, too, cf. [1, 2, 6, 22].

10.1 Definition (concepts and lattices of concepts)

Consider an evaluation E ∈ LO×A of a set O of objects with respect to a set A of attributes. We

shall use the mappings A 7→ A′ and O 7→ O′ introduced above, as well as their iterations:

— A concept in E is a pair of L–subsets (O,A), where O ∈ LO and A ∈ LA, such that

(O,A) = (O′′,O′) = (A′,A′′).

O, an L–subset of the set O of objects, is called the extent of the concept, A ∈ LA the

intent of the concept.

— The set of all the concepts in E is partially ordered by

(O,A) ≤ (O∗,A∗) ⇐⇒ O ⊆L O∗ ⇐⇒ A∗ ⊆L A.

In this case we call (O,A) a subconcept of (O∗,A∗) and (O∗,A∗) a superconcept of

(O,A).

— The concepts form a lattice with respect to that partial order, it is called the lattice of

concepts.

�

Let us see what this means in the binary case:

10.2 Example (binary contexts, their concepts and lattices of concepts)

If L = {0, 1} then O ∈ LO = {0, 1}O is a crisp subset of O, a crisp set of objects. The

corresponding O′ ∈ LA = {0, 1}A has the values

O′(a) =
∧
o∈O

τ̃(O(o), E(o, a)).

As the residuum is b̃, this means that

O′(a) =
∧
o∈O

b̃(O(o), E(o, a)) =
∧
o∈O

min{1, 1−O(o) + E(o, a)}.
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The minimum min{1, 1−O(o) + E(o, a)} is 1 if and only if O(o) = E(o, a), i.e.,

O′ = {a ∈ A | ∀ o ∈ O : E(o, a) = O(o)},

so that also

O′′ = {o ∈ O | ∀ a ∈ A : E(o, a) = O′(a)},

and so on. Correspondingly we get

A′ = {o ∈ O | ∀ a ∈ A : E(o, a) = A(a)},

so that also

A′′ = {a ∈ A | ∀ o ∈ O : E(o, a) = A′(o)},

etc..

A concept is a pair (O,A) consisting of a crisp set O of objects, together with a crisp set A

of attributes such that (O,A) = (O′′,O′) = (A′,A′′). Hence, according to the above equations,

O = A′ consists of just the objects that have the attributes contained inA, while the setA = O′

consists of just the attributes that all the objects have which are elements of O. Our binary

context

Label nODP ∗ nGWP ∗ nALT ∗ nC Cl F Br I ether CO2 NH3

1 1 0 0 0 1 1 0 0 0 0 0
2 0 1 0 0 1 1 0 0 0 0 0
6 0 0 0 1 1 1 0 0 0 0 0
7 0 0 0 1 1 1 0 0 0 0 0
8 0 1 1 0 0 1 0 0 0 0 0
16 0 0 0 1 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 1 0
22 1 0 0 0 1 1 1 0 0 0 0
23 0 1 1 1 0 1 0 0 0 0 0
29 0 1 1 1 0 1 0 0 1 0 0
32 0 0 0 0 1 0 0 0 0 0 0
33 1 0 0 1 1 1 0 0 0 0 0
35 1 0 1 1 1 1 0 0 0 0 0
36 0 0 0 0 0 1 0 1 0 0 0
37 0 0 0 1 0 0 0 0 1 0 0
38 0 0 0 0 0 0 0 0 0 0 1
39 0 0 0 1 0 1 0 0 1 0 0
40 0 0 0 1 0 1 0 0 1 0 0

has the lattice of concepts, shown on the next page, it was obtained by an application of conexp.

The 24 nodes represent the 24 concepts. From the ‘User Guide’ of that helpful software package

we quote the following description:
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Table 2: The lattice of concepts corresponding to the binary evaluation of the 18 refrigerants

So called reduced labeling is used in order to succinctly represent information about

intents and extents of formal context. If label of attribute A is attached to some con-

cept, that means, that this attribute occurs in intents of all concepts, reachable by

descending paths from this concept to zero concept (bottom element) of lattice. If

label of object O is attached to some concept, this means, that object O lays in

extents of all concepts, reachable by ascending paths in lattice graph from this con-

cept to unit concept (top element) of lattice. If drawing of node contains blue filled

upper semicircle, that means, that there is an attribute, attached to this concept. If

drawing of node contains black filled lower semicircle, that means, that there is a

object, attached to this concept. Sometimes node or edge in line diagrams is dis-

played in red color. This means, that this edge or node are located very near or

overlap with some other node. In order to improve layout, try manual adjustment

of layout or some other layout.

On the lowest level we find one node, it corresponds to the trivial concept

(∅, {nODP ∗, nGWP ∗, nALT ∗, nC,Cl, F,Br, I, ether, CO2, NH3}).
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On the last but one level we find two concepts with a 1-element extent and a 1-element intent,

labeled by the attribute contained in the intent:

({RE38}, {NH3}), ({RE21}, {CO2}),

and there is also a concept with a 1-element extent but a 2-element intent, and another one with

a 1-element extent but a 4-element intent:

({RE36}, {F, I}), ({RE22}, {nODP ∗, Cl, F,Br}).

The other three (unlabeled) nodes correspond to three further concepts that have a 1-element

extent as well:

({RE1}, {nODP ∗, Cl, F}), ({RE2}, {nGWP ∗, Cl, F}),

({RE8}, {nGWP ∗, nALT ∗, F}), ({RE36}, {I}), ({RE22}, {Br}),

({RE16}, {nC}), ({RE}, {ether}),

and so on.

�

For more examples and details see the cited literature [1, 2, 6, 22].
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L. Carlsen, J. Wittmann (Eds.), Multi–Indicator Systems and Modelling in Partial Order,
Springer, New York, 2014, pp. 389–423.

[4] R. Bruggemann, E. Halfon, G. Welzl, K. Voigt, C. Steinberg, Applying the concept of
partially ordered sets on the ranking of near–shore sediments by a battery of tests, J.

Chem. Inf. Comp. Sci. 41 (2001) 918–925.

-616-



[5] R. Bruggemann, A. Kerber, G. Restrepo, Ranking objects using fuzzy orders with an
application to refrigerants, MATCH Commun. Math. Comput. Chem. 66 (2011) 581–603.

[6] R. Bruggemann, G. P. Patil, Ranking and Prioritization for Multi–Indicator Systems –

Introduction to Partial Order Applications, Springer, New York, 2011.

[7] R. Bruggemann, K. Voigt, Basic principles of Hasse diagram technique in chemistry,
Comb. Chem. High Throughput Screen. 11 (2008) 756–769.

[8] B. De Baets, H. De Meyer, On the existence and construction of t-transitive closures, Inf.

Sci. 152 (2003) 167–179.

[9] V. Duquenne, Contextual implications between attributes and some properties of finite
lattices, in: B. Ganter, R. Wille, K. E. Wolff (Eds.), Beiträge zur Begriffsanalyse, B.
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