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Primorska, Glagoljaška 8, Koper, Slovenia

e-mail: skrekovski@gmail.com

(Received September 20, 2014)

Abstract

Fullerene graphs are 3-connected cubic planar graphs with only pentagonal and hexagonal

faces. Nanotubes are special type of fullerene graphs determined by a vector (p, q). We show

that the diameter of a (p, q)-nanotubical fullerene graph is essentially n/(p+ q). In addition, we

determine the diameter of (9, 0)-isolated pentagon nanotubes.
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1 Introduction

Fullerenes [1] are polyhedral molecules made of carbon atoms arranged in pentagonal

and hexagonal faces. The wide variety of fullerenes, and possible applications made the

them a subject of intense experimental and theoretical investigation. One of the most

important aims was to determine the structural properties of stable fullerenes. In order

to achieve these goals, graph theoretical methods were applied to mathematically model

fullerene molecules as fullerene graphs.

Fullerene graphs are 3-connected, cubic planar graphs with only pentagonal and hexag-

onal faces. Due to Euler’s formula, the number of pentagonal faces in a fullerene graph is

always twelve. Grűnbaum and Motzkin [2] showed that fullerene graphs with n vertices

exist for all even n ≥ 24 and for n = 20, i.e., there exists a fullerene graph with α hexagons

where α is any non-negative integer distinct from 1. Although the number of pentagonal

faces is negligible compared to the number of hexagonal faces, their layout is crucial for

the shape of a fullerene graph.

If the pentagonal faces are “uniformly” distributed, we obtain fullerene graphs of

icosahedral symmetry, whose smallest representative is the dodecahedron. On the other

end of the spectrum, if the pentagons are grouped into two rather compact patches, we

obtain a class of fullerene graphs of tubular shapes, called nanotubes. Carbon nanotubes

were discovered by Iijima in 1991 [3].

There are fullerene graphs where no two pentagons are adjacent, i.e., each pentagon

is surrounded by five hexagons. Those fullerene graphs satisfy the isolated pentagon

rule or shortly IPR, and they are the most stable fullerenes [4], in the sense that all

experimentally observed fullerenes so far are IPR. The smallest such fullerene has 60

vertices, and IPR fullerenes on n vertices exist for all even values of n ≥ 70 [5]. The

smallest isolated pentagon fullerene, also known as C60 or Buckminsterfullerene, has full

icosahedral symmetry.

A number of graph-theoretical invariants were examined as potential stability predic-

tors with various degrees of success. Among them are the number of pentagon adjacencies,

bipartivity, independence number, the smallest eigenvalue, separator and others [6–12].

Among other graph invariants that are on the list of possible stability predictors are the

number of (perfect) matchings, the saturation number, the diameter [13, 14], etc. More

results and questions on fullerenes can be found in [15–18].
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In [20] it was remarked that the diameter can be considered as a measure of fullerene

stability. Here we are concerned with the bounds on the diameter of nanotubical fullerenes.

For general fullerenes the problem was solved in [19], while the special case of highly

symmetric icosahedral fullerenes was settled in [20]. The icosahedral fullerenes are defined

by the Goldberg vector
−→
G = (i, j) which determines the position of the pentagons in the

fullerene graph [21,22]

Theorem 1.1. [19] Let G be a fullerene graph with n vertices. Then,

√
24n− 15− 3

6
≤ diam(G) ≤ n

5
+ 1 .

Theorem 1.2. [20] Let G be a (0, i)-icosahedral fullerene graph with i > 0. Then

diam(G) = 6i− 1 =
√

9
5
n− 1 .

Theorem 1.3. [20] Let G be an (i, i)-icosahedral fullerene graph with i > 0. Then

diam(G) = 10i− 1 =
√

5
3
n− 1.

In the next sections we show that the diameter of a (p, q)-nanotubical fullerene F on n

vertices is essentially
n

p+ q
. Then, we show that the diameter of a (9, 0) isolated pentagon

nanotube on n vertices is at most (n+ 21)/9.

2 Definitions and preliminaries

Before we determine the diameter of (p, q)-nanotubes and the diameter of isolated pen-

tagon fullerenes, we introduce some basic definitions as well as some new notation and

notions [19].

