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Abstract 

Sequence similarities serve as a foundation for the structure-function studies, as well as 

evolutionary relationships among different species. Several statistical methods have been 

proposed to compare biological sequences, but challenge remains. This paper proposed a 

novel position-specific statistical model based on base-specific position matrices and Markov 

model to describe randomness degree and local dynamic distribution in specific positions. We 

illustrated its application in analysis of chromosomes 1 of eight species, human coding/ non-

coding sequences and phylogenetic relationships. The experiment results demonstrate that 

nucleotides’ distributions in the first position from right of the nucleotide C and left of the 

nucleotide G are extremely uneven, and most of conserved patterns in non-coding sequences 

are relatively longer and more conservative than that in coding sequences. This understanding 

can then be used to guide development of more powerful methods for sequence analysis. 

Introduction 

In past 10 years, sequencing technology has been undergoing dramatic changes, and 

consequently thousands of genomes have been sequenced until now [1-5]. Sequence data does 

not, by itself, increase the scientist's understanding of the biology of organisms, but creates 
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many challenges for bio-scientists [6]. One of challenges is how to compare the biological 

sequences, which is a more important strategy in sequence analysis.  

Up to now, many methods have been proposed to compare biological sequences, which 

can be categorized into two classes. One is traditional alignment method, which is a common 

and much empirical to select a sequence alignment based on scoring matrix and gap penalty 

parameters. The advantage of using these matrices is based on a defined evolutionary model, 

and the statistical significance of alignment scores obtained by local-alignment programs may 

be evaluated. However, dynamic programming in alignment makes computation more 

complicated, and iterative computational steps limits its utility for large datasets [7]. 

Therefore, the research of alignment-free methods becomes apparent and necessary [8]. 

Graphical representation is one of widely used alignment-free methods, which was first 

proposed by Hamori and Ruskin [9]. From graphical representations, many numerical features 

of biological sequences were extracted to facilitate comparison of genome sequences and 

regulatory sequences. The advantage of such approaches is providing a simple way to view, 

sort and compare various gene structures, helping in recognizing major characteristics among 

similar biological sequences [10]. Since introduction of the graphical representation, various 

approaches have been proposed and achieved promising results in sequence comparison. But 

some 2D graphical representations are accompanied with information loss due to overlapping 

and crossing of the curve with itself [11, 12]. In order to reduce information loss, some 2D 

and 3D representations have been proposed [13-18]. According to the handling bases of 

biological sequences, they can be classified as single nucleotide-based and dual nucleotide-

based representations. Although the above graphical representation methods have achieved 

promising results, there are still some problems in graphical representations. First, many 

graphical representations were designed by assigning the single bases or dual nucleotides to 

corresponding direction/points/cells in Cartesian coordinates, so little attention has been paid 

to the whole distribution of the single nucleotide or dual nucleotides in biological sequences. 

Second, the choice of the direction/points/cells for the single base or dual nucleotides is 

arbitrary. Finally, feature-based similarity measures are always associated with the invariants 

of the distance matrices that are gotten by complex repetitive computation. When the 

sequences are long, these kinds of feature-based similarity measures become less useful [19-

25]. 

In addition, several statistical methods have been proposed to compare different 

biological sequences [26-29]. They used k-word distribution and Markov model [30, 31] to 

numerically characterize compositional characteristics and pseudo-periodic sequence patterns, 
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and used different distance measures to evaluate the similarity among different sequences. For 

example, Euclidean distance [32], Euclidean and Mahalanobis distance [33], Markov chain 

models and Kullback-Leiber discrepancy [34], cosine distance [35], Kolmogorov complexity 

[36] and chaos theory [37].  

The above approaches have achieved promising results in sequence comparison, but 

several critical problems still exist in their development. First, mostly methods focus on the 

content of sub-sequences of biological sequences, and therefore to sometimes are unaware of 

useful position-based information of the specific bases in sequence comparison. Second, some 

methods constructed Markov model to numerically characterize biological sequences with 

help of transition probabilities, without considering local structure among k-neighborhood of 

the given bases. Since steady local structures are strongly associated with compact structural 

pattern or domains, we should take them into account when comparing two biological 

sequences. 

With above problems in mind, we proposed a position-specific statistical model to 

analyze biological sequences. Given a biological sequence, we constructed base-specific 

position matrices and further analyzed randomness degree of nucleotides’ distribution with 

help of Shannon entropy. In order to describe local structure of the given bases, we proposed 

a position-specific statistical model based on the base-specific position matrices and Markov 

model. To evaluate performance of the proposed model, we applied it to 

similarity/dissimilarity studies of DNA sequences and compared its performance with the 

alignment method. 

