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Abstract

The saturation number of a graph is the cardinality of any smallest maximal

matching in the graph. We present explicit results and tight asymptotic bounds on

the saturation number of several classes of benzenoid graphs.

1 Introduction

Matching theory is a branch of graph theory concerned with study of structural and enu-

merative aspects of matchings, collections of edges of a graph that do not share a vertex.

Its development has been strongly influenced and stimulated by chemical applications,

in particular by the study of topological models of molecules representing conjugated

compounds. A whole monograph [3] is devoted to the enumerative results on perfect

matchings in just one class of chemically interesting graphs, the benzenoid graphs. Addi-

tional motivation came with discovery of fullerenes, again mostly concerning enumeration

of perfect matchings [4, 5, 7, 10], but including also some structural results [2, 6]. This

manuscript comes back to the roots, trying to elucidate some facts about structure of
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large matchings in benzenoids. For a general background on matching theory and ter-

minology we refer the reader to the classical monograph by Lovász and Plummer [8]; for

graph theory terms not defined here we also recommend [9].

A matching M in a graph G is a collection of edges of G such that no two edges

from M share a vertex. The cardinality of M is called the size of the matching. It is

intuitively clear that matchings of small size are not interesting – each edge is a matching

of size one, and the empty set is a matching of size 0. Hence, we will be interested in

matchings that are, in a sense, “large”, in fact, as large as possible.

A matching M is a maximum matching if there is no matching in G with greater

size. The cardinality of any maximum matching in G is denoted by ν(G) and called the

matching number of G. Since each vertex can be incident to at most one edge of a

matching, it follows that no graph on n vertices can have matching number greater than

bn/2c. If each vertex of G is incident with an edge of M , the matching M is called

perfect. Perfect matchings are obviously also maximum matchings. The study of perfect

matchings, also known as Kekulé structures has a long history in both mathematical

and chemical literature.

There is, however, another way to quantify the idea of “large” matchings. A matching

M is maximal if it cannot be extended to a larger matching in G. Obviously, every

maximum matching is also maximal, but the opposite is generally not true. Maximal

matchings serve as models of adsorption of dimers to a substrate or a molecule; when

that process is random, it is clear that the substrate can get “clogged” by a number of

dimers way below the theoretical maximum. The cardinality of any smallest maximal

matching in G is the saturation number of G. Hence, the saturation number provides

an information on the worst possible case of clogging; it is a measure of how inefficient

process of adsorption can be. The saturation number of a graph G we denote by s(G). It

is easy to see that the saturation number of a graph G is at least one half of the matching

number of G, i.e., s(G) ≥ ν(G)/2.

Maximal matchings are much less researched that their maximum counterparts. That

goes both for their structural and their enumerative aspects. The aim of this paper is to

investigate the behavior of the saturation number of a class of chemically relevant graphs

known as benzenoid graphs. In particular, we will give explicit formulas and/or sharp

bounds on this quantity for several classes of benzenoid and related graphs.
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2 Benzenoid chains

A benzenoid system is a subset (with 1-connected interior) of a regular tiling of the

plane by hexagonal tiles. To each benzenoid system we can assign a graph, taking the

vertices of hexagons as the vertices, and the sides of hexagons as the edges of the graph.

The resulting simple, plane, and bipartite graph is called a benzenoid graph.

All faces of a benzenoid graph except the unbounded one are hexagons. The vertices

lying on the border of the non-hexagonal face of a benzenoid graph are called external;

other vertices, if any, are called internal. A benzenoid graph without internal vertices is

called catacondensed. If no hexagon in a catacondensed benzenoid is adjacent to three

other hexagons, we say that the benzenoid is a chain. In each benzenoid chain there

are exactly two hexagons adjacent to one other hexagon; those two hexagons are called

terminal, while any other hexagons are called interior. The number of hexagons in a

benzenoid chain is called its length.

An interior hexagon is called straight if the two edges it shares with other hexagons

are parallel, i.e., opposite to each other. If the shared edges are not parallel, the hexagon

is called kinky. (Note that the shared edges cannot be adjacent, since this would result

in an internal vertex. Hence the above definitions cover all possible cases.)