The diameter of graph G is the length of the shortest path between the most distanced

vertices. A patch is a 2-connected plane graph with only pentagonal or hexagonal faces,

except maybe one (the unbounded) face. All interior vertices of a patch are of degree 3,

and all vertices of the exceptional face, which we consider as the outer face, are of degree

2 or 3. Let P be a patch with h hexagons and p pentagons. All the vertices incident to

the outer face – the boundary of P , b(P ) – are of degree two or three; let the number of

vertices of degree two and three on the border of P be denoted by n2,b(P ) and n3,b(P ),

respectively. Clearly for the size of the border |b(P )| holds |b(P )| = n2,b(P ) + n3,b(P ).

Bornhöft et al. [23] give the following relation between the number of vertices on the

border and the number of pentagons in the patch.
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Lemma 2.1. Let P be a patch with p pentagons. Then n2,b(P ) − n3,b(P ) = 6 − p, and

|b(P )| = 2n3,b(P ) + 6− p.

The degrees of the vertices on the boundary can be regarded as a sequence of length

|b(P )| whose elements are 2 and 3. An edge incident to the outer face is said to be an i-j

edge, if it is adjacent to vertices of degrees i and j.

Inserting a face (pentagon or hexagon) to a patch P means creating a new patch from

P with one face more than P such that the new face is incident to at least one edge from

the outer face of P . Removing a face is an inverse operation of addition.

Figure 1: Construction of the cylindrical part of a (4, 3)-nanotube (left). Ring of a
(4, 3)-infinite (hexagonal) tube (right). The shaded hexagons on the dashed lines are
overlapping.

An infinite (hexagonal) tube is obtained from a planar hexagonal grid by identifying

objects (vertices, edges, faces) lying on two parallel lines. The way the grid is wrapped is

represented by a pair of integers (p, q). The numbers p and q denote the coefficients of the

linear combination of the unit vectors ~a1 and ~a2 such that the vector p~a1 + q~a2 joins pairs

of identified points, i.e., the integers p and q denote the number of unit vectors along two

directions in the hexagonal lattice, see Figure 1 (left). We can always assume that p ≥ q

since we want to avoid the mirror effect.

Denote by Tran~aA a translation of an object A for a vector ~a. Let h0 be a hexagon of

the infinite (hexagonal) tube. The set {h0, h1, . . . , hp+q−1} of hexagons with hi = Tran~bih0,

where ~bi = i~a1 for 0 ≤ i ≤ p and ~bi = p~a1 + (i− p)~a2 for p < i ≤ p+ q, is called ring. See

Figure 1 (right) for an illustration of a (4, 3)-nanotube ring. Let a tube be a union of a

series of consecutive rings. The circumference of a (p, q)-(nano)tube is the sum p+ q.

Nanotubical graphs or simply nanotubes are cylindrical fullerene graphs with each of

the two ends capped by a patch with six pentagons and possibly some hexagons – called

caps – and a “cylindrical” part – which is actually a tube. The cylindrical part of the
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nanotube is a subgraph of some (p, q)-infinite hexagonal tube, and therefore the nanotube

fullerene is also called a (p, q)-nanotube.

Notice that the caps are not well defined. One can find infinitely many caps for a (p, q)-

nanotube by inserting or removing a hexagonal face from a patch with six pentagons that

is a subgraph of the nanotube. On the other side Brinkmann et al. [24] showed that from

all possible caps for a (p, q)-nanotube, we can always choose a ”nice” cap. We call a cap

P nice if it boundary can be represented by the sequence (23)p(32)q, and at least one

pentagon is incident to the boundary of P . Observe that if p ≥ q > 0 the boundary

of a nice cap has precisely one 2-2 edge and one 3-3 edge. If q = 0, all the edges on

the boundary are 2-3 edges. Starting with any cap, and inserting or removing a hexagon

finitely many times we can construct a nice cap. If the number of vertices of the nanotube

is large enough compared to p and q, we can always choose the two caps such that they

are nice and disjoint. Thus, as a consequence of [24], we have the following result.

Theorem 2.1. Let F be a (p, q)-nanotube on n vertices, n large enough compared to p

and q. Then, the caps P1 and P2 can be chosen such that they are nice and disjoint.