Method 

Base-specific position matrices 

A biological sequence nsssS 21  is interpreted as a succession of symbols from the 

alphabet, where n is the length of the S. In the context of DNA sequences, its state space is 

},,,{ TGCA . There is a large body of literatures on word statistics in which the 

frequencies of its small segments were analyzed. Given a base  , this paper was interested 

not only in its only distribution in biological sequence, but also in other bases’ distribution 

among its k-neighborhood. To obtain such information, we proposed base-specific position 

matrices to describe the bases’ distribution around the given base. Take a DNA sequence for 

example, we first designed two sliding windows with length of L and put them on both sides 
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of the given nucleotide  . When merging the given nucleotide  and two windows into one, 

we got a base-specific sliding window of length 2L+1. The standard approach for analyzing 

nucleotides’ distribution of a sequence with length n is to use a sliding window of length 

2L+1, shifting one base at a time from position 1 to n-2L. Here, the sliding window is allowed 

to overlap in the sequence. We then obtained two base-specific position matrices k

lM  and 

k

rM  defined as follows: 
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 ) is the frequency of the 

nucleotide y  in the kth position starts from left (right) of the given nucleotide  . 

For example, if S ATGATGCACATGACTC  is a given DNA sequence, we calculated its 

A-specific position matrices 3

l

AM  and 3

r

AM  with length 3 as follows:  
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Following the same method, we also obtained base-specific position matrices ( 3

l

CM , 3

r

C M ), 

( 3

l

GM , 3

r

GM ) and ( 3

l

T M , 3

r

T M ) of the specific nucleotides C, G and T. 

Markov model 

Markov model is a stochastic model that models the state of a system with a random 

variable that changes through time. The general idea of Markov model lies in the letters are 

not necessarily independent and the probabilities for ia depend on the ‘past’ of the sequence, 

namely ( 121 ,,, iaaa  ). In 1-step Markov chain, ia  depends on the past state 1ia , which can 

be described by transition probability ijp . The transition matrix ][ ijpP   is defined as a 
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matrix composed of all the transition probabilities, and each state transition probability ijp  

was defined as follows: 

)|(),( 1 jnin SaSapjip                      (3) 

where iS  and jS  are the i-th and j-th states of a space with N distinct states. The state 

transition probabilities are subject to  
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So k-step Markov chain can be deduced from the 1-step Markov chain, and the transition 

probability matrix of the k–step Markov model can be calculated as follows: 

k k

ijp P    . 

Position-specific statistical model 

Base-specific position matrices k

lM  and k

rM  describe the bases’ distributions around 

the given base  , and Markov model indicates transition probability from one state to 

another. Given a base  , not only do we want to know the bases’ distribution around it, but in 

the process we'd like to analyze their transition among the k-neighborhood bases. In order to 

further numerically characterize local structure of the given bases, we proposed a position-

specific statistical model  based on the base-specific position matrices and Markov model 
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where ),( kyfl

 ( ),( kyfr

 ) is the frequency of the nucleotide y  in the kth position starts from 

left (right) of the given nucleotide  , and ),( ypk  denotes transition probability of the 

nucleotide y  to the given nucleotide  after k steps, },,,{ TGCAy , and k L .  

From the statistical model  , it is easily to note that it consists of two kinds of 

distribution information in the specific positions of the given bases. One is the ‘gotten’ 

information because ),( kyL

l
  describes the probabilities that the nucleotide y  in the kth 

position starts from left becomes the given nucleotide   after 1L k   steps. On the contrary, 

),( kyL

r
  is the ‘lost’ information in which the given nucleotide   is from the nucleotide y  

in the kth position starts from right after k steps. That is to say, the proposed statistical model 

describes local dynamic distribution in the specific positions around the given base. 

Therefore, it can be used to numerically characterize local distribution information of the 

bases and pseudo-periodic sequence patterns in biological sequences. 

Results and Discussion 

 Evaluation on local distribution of the specific nucleotide 

Given a nucleotide, we are interested in both its distribution in biological sequence and 

local distribution of the other nucleotides around it. With help of the base-specific position 

matrices, we analyzed the local distribution of the specific nucleotides. It is well known that 

Shannon's entropy measures the degree of bias/randomness of a distribution. Here, we utilized 

it as a measure (RD) to evaluate the randomness degree of nucleotides’ distribution in the 

given position, defined as follows: 

                    


},,,{ 2 ),(log),()(
TGCAy

kyfkyfkRD                        (12) 

where ),( kyf is the frequency of the nucleotide y  in the kth position. 

