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Abstract

The forcing number of a Kekulé structure of a hexagonal system is the smallest number

of double bonds that determine the entire Kekulé structure. It is known that the maximum

forcing number equals the Clar number for any hexagonal systems. In this paper by

applying Z-transformation graph (or resonance graph) we show that the forcing numbers

of all Kekulé structures of a hexagonal system H with a forcing edge form either the

integer interval from 1 to the Clar number of H or with only the gap 2.

1 Introduction

A perfect matching (or Kekulé structure) of a graph G is a set of disjoint edges which

cover all vertices of G. A forcing set S of a perfect matching M of G is a subset of M

such that S is contained in no other perfect matchings of G. The forcing number of M is

the smallest cardinality over all forcing sets of M , denoted by f(G,M). An edge of G is

called a forcing edge if it is contained in exactly one perfect matching of G. The minimum

(resp. maximum) forcing number of G is the minimum (resp. maximum) value of forcing

numbers of all perfect matchings of G, denoted by f(G) (resp. F (G)).
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The concept of the forcing number of a perfect matching of a graph was originally

introduced by Harary et al. [8]. The same idea appeared in earlier chemical literatures

due to Klein and Randić [11, 14] under the name of the innate degree of freedom of a

Kekulé structure, which plays an important role in the resonance theory in chemistry.

The minimum forcing number of a graph has been extensively studied [1–3, 12, 18, 25].

Adams et al. [1] showed that determining smallest forcing set of a perfect matching of a

bipartite graph with maximum degree three is an NP-complete problem. Afshani et al. [2]

proved that the smallest forcing number problem of graphs is NP-complete for bipartite

graphs with maximum degree four.

Let M be a perfect matching of a graph G. A cycle C of G is called an M-alternating

cycle if the edges of C appear alternately in M and E(G) \M , where E(G) is the edge

set of G. For planar bipartite graphs, Pachter and Kim proved the following minimax

theorem.

Theorem 1.1 [12]. Let M be a perfect matching in a planar bipartite graph G. Then

f(G,M) = c(M), where c(M) is the maximum number of disjoint M -alternating cycles

of G.

Adams et al. [1] defined the forcing spectrum of a graph G as:

Spec(G) = {f(G,M) | M is a perfect matching of G}.

Forcing spectra of some special fullerene graphs C20, C60, C70 and C72 have been

computed as to be continuous [15–17, 25]. Jiang and Zhang [9] proved that the forcing

spectrum of tubular BN-fullerene graph with cyclic edge-connectivity three is an integer

interval.

A hexagonal system (or benzenoid system ) is a finite 2-connected plane graph in

which each interior face is surrounded by a regular hexagon of side length one. Hexag-

onal systems as carbon-skeleton of benzenoid hydrocarbons are studied extensively [5].

A hexagonal system is called forced if it has a forcing edge. Such graphs have been

characterized independently by Hansen and Zheng [6], and Zhang and Li [21].

In this paper our aim is to determine the forcing spectra of forced hexagonal systems.

Some relevant aspects of forced hexagonal systems are reviewed in the next section. In

Section 3, we show that for forced hexagonal systems, “M -alternating cycles” in Theorem

1.1 can be replaced by “M -alternating hexagons”. That is, in this special case we obtain
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a stronger minimax theorem: the forcing number of any perfect matching M is equal to

the maximum number of disjoint M -alternating hexagons.