Let P(p,q) be the set of all possible nice caps for a (p, q)-nanotube. Notice that here,

a cap is a patch containing six pentagon and a boundary which can be represented by

the sequence (23)p(32)q, but does not have whole ring(s) of hexagons. The definition of

a cap in [24] is a bit more rigorous, there a cap is the minimal fullerene patch containing

six pentagons, and a boundary which can be represented by the sequence (23)p(32)q. A

nice cap according to Brinkmann et al. can be transformed in to a nice cap according to

current definition by inserting less than p+ q hexagons. Brinkmann et al. in [24,25] give

a method for constructing all possible nice caps for a (p, q)-nanotubes. Due to this result

we have that P(p,q) is a finite set.

3 Diameter of (p, q)-nanotube

In this section we determine the bounds on the diameter of (p, q)-nanotubes on n vertices.

We show that the diameter od these nanotubes is essentially n/(p+ q).

Let F be a fullerene graph, and let P be a patch (i.e., a 2-connected subgraph) of F .

We define LP
1 to be the set of vertices on the border of P as an initial layer, and F P

1 as

a set of faces incident with vertex from b(P ) not belonging to P . The inner vertices of
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P form the layer LP
0 . Inductively, having defined the sets LP

i−1 and F P
i−1, L

P
i is the set

of vertices incident with F P
i−1, not contained in LP

i−1. Furthermore, F P
i is the set of faces

incident with LP
i that are not contained in F P

i−1.

Let e be the edge uw, where u,w ∈ V (F ) and u ∈ LP
i−1 and w ∈ LP

i . We say that the

vertex u is an outgoing vertex, and w is an incoming vertex, respectively.

Notice that a vertex cannot be outgoing and incoming at the same time, and also that

the vertices in the end-layer(s) are never outgoing (it may also happen that such a vertex

is neither incoming).

Let v be an arbitrary vertex in F , and let P be a patch composed by the three faces

incident to v. In the same manner as before we can define layers Lv
i and F v

i with respect

to the vertex v. When there is no possibility of confusion we denote the k-th layer with

respect to a patch or a vertex simply by Lk.

Observe that an incoming vertex to Lk is a vertex of degree 3 on the border of the

patch induced by ∪ki=0Li, and the vertices of degree 2 are outgoing vertices from Lk.

The next lemma determines the distance between two consecutive layers [19].

Lemma 3.1. For every vertex x ∈ Lv
i+1, i ≥ 1, there exists a vertex y ∈ Lv

i such that

d(x, y) ≤ 2.

The inequality in Lemma 3.1 is tight only when x is an outgoing vertex, otherwise

there is a vertex y ∈ Lv
i adjacent to x.

Observe that the previous lemma holds when layers are defined with respect to a patch

P as well.

Theorem 3.1. Let F be a (p, q)-nanotube, p, q ∈ N, on n vertices. Then, there are

constants C ′p,q and C ′′p,q such that

n

p+ q
+ C ′p,q ≤ diam(F ) ≤ n

p+ q
+ C ′′p,q .

Proof. From the structure of nanotubes it is clear that the most distanced vertices are

the vertices from different caps. First, we consider the case when the number of vertices

is n large enough compared to p and q. By Theorem 2.1, we can choose two nice caps.

Let the two nice caps of F be denoted by P1 and P2, and let T denote the cylindrical

part – the tube of F . Since P1 and P2 are nice caps, their boundaries of can be represented

as (23)p(32)q, hence, |b(P1)| = |b(P2)| = 2(p + q), V (T ) ∩ V (P1) = b(P1) and V (T ) ∩
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V (P2) = b(P2). Let k be the number of rings in the tube T – all the rings between b(P1)

and b(P2). Then the number of layers (counting b(P1) and b(P2) as layers as well) of the

tube is k + 1. Observe that the layers of T with respect to the cap P1 (and the cap P2)

have the same size |b(P1)| = |b(P2)| = 2(p+ q).

Let v ∈ LP1
0 . We claim that: for i large enough the vertex v is equally distanced from

all outgoing (resp. incoming) vertices from layer Li with respect to the cap P1. Let u

be one of the closest outgoing (resp. incoming) vertices from LP1
0 . Due to the hexagonal

tube properties, there are at least two closest outgoing vertex from LP1
1 to the vertex v,

at least three from LP1
2 , at least four from LP1

3 , etc. As the number of the closest outgoing

(resp. incoming) vertices increases in the next layer, and each layer has p + q outgoing

(resp. incoming) vertices, all the outgoing (resp.incoming) vertices from layer LP1
p+q−1 are

equally distanced from the vertex v. In some cases this can happen even for i < p+ q−1.

This establishes the claim.