If all h−2 interior hexagons of a benzenoid chain with h hexagons are straight, we call

the chain a polyacene and denote it by Ah. If all interior hexagons are kinky, the chain

is called a polyphenacene and denoted by Zh. Since the number of perfect matchings

in Zh is equal to the (h + 2)-nd Fibonacci number Fh+2, polyphenacenes are also known

as fibonacenes [3].

In the rest of this section Bh denotes a generic benzenoid chain of length h.

Proposition 1

Let Bh be a benzenoid chain with h hexagons. Then s(Bh) ≥ h+ 1.

Proof

The chain Bh has 4h+2 vertices. Since Bh has a perfect matching, its matching number is

equal to 2h+ 1. Hence, s(G) ≥ (2h+ 1)/2, and since it must be an integer, s(G) ≥ h+ 1.

Proposition 2

s(Bh) + 1 ≤ s(Bh+1) ≤ s(Bh) + 2.
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Proof

Let us suppose s(Bh+1) ≤ s(Bh) and let M be a maximal matching in Bh+1 of cardinality

s(Bh+1). Let us label the hexagons of Bh+1 by H1, H2, . . . , Hh+1. Then Hh+1 must contain

at least one edge of M such that neither of its end-vertices is shared withHh. Let us denote

that edge by e = uv. Now M − e must be a maximal matching in Bh+1\e = Bh+1\{u, v}.

If all edges of M−e are also edges of Bh, we have a maximal matching in Bh of cardinality

smaller than s(Bh), a contradiction. Hence there must be an edge e′ of M − e with one

end-vertex (say u′) in Bh and another one (say v′) in Bh+1\Bh. Delete e′. If the rest is a

maximal matching in Bh, we have a contradiction. If deleting of e′ resulted in creating a

pair of adjacent unsaturated vertices {u′, w′} in Bh by unsaturating u′, extend M − e− e′

with u′w′. This is a maximal matching in Bh of cardinality smaller than s(Bh), again a

contradiction. Hence s(Bh+1) > s(Bh), i.e., at least s(Bh+1) ≥ s(Bh) + 1.

Hence s(Bh) is a strictly increasing function of h. To establish the upper bound on

the growth rate of s(Bh), note that adding a hexagon to Bh means adding a path with 4

internal vertices with the end-vertices adjacent in Bh. Such a path can be always trivially

saturated with 2 edges.

Proposition 3

s(Bh) = h+ 1 if and only if Bh = Ah.

Proof

All vertical edges of Ah make a maximal matching; hence, s(Ah) ≤ h+ 1. Together with

Proposition 1 this yields s(Ah) = h+ 1.

An alternative proof can be obtained by assuming that s(Ah) ≤ h. Then a maximal

matching M of length s(Ah) leaves at least 2h+2 unsaturated vertices. By the pigeonhole

principle, at least one hexagon H must contain three unsaturated vertices. Since M is

maximal, no two of them can be adjacent. But then the remaining vertices must be

saturated by three edges whose other ends are not in H. That would imply that H is a

branching hexagon, contrary to the fact that Ah is a chain.

Let us prove the converse. Let s(Bh) = h + 1. There are 4h + 2 vertices in Bh, and

2h+ 2 are saturated by a maximal matching M of cardinality h+ 1. Then the remaining

2h vertices must be incident by 4h edges not in M . Since there are no vertices of degree

one, each unsaturated vertex must be incident with exactly two edges not in M . Further,

no hexagon can contain three unsaturated vertices. Hence each hexagon contains two
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unsaturated vertices of degree 2 which are not adjacent. That is possible only in Ah.

Proposition 3 gives the explicit formula for Ah. Now we start exploring what happens

when Bh contains kinky hexagons. The simplest case is when there is exactly one kinky

hexagon. Let Bh,1 denote a chain of length h = k +m in which hexagon Hk is kinky and

all other hexagons are straight. An example is shown in Fig. 1.

k

...

21 ...

1

m

Figure 1: A chain with one kinky hexagon.