In Section 4, we take Z-transformation graph (or resonance graph in literature [10,

13]) as a tool to determine the forcing spectrum of a forced hexagonal system. The Z-

transformation graph Z(H) of a hexagonal system H is the graph whose vertices are the

perfect matchings of H and two vertices are adjacent provided the corresponding perfect

matchings M and M ′ differ in just one hexagon [20, 24, 26], that is, their symmetric

difference M4M ′ = (M −M ′) ∪ (M ′ −M) forms a hexagon of H. Z-transformation

graph has ever been used to solve the forcing edge problem of hexagonal systems [21]. We

always find a special path P in the Z-transformation graph of a forced hexagonal system

H such that one end-vertex corresponds to a perfect matching whose forcing number

is 1, 2 or 3 and the other end-vertex corresponds to a perfect matching that has the

maximum forcing number of H, and any two adjacent vertices in P correspond to two

perfect matchings whose forcing numbers have the difference at most one. This implies

that the forcing spectrum of H is a continuous integer interval from 1 to the Clar number

cl(H) or with only the gap 2.

2 Structures and properties of forced hexagonal sys-

tems

In this section we review the structures of forced hexagonal systems. Suppose that all

hexagonal systems considered are drawn in the plane such that some edges are vertical.

Let H be a hexagonal system with a specific hexagon s0 of the center O. We establish

a 3-coordinate system O − ABC on H such that O is the origin and the three axes are

perpendicular to three disjoint edges of s0 respectively. The coordinate system O−ABC

divides the plane into three areas AOB, BOC and COA. For a point W in the plane,

we define its coordinates with respect to O−ABC. If W lies in the area AOB (for other

cases we can do similarly), draw two lines through W such that one is parallel to axis

OB and intersects axis OA at the point WA, and the other is parallel to axis OA and

intersects axis OB at the point WB. The lengths of OWA and OWB are defined as the

coordinates of W on axes OA and OB respectively, and the coordinate of W on axis OC

is defined as zero. If the lengths of OWA and OWB are denoted by x and y respectively,

then the coordinate of W with respect to O − ABC is written as (x, y, 0).
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The inner dual graph T (H) of H is the graph whose vertices are centers of hexagons

of H and two centers are joined by an edge in T (H) if the corresponding two hexagons

have a common edge. Clearly, T (H) is a plane graph. The periphery of T (H) is defined

as the boundary of its exterior face (a closed walk). If T (H) intersects OA and OB at

just one path respectively, the part of the periphery of T (H) in area AOB and between

OA and OB is a path W1W2 · · ·Wm and the coordinates (xi, yi, 0) of Wi (i = 1, 2, . . . ,m)

satisfy x1 ≥ x2 ≥ · · · ≥ xm and y1 ≤ y2 ≤ · · · ≤ ym; or x1 ≤ x2 ≤ · · · ≤ xm and

y1 ≥ y2 ≥ · · · ≥ ym, then the periphery of T (H) is called to be monotone in area AOB. If

the periphery of T (H) is monotone in all three areas, then T (H) is said to be monotone

with respect to the coordinate system O − ABC. If there is no hexagon of H in some

area, then this area is called an empty area.

C

B

A

O
e

Figure 1. The coordinate system of a forced hexagonal system H with the 3-divisible

perfect matching M0 (bold edges) and a forcing edge e (marked by a short bar).

Zhang et al. proved [20] that Z(H) has a vertex of degree one if and only if there is a

coordinate system O−ABC of H such that T (H) is monotone with respect to O−ABC.

In particular, the following characterization of forced hexagonal systems was presented.

Theorem 2.1 [6,21]. A hexagonal system H is forced if and only if there is a coordinate

system O − ABC of H such that T (H) is monotone with respect to O − ABC and at

least one area of AOB, BOC and COA is empty.

For convenience, from now on we always place a forced hexagonal system H on the

plane with its coordinate system O − ABC as is shown in Fig. 1: axis OA is horizonal

and directs to the right, OB is upward and OC is downward, and BOC is empty. In fact,

H has a perfect matching M0 (see the bold edges) such that each edge of M0 does not
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Figure 2. Distribution of forcing edges in parallelogram (a) and linear chain (b) (marked

by short bars).

intersect any axis and two edges of M0 lie in the same area if and only if they are parallel

each other. Then the hexagon with the center O is the unique M0-alternating hexagon

and M0 is said to be 3-divisible with respect to O − ABC. So the distribution of forcing

edges of a forced hexagonal system can be determined completely by Zhang and Li [21].