Let d̄(P ) be the largest distance between an inner vertex of a cap P and its closest

vertex of degree 2 from b(P ). Let n̄(P ) be the number of inner vertices of a cap P .

Now, it is clear that diam(F ) = d̄(P1) + d̄(P2) + 2(k − 1) + 1. At the same time

n = n̄(P1) + n̄(P2) + 2(p+ q)(k + 1) ,

i.e.

k =
n− n̄(P1)− n̄(P2)

2(p+ q)
− 1 . (1)

Plugging in (1) into the expression for the diameter we find that

diam(F ) = d̄(P1) + d̄(P2) +
n

p+ q
− n̄(P1) + n̄(P2)

p+ q
− 3 .

Set

C ′p,q = 2 min
P∈P

{
d̄(P )− n̄(P )

p+ q

}
− 3 and C ′′p,q = 2 max

P∈P

{
d̄(P )− n̄(P )

p+ q

}
− 3 . (2)

As P is a finite set of all possible nice caps for a (p, q)-nanotube, the constants C ′p,q and

C ′′p,q are well defined. Now we have the bounds of the diameter of F

n

p+ q
+ C ′p,q ≤ diam(F ) ≤ n

p+ q
+ C ′′p,q, (3)

and the constants C ′p,q and C ′′p,q are determined by (2).
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Now, let consider the case when the number of vertices of F is not large enough

(compared to p and q). Recall that for i not large enough (compared to p and q), some

vertices from the layer Li are closer to the vertex v ∈ LP1
0 than the others. Since P1 and

P2 are nice caps, the boundary of P2, b(P2), is also a layer with respect to the cap P1. As

the number of vertices is small, at least one vertex from the boundary of P2 is closer to

v. Denote this vertex by u. Additionally d̄(P2) is defined as the largest distance between

an inner vertex and its closer vertex of degree 2 from b(P2). We denote the corresponding

vertex from b(P2) by w. As the vertices of b(P2) induce a cycle, the distance between u

and v is at most half of |b(P2)|, i.e., p+ q.

If we can not choose P1 and P2 such that they are nice and disjoint caps, then there

are no rings of hexagons. This means that the tube does not exist, and the nanotube

is comprised only by the two caps with boundaries of size 2(p + q). Again the previous

discussion holds.

Now it clear that (p, q)-nanotubes with small number of vertices (compared to p and

q) will have larger diameter, and the constant C ′′p,q can increase at most p+ q.

In [19], the constants C ′p,q and C ′′p,q are determined for (5, 0)-nanotubes, i.e. nanotubes

with the smallest circumference.

Theorem 3.2. Let F be a (5, 0)-nanotube on n vertices. Then

n

5
− 1 ≤ diam(F ) ≤ n

5
+ 1 .

Next, we give the bound of the diameter of (6, 0)-nanotubes, and hence the constants

C ′6,0 and C ′′6,0 for these nanotubes.

Example 3.1. Let F be a (6, 0)-nanotube on n vertices. There are four possible caps for

a (6, 0)-nanotube as shown of Figure 2. Each layer with respect to one of the caps on

Figure 2 has precisely 12 vertices. The number of inner vertices of the cap (A), n̄A = 6

and the distance from from a vertex of degree two on the boundary to the most distanced

inner vertex for the cap (A) is d̄A = 2. From Figure 2 we find that n̄B = 8, n̄C = 10,

n̄D = 12, n̄E = 16, d̄B = 3, d̄C = 4, d̄D = 4, and d̄E = 4. Since P = {A,B,C,D,E}, we

find that C ′6,0 = −1, and C ′′6,0 =
5

3
. With respect to Theorem 3.1 we have the following.

Let F be a (6, 0)-nanotube on n vertices, n large enough. Then

n

6
− 1 ≤ diam(F ) ≤ n

6
+

5

3
.
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(A) (B) (C)

(D) (E)

Figure 2: All possible caps for a (6, 0)-nanotube.

If F is a (6, 0)-nanotube with both caps (A), then n = 12(k + 2), where the integer k is

the number of hexagonal rings. For the diameter of F the following holds:

• if n ≤ 36 then, diam(F ) = n/6 + 1 = 2k + 5;

• if 36 < n ≤ 60 then, diam(F ) = n/6 = 2k + 4;

• if n > 60 then, diam(F ) = n/6− 1 = 2k + 3,

what confirms the theorem.