Here, we chose chromosomes 1 of eight species, in which the brassicaceae species is 

Arabidopsis (A. thaliana), the Chordata species is zebrafish (Brachydanio rerio), the 

Vertebrate and Mammal species are cat (Feliscatus) and dog (Canislupusfamiliaris), the 

roden(Mus musculus), the rodents species are rat (Rattus norvegicus) and mouse (Mus 
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musculus), and the primates species are human (Homo sapiens) and chimpanzee (Gorrilla 

gorilla). Figure 1 is the randomness degree of nucleotides’ distribution in five positions on 

both sides of the specific nucleotide for eight species, in which negative values on the x-axis 

denote the positions on the left side of the specific nucleotides, and positive values denote the 

position on the right side of the specific nucleotides.  

 

Figure 1. Randomness degree of nucleotides’ distribution among five positions on the left and right of the 

specific nucleotide for eight species, in which negative values on the x-axis denote the position on the left 

side of the specific nucleotides, and positive values denote the position on the right side of the specific 

nucleotides. 

Take a closer look at Figure 1, we found that (i) randomness degrees’ changes of the five 

positions on the left and right of the specific nucleotides A and T (nucleotides C and G) are 

similar among the eight species, especially for mammals. In the double-stranded DNA, 

nucleotide A and nucleotide T (C and G) are complementary pairing, so their local 

distributions are similar; (ii) minimum randomness degrees are associated with the position 1 

or -1 in eight species (Figure 1(C) and Figure 1(G)). As we all know, Shannon's entropy 

would reach its maximum value when the distribution is uniform one. That is to say, the 

distributions of four nucleotides in the first position on the right of the nucleotide C and on 

the left of the nucleotide G are extremely uneven; (iii) Although the randomness values 

possess different performances with different given nucleotides, it is interesting to note that 

the species belonging to the same class achieve similar performance. For example, the 

randomness degree of nucleotides’ distributions of human is coincident with that of 

chimpanzee. In contrast, the randomness degrees of nucleotides’ distributions of arabidopsis 

and zebrafish are significantly different from the others. 
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Human coding and non-coding sequences analysis 

The initial step in genomic annotation is to identify protein coding regions of the 

genomes. It is a challenging problem because protein coding regions interrupted by non-

coding regions are usually not continuous. So it is difficult to distinguish protein coding 

regions from non-coding regions by the sequences since there is no obvious sequence feature 

between them. Here, we used the proposed model to analyze the human coding and non-

coding sequences to find some interesting features. The human coding dataset and non-

coding dataset were downloaded from the nucleotide database of NCBI (National Center for 

Biotechnology Information), which includes 285807 coding sequences and 248713 non-

coding sequences, respectively. Figures 2-3 represent nucleotides’ content in the positions on 

the left or right of the specific nucleotides, and the colour from black to grey denotes the 

content from low to high.  

 

Figure 2. Nucleotides’ content in the positions on the left or right of the specific nucleotides in human 

coding dataset, and colour from black to grey denotes the content from low to high. Negative values on the 

x-axis denote the position on the left side of the specific nucleotides, and positive values denote the 

position on the right side of the specific nucleotides. 

As would be expected, the nucleotides’ contents in different positions around the 

specific nucleotides (Figures 2-3) show three clear trends: (i) the contents of A and T are 

larger than others for the different specific nucleotides in human coding and non-coding 

sequences. As for the specific nucleotides A and T, this phenomenon is more obvious; (ii) 

the maximum contents are always achieved in the position 1 or -1. That is to say, the 

distributions of four nucleotides in the first position on the right or left of the specific 

nucleotides are extremely uneven. (iii) Figure 2 shows that the contents of AAA, TGA and 
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TTT patterns are significantly higher than that of other patterns, while Figure 3 illustrates the 

highest contents are associated with the AAAAA, TCA, TGA*A and TTTTT patterns. It is 

easy to observe that most of conserved patterns in non-coding sequences are relatively longer 

and more conservative than that in coding sequences. Therefore, the above features may be 

useful to numerically characterize the local distribution information of the bases and pseudo-

periodic sequence patterns in the coding and non-coding sequences. 

 

Figure 3. Nucleotides’ content in the positions on the left or right of the specific nucleotides in human non-

coding dataset, and color from black to gray denotes the content from low to high. Negative values on the 

x-axis denote the position on the left side of the specific nucleotides, and positive values denote the 

position on the right side of the specific nucleotides.  