In fact, the edge of the hexagon with the center O in area BOC belongs to M0 and must

be forced (see Fig. 1). Further, if the other area AOB or AOC is empty, the edge of

the hexagon with the center O in the corresponding area is also forced. In particular,

linear hexagonal chains with h hexagons have h + 5 forcing edges, and non-degenerated

parallelogram hexagonal systems have four forcing edges (see Fig. 2).

Any forced hexagonal system is a constructing benzenoid system [22] or t-tier strip

benzenoid system [23]. From Theorem 2 in [22] or Lemma 1 in [23], we have the following

property.

Property 2.2. Let M be a perfect matching of a forced hexagonal system H. Then M

contains exactly one vertical edge of each row of H.

Suppose H is a forced hexagonal system consisting of t rows of linear hexagonal chains,

denoted by B1, . . . , Bt, from top to bottom. Let M be a perfect matching of H. An edge

is called M-matched if M contains it. By Property 2.2, there is only one M -matched

vertical edge of Bi. Suppose that the M -matched vertical edge of Bi is denoted by ei,

i = 1, 2, . . . , t. If we count the vertical edges of Bi from left to right, and ei is the bi-th

vertical edge of Bi, then there arises an integer sequence (b1, b2, . . . , bt) with respect to

M . Suppose Bk (1 ≤ k ≤ t) intersects axis OA. Then ek is the M -matched vertical edge

of Bk. We define the right area of ek as is shown in Fig. 3. By using these notations, we

have the following result.
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Figure 3. M -matched edges (bold edges) in the right area of ek (right of the two dashed

rays).

Property 2.3. b1 ≤ b2 ≤ . . . ≤ bk ≥ bk+1 ≥ . . . ≥ bt. Moreover, all M -matched edges in

the right area of ek are uniquely determined.

Proof. Any forced hexagonal system is a constructing benzenoid system, Theorem 2 in

ref [22] implies that b1 ≤ b2 ≤ . . . ≤ bk ≥ bk+1 ≥ . . . ≥ bt. M -matched edges in the right

area of ek are uniquely determined since there are no M -matched vertical edges in the

right area of ek.

3 A minimax theorem

Let H be a hexagonal system with a perfect matching M . For a cycle C of H, let I[C]

be the subgraph of H consisting of C together with its interior.

Lemma 3.1. Let H be a forced hexagonal system with a perfect matching M . For

any two disjoint M -alternating cycles C1 and C2 of H, I[C1] and I[C2] have no common

vertex.

Proof. To the contrary, suppose that I[C1] and I[C2] have a common vertex. Note that

I[C1] and I[C2] have no common vertex on their boundaries since C1 and C2 are two dis-

joint M -alternating cycles. Without loss of generality, we suppose that I[C1] is contained

in I[C2]. C1 must contain an M -matched vertical edge f of H since C1 is an M -alternating

cycle of H. Suppose H consists of t rows of linear hexagonal chains and f lies in the k-th

(1 ≤ k ≤ t) row. Since I[C1] is contained in I[C2] and C2 is an M -alternating cycle, C2

must contain an M -matched vertical edge f ′ in the k-th row. Since f 6= f ′, there are two

M -matched vertical edges in the k-th row, which contradicts Property 2.2.
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Let M be a perfect matching of a hexagonal system H. Recall that c(M) denotes the

maximum number of disjoint M -alternating cycles of H. Let h(M) denote the maximum

number of disjoint M -alternating hexagons of H. A set F of disjoint M -alternating

hexagons of H is called an M-resonant set, further a maximum M-resonant set if |F | =

h(M). In general we have f(H,M) = c(M) ≥ h(M). The following minimax result says

that for forced hexagonal systems the equality always holds.