4 Diameter of isolated pentagon (9, 0)-nanotubes

Next we determine the diameter of isolated pentagon (9, 0)-nanotubes as IPR nanotubes

with the smallest circumference. Observe that the Buckminsterfullerene can be considered

as an isolated pentagon (9, 0)-nanotube on 60 vertices, as nanotube with no hexagonal

rings. The diameter of C60 is 9, i.e. it holds diam(C60) =
n+ 21

9
.

Theorem 4.1. Let F be an isolated pentagon (9, 0)-nanotube on n vertices. Then,

diam(F ) =



n+ 21

9
, n ∈ {60, 78}

n+ 12

9
, n ∈ {96, 114, 132}

n+ 3

9
, n > 132 .
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Proof. Observe that the isolated pentagon (9, 0)-nanotube has uniquely determined nice

cap on 39 vertices on both sides, which structure is shown in Figure 3. Aside of this, the

(9, 0)-isolated pentagon nanotube is not uniquely determined. Depending on the position

of the caps (with respect to each other) and the parity of the number of rings, there are

two possibilities as shown in Figures 4 and 5.

Figure 3: Nice cap of a (9, 0)-isolated pentagon nanotube. Observe that the fullerene C60

is comprised only by two such, so the vertices on boundary count only once.

The cap has 21 inner vertices, 18 vertices on the border, and each layer of the tube

has 18 vertices. So the total number of vertices in an isolated pentagon (9, 0)-nanotube

with k rings is n = 2 · 21 + 18(k + 1) = 42 + 18(k + 1). The number ` = k + 1 equals the

number of layers of size 18 with respect to one of the caps (P1), i.e., the number of layers

in fullerene’s tube.

Figure 4: The only two (9, 0)-isolated pentagon nanotubes on 78 vertices.

Let Fk be an isolated pentagon (9, 0)-nanotube with k rings between the caps. The

diameter of the graph is the distance between the most distanced vertices, in this case

they belong to the different caps, and are incident to the central hexagon.

We use induction to prove the statement of the theorem. It is not difficult to determine

that diam(F1) = 10, diam(F2) = 12, diam(F3) = 14, diam(F4) = 16 and diam(F5) = 17,
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and therefore for k = 1, 2, 3, 4, 5 the theorem holds. Assume that the theorem holds for

Fk, k ≥ 6.

Figure 5: The only two (9, 0)-isolated pentagon nanotubes on 96 vertices. In each fullerene
the vertices from one layer of size 18 are marked by squares.

The fullerene Fk+1 can be easily constructed from Fk by adding one extra ring (layer)

between the caps, and |V (Fk+1)| = |V (Fk)| + 18. (Note that there are two isomers of

Fk+1.) Now, we have that

diam(Fk+1) = diam(Fk) + 2 ,

i.e.

diam(Fk+1) =
|V (Fk)|+ 3

9
+ 2 =

|V (Fk)|+ 18 + 3

9
=
|V (Fk+1)|+ 3

9
,

and that completes the proof.

Alternatively, the diameter can be calculated using the number of rings in the tube.

Let F be a (9, 0)-isolated pentagon nanotube with k rings. As we saw in the proof of the

theorem, each layer of the tube has 18 vertices, i.e., for the number of vertices of F holds

n = 42 + 18(k + 1). Now, the diameter of the nanotube is determined by the following:

diam(F ) =


2k + 9, k ≤ 1

2k + 8, 1 < k ≤ 4

2k + 7, k > 4.

As isolated pentagon (9, 0)-nanotube has the smallest circumference among all isolated

pentagon nanotubes on n vertices, from Theorem 3.1 follows that among all isolated pen-

tagon nanotubes on n vertices, (9, 0)-nanotube has the largest diameter. This observation

gives us the upper bound on the diameter for isolated pentagon nanotubes. Notice that

this bound is tight only for isolated pentagon fullerenes on 60 and 78 vertices [26].
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Corollary 4.1. Let F be an IPR nanotube on n vertices. Then

diam(F ) ≤ n+ 21

9
.

We end this paper with a conjecture that the upper bound on the diameter of isolated

pentagon fullerenes on n vertices is essentially n/10.

Conjecture 4.1. Let F be an isolated pentagon fullerene on n vertices. If F is not a

(9, 0)-nanotube, then,

diam(F ) ≤ n

10
+ C ,

for some constant C.
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