For a better understanding, we further calculated the randomness degree of nucleotides’ 

distribution in the five positions on the left and right of the specific nucleotides, which 

represented in Figure 4. It is clear from Figure 4 that the randomness degrees’ changes in the 

five positions on the left and right of the given nucleotides are similar between the human 

coding and non-coding sequences. But we should note that randomness degrees of human 

coding sequences are significant higher than that of human non-coding sequences. That is to 

say, the distributions of four nucleotides in the positions of human non-coding sequences are 

more uneven that of human coding sequences, which is consistent with the results in Figures 

2-3. 
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Figure 4. Randomness degree of nucleotides’ distribution in five positions on the left and right of the 

specific nucleotide in human coding and non-coding datasets, in which negative values on the x-axis denote 

the position on the left side of the specific nucleotides, and positive values denote the position on the right 

side of the specific nucleotides. 

Similarity analysis  

Similarity analysis is the essential motivation of sequence analysis. Here, we further 

tested the validity of the proposed method by analyzing the similarities of coding sequences 

of the first exon of β-globin gene of 11 species: Human(U01317), Goat(M15387), North 

American opossum(J03643), Gallus(V00409), Black lemur(M15734), House 

mouse(V00722), Rabbit(V00882), Norway rat(X06701), Gorilla(X61109), Bovine(X00376) 

and Chimpanzee(X02345), which have been widely studied.  

In order to represent relationships among 11 species more clearly, we constructed their 

phylogenetic trees based on the proposed statistical model  . The phylogenetic tree were 

obtained through the following main operations: we first constructed the proposed statistical 

models  with the window size 5 for 11 species and measured the similarity based on 

Euclidian distances among their statistical models  ; Through arranging all the similarity 

degrees into a matrix, we then obtained a pair-wise distance matrix; finally, we put the pair-

wise distance matrix into the neighbor-joining program in the PHYLIP package and got 

phylogenetic trees drawn by MEGA program. Figure 5(A) is the phylogenetic tree of 11 

species using the proposed statistical models  .  
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Generally, an independent method can be used to evaluate the accuracy of a phylogenetic 

tree, or the validity of a phylogenetic tree can be tested by comparing it with authoritative 

ones. Here, we adopt the former one to test the validity of our phylogenetic tree and compared 

our results with ones obtained with the multiple alignment CLUSTAL X (Figure 5(B)). 

 

Figure 5. Phylogenetic trees of 11 species with proposed method and the multiple alignment CLUSTAL W. 

(A) is obtained by the proposed statistical models with the window size 5, and (B) is the results based on 

the multiple alignment CLUSTAL W. 

Figure 5 shows that the results of the proposed method are quite consistent with the ones 

obtained by the multiple alignment CLUSTAL X (Figure 5(B)) in the following four aspects: 

(1) three Primates (Human, Gorilla and Chimpanzee) are clustered closely; (2) two Rodents 

(Mouse and Rat) are grouped closely; (3) Rabbit is clustered closely with Human, Gorilla and 

Chimpanzee; (4) Opossum and Gallus are less closely with other species, which is consistent 

with the fact that Gallus is the only non-mammal among them, and Opossum is the most 

remote species from the remaining mammals. In agreement with the above analysis, these 

results confirm that the proposed position-specific statistical model can be considered as 

another efficient method for similarity analysis of biological sequences. 

Conclusion 

Similarity analysis is one of the major goals of sequence analysis, which could serve as 

evidence of structural and functional conservation, as well as evolutionary relations among 

the sequences. This paper constructed a position-specific statistical model based on the base-

specific position matrices and Markov model to analyze biological sequences. Given a 

biological sequence, we first constructed its base-specific position matrices and analyzed the 

randomness degree of nucleotides’ distribution with help of Shannon entropy. We found that 

the distributions of four nucleotides in the first position on the right of the nucleotide C and 

on the left of the nucleotide G are extremely uneven, and most of conserved patterns in non-
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coding sequences are relatively longer than that in coding sequences. With the properties of 

Markov model in mind, we proposed a position-specific statistical model to analyze the 

biological sequences and illustrated its applications in phylogenetic analysis. The results 

demonstrate that the proposed method is efficient, which highlight the necessity for sequence 

comparison method to describe local dynamic distribution among k-neighborhood of the 

given bases. Thus, this understanding can then be used to guide development of more 

powerful methods for sequence comparison with future possible improvement on genome 

study. 
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