Theorem 3.2. Let M be a perfect matching of a forced hexagonal system H. Then

f(H,M) = h(M).

Proof. Let F denote a maximum set of disjoint M -alternating cycles of H. By Theorem

1.1, we have that f(H,M) = c(M) = |F |. If each member of F is a hexagon of H,

then F is an M -resonant set and thus h(M) ≥ c(M) = |F |. Since c(M) ≥ h(M), the

equality holds. Otherwise, there is an M -alternating cycle C in F that is not a hexagon

of H. Since C is an M -alternating cycle, the restriction of M to I[C] forms a perfect

matching of I[C]. Note that I[C] is a hexagonal system, by Lemma 5 in [20], there is

an M -alternating hexagon s in I[C]. According to Lemma 3.1, C and s must have a

common M -matched vertical edge, and each cycle in F \ {C} does not intersect s. Let

F ′ = (F \ {C}) ∪ {s}. Then F ′ is also a maximum set of disjoint M -alternating cycles

of H, and the number of hexagons in F ′ is one more than the number of hexagons in F .

Repeating this procedure, we can get an M -resonant set F ∗ such that |F ∗| = |F |. So we

have that f(H,M) = |F ∗| = h(M) as the beginning of this proof.

A sextet pattern of a hexagonal system H is an M -resonant set for a perfect matching

M of H. A Clar formula of H is a sextet pattern of H with the maximum number of

hexagons. The Clar number cl(H) of H is the number of hexagons in a Clar formula [4,7].

Hence cl(H) equals the maximal value of h(M) over all perfect matchings M of H.

Recall that F (H) denotes the maximum forcing number of H. Our minimax theorem

implies the following result.

Corollary 3.3. Let H be a forced hexagonal system. Then F (H) = cl(H).

Remark 3.4. Theorem 3.2 does not hold for general hexagonal systems. However, Xu

et al. [19] recently showed that Corollary 3.3 holds for any hexagonal systems.
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s 1,1,0

s0,0,1

s0,0,2

s1,0,1 s2,0,1

s1,0,2

B

s 1,2,0s 0,2,0

s 0,1,0

s 0,0,0

(a) H0 with j0 = 2.

O

A

C

s3,0,0
s2,0,0

s1,0,0

s 1,1,0

s0,0,1

s0,0,2

s1,0,1 s2,0,1

s1,0,2

B

(b) H1 with j1 = 1.

Figure 4. H1 = H0 	 s0,2,0.

4 Forcing spectra of forced hexagonal systems

In this section we study the forcing spectra of forced hexagonal systems. Let H be a

forced hexagonal system. As in Section 2, a coordinate system O − ABC of H has

been established so that T (H) is monotone with respect to it and the area BOC is

empty. Suppose that the distance between two centers of any two adjacent hexagons

(two hexagons are adjacent if they have a common edge) of H is one. Then the center

of each hexagon of H can be denoted by an integer triple (i, j, k), where i, j and k are

the three coordinates on axes OA, OB and OC respectively. If (i, j, k) is the coordinate

of the center of a hexagon of H, then this hexagon is denoted by si,j,k. For example, the

coordinate of the origin O is (0, 0, 0), the corresponding hexagon is denoted by s0,0,0.

Let a := max{i|si,0,0 is a hexagon of H}, b := max{j|s0,j,0 is a hexagon of H}, and c :=

max{k|s0,0,k is a hexagon of H}. For a hexagon s of H, let H − s denote the subgraph

obtained from H by deleting all vertices of s together with their incident edges. In the

following we now describe a procedure to construct a Clar formula of H due to Zhang

and Li [22].

For convenience, let H0 := H and j0 := b. Let H1 be the the subgraph obtained from

H0 − s0,j0,0 by deleting all unambiguously matched vertices together with their incident

edges. We define this operation as H1 = H0 	 s0,j0,0 (an example is given in Fig. 4). Let

j1 =max{j|s1,j,0 is a hexagon of H1}. Do the same operation, we can get H2 = H1	s1,j1,0.