Proposition 4

s(Bh,1) = h+ 2.

Proof

Chain Bh,1 has k+m hexagons. The matching M that contains all k+m−1 shared edges,

one edge in each terminal hexagon parallel with the shared edge, and one edge connecting

the two vertices of degree 2 in the kinky hexagon is obviously maximal. Hence, s(Bh,1) ≤

k+m+ 2. On the other hand, by Proposition 3, s(Bh,1) must exceed s(Ah) = k+m+ 1,

i.e., s(Bh,1) ≥ k +m+ 2 = h+ 2.

Hence one kinky hexagon means one more edge in the smallest maximal matching.

This conclusion can be extended to the case of several kinky hexagons, as long as they

are far enough. It turns out that far enough means not adjacent. The following result

can be proved in a straightforward way using induction.

Proposition 5

Let Bh,k be a benzenoid chain of length h with k kinky hexagons such that no two kinky

hexagons are adjacent. Then s(Bh,k) = h+ k + 1.

The following result shows that the above claim may remain valid even in case of

adjacent kinky hexagons, as long as there are not too many of them.

Proposition 6

Let Sk,m be a benzenoid chain shown in Fig. 2. Then s(Sk,m) = k +m+ 2.
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Figure 2: A chain with adjacent kinky hexagons.

Proof

Matching M shown by bold lines in Fig. 2 is obviously maximal, hence s(Sk,m) ≤ k+m+2.

On the other hand, by Proposition 3, we have s(Sk,m) > k+m+ 1, and the claim follows.

What happens when more than two kinky hexagons follow each other? A bit of

experimenting shows that in some situation it still suffices to add just one new edge. It

turns out, however, that every three consecutive kinky hexagons demand at least four

new edges.

Proposition 7

Let Zh be a fibonacene of length h. Then s(Zh) =
⌊
4h
3

⌋
+ 1.

Proof

According to Proposition 3, there is no maximal matching of cardinality 4 in Z3. Hence

any three consecutive kinky hexagons in a chain contribute at least 4 to its saturation

number. On the other hand, it is easy to see that two consecutive kinky hexagons can

always be added to Bh at a price of one edge each. That shows that three consecutive

kinky hexagons do not require more that 4 new edges. The exact formula now follows by

fitting the general form to the saturation numbers of short fibonacenes.

It follows that the saturation number of a benzenoid chain cannot exceed four thirds

of its length by more than one.

3 Catacondensed benzenoids

Any catacondensed benzenoid CBh that is not a chain must have at least one branching

hexagon. Let us consider a case when there is exactly one branching hexagon H. Then

the three branches of lengths hi, i = 1, 2, 3, are rooted at three independent edges of H.

Here we have h = h1 + h2 + h3 + 1, i.e., the branching hexagon is not counted in the

length of a branch. If we delete all vertices and incident edges of the branch of length

h3, the remaining benzenoid is a chain of length h1 + h2 + 1, and H is its kinky hexagon.
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Hence, any maximal matching in it must contain at least h1 + h2 + 3 edges. No matter

how we extend it to branch 3, we cannot do it by less than h3 edges. Hence, any maximal

matching in CBh must contain at least h1 + h2 + h3 + 3 = h+ 2 edges.

Proposition 8

Let CBh be a catacondensed benzenoid with h hexagons. Then s(CBh) ≥ h+ 2.

Unlike the case of chains, the minimum value can be achieved by more than one

graph, as can be seen from Fig. 3. In fact, it could be shown with some care that any

catacondensed benzenoid on h hexagons whose saturation number is equal to h+ 2 could

be obtained by appending polyacenic branches of appropriate lengths to one of the graphs

from Fig. 3.

Figure 3: Catacondensed graphs on h hexagons with the saturation number equal to h+2.

4 Pericondensed benzenoids

Pericondensed benzenoids have internal vertices, and their number brings an additional

structural parameter that must be accommodated. That makes it difficult to formulate

and prove elegant results valid for all such graphs. Instead, we will concentrate on some

special cases that can be illustrative for the whole class.

We start with benzenoid parallelograms. Take a configuration of p × q congruent

regular hexagons arranged in p rows, each row of q hexagons, shifted for half a hexagon

to the right from the row immediately below. An example is shown in Fig. 4. The

arrangement is such that two hexagons either share a whole edge or are completely disjoint.

To each such configuration we assign a graph by taking the vertices of hexagons as vertices

of the graph, and the edges of hexagons as its edges. The resulting planar and bipartite

graph is called a benzenoid parallelogram and denoted by Pp,q. It has pq hexagonal

faces, 2(pq+p+q) vertices and 3pq+2p+2q−1 edges. For p = q we obtain a benzenoid

rhombus Pp.
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Figure 4: Benzenoid parallelogram P4,5.

In what follows we construct maximal matchings that provide upper bounds on the

saturation number of benzenoid parallelograms. The upper bounds will be asymptotically

tight. With sufficient care they could be turned into exact expressions; however, we prefer

to keep the exposition smooth.

Proposition 9

s(Pp,q) ≤
⌈

2p+ 1

3

⌉
q + p.

Proof

Let us start by considering P1,q. Since it is nothing else than Aq, (Fig. 5 a)), we obtain

s(P1,q) = q + 1. By adding one row of q hexagons, we obtain P2,q. Since the matching M

a)

c) d)

b)

Figure 5: Adding rows of hexagons to Pp,q.

shown in bold in Fig. 5 b) is maximal, we have s(P2,q) ≤ 2(q + 1). Similarly, s(P3,q) ≤

3(q+1) (Fig 5 c)). However, the pattern breaks when we add the fourth row of q hexagons:

Fig. 5 d) shows that it is possible to construct a maximal matching in P4,q at the expense

on only one new edge. By continuing this process, it is clear that any addition of 3 rows
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of hexagons requires roughly 2(q+ 1) + 1 additional edges. The expression of Proposition

9 now follows by fine-tuning the parameters p and q.

More interesting than the exact formulas is the asymptotic behavior of the saturation

number. We can see that the saturation number of Pp,q is of the order 2pq
3

, i.e., s(Pp,q) ∼
2
3
h, where h is the number of hexagons. Hence, for large enough pericondensed benzenoids

the saturation number can be smaller than the number of hexagons. Further, for large p

and q the fraction of external vertices tends to zero, and almost all vertices are shared by

three hexagons. Hence, we see that there are maximal matchings covering no more than

two thirds of the vertices. That makes our bounds asymptotically tight. Namely, that

leaves on average 2 unsaturated vertices per hexagon, and a recent result by Andova et

al. on nanotubes shows that we cannot do better than that (Proposition 3.1 of [2]).

We can similarly alternate between radial and non-radial edges in successive layers of

hexagons to construct maximal matchings of size roughly h/3 in hexagonal patches such

as shown in Fig. 6. Another way to obtain the result would be to split Hm to three rhombi

Figure 6: Hexagonal benzenoid H3.

Pm−1,m−1 as indicated by dashed lines in Fig. 6 and to construct maximal matchings of

size ∼ 2
3
m2 in each of them. Their union augmented by a matching of size at most linear

in m will be a maximal matching in Hm of a size ∼ h/3.

5 Concluding remarks

We have presented several results concerning the saturation number of various classes of

benzenoid graphs. In particular, we have solved the problem for benzenoid chains and we

have given asymptotically tight bounds for large pericondensed graphs, indicating thusly

the behavior of the saturation number of graphene sheets. However, many questions still
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remain open. For example, it would be interesting to investigate how the number of

branching hexagons influences the saturation number of a catacondensed benzenoid. Fur-

ther, there are other polymer-like graphs such as spiro-graphs and polyphenylenes whose

saturation number is completely unexplored. Also, very little is known abut saturation

numbers of polytopal graphs such as fullerenes; some recent progress is reported in [2],

along with a conjecture that is worth exploring. A promising starting point could be a

study of hexagonal nanocones with a single non-hexagonal defect at the apex [1]. Finally,

it would be interesting to explore the saturation number of finite portions of various plane

lattices and its asymptotic behavior.
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