Repeating this procedure until to generate Hm, jm and sm,jm,0, such that Hm intersects

axis OA, but Hm 	 sm,jm,0 does not. If jm > 0, let H ′1 = Hm 	 sm,jm,0; otherwise

H ′1 = Hm	 sa,0,0. Note that H ′1 does not intersect axis OA. If H ′1 is not an empty graph,

let i1 = max{i|si,0,1 is a hexagon of H ′1}. Do the same operation, H ′2 = H ′1 	 si1,0,1 is
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obtained. Repeating this operation until to generate H ′n and sin,0,n such that H ′n 	 sin,0,n
is empty.

O

C

B

A
s3,0,0

s2,0,0s1,0,0

s 1,1,0

s0,0,1

s0,0,2

s1,0,1 s2,0,1

s1,0,2

s 1,2,0s 0,2,0

s 0,1,0

s 0,0,0

(a) 3-divisible perfect matching

M0 (bold edges).

O

C

B

A
s3,0,0s2,0,0

s1,0,0

s 1,1,0

s0,0,1

s0,0,2

s1,0,1 s2,0,1

s1,0,2

s 1,2,0s 0,2,0

s 0,1,0

s 0,0,0

(b) M∗ (bold edges).

Figure 5. M∗ = M0 4 s0,0,0 4 s0,1,0 4 s0,2,0 4 s1,0,0 4 s1,1,0 4 s2,0,0 4 s3,0,0 4 s0,0,1 4
s1,0,1 4 s2,0,14 s0,0,24 s1,0,2, K

∗ = {s0,2,0, s1,1,0, s3,0,0, s2,0,1, s1,0,2}, f(H,M∗) = 5.

Let K∗ = {s0,j0,0, s1,j1,0, . . . , sm−1,jm−1,0, sm,jm,0, si1,0,1, si2,0,2, . . . , sin,0,n} (if jm = 0,

sm,jm,0 is replaced by sa,0,0). Note that if jk > 0 (0 ≤ k ≤ m), sk,jk,0 in K∗ is the top-left

hexagon of hexagonal system Hk, and the left vertical edge of sk,jk,0 has the end-vertices of

degree 2 in Hk. If jm = 0, then sa,0,0 is the top-right hexagon of Hm, and the right vertical

edge of sa,0,0 has the end-vertices of degree 2 in Hm. For the hexagon sik,0,k (1 ≤ k ≤ n)

of K∗, sik,0,k is the top-right hexagon of H ′k and the degrees of the two endpoints of the

right vertical edge of sik,0,k both are two in H ′k. Zhang and Li proved the following result.

Lemma 4.1 [22]. K∗ is a Clar formula of H.

Let M0 be the 3-divisible perfect matching of H with respect to O − ABC (see Fig.

5(a)). Let M∗=M04s0,0,04s0,1,04 . . .4s0,j0,04s1,0,04s1,1,0 4. . .4s1,j1,04. . .4 sm,jm,0

4s0,0,14. . .4si1,0,1 4s0,0,24. . .4 si2,0,2 4. . .4sin,0,n. Here, if jm = 0 and m < a, then

sm,jm,0 is replaced by sm,0,04sm+1,0,04. . .4 sa,0,0. An example is given in Fig. 5, where

m = 2, j2 = 0, a = 3, and s2,j2,0 is replaced by s2,0,04s3,0,0. We can see that M∗ is a

perfect matching of H and each hexagon in K∗ is M∗-alternating.

By Lemma 4.1 and Corollary 3.3 we have

Lemma 4.2. F (H) = c(M∗) = h(M∗) = cl(H).

For convenience, let such hexagon sequence be denoted by (h0, h1, . . . , hr−1), where

h0 = s0,0,0, hr−1 = sin,0,n and M∗=M04h04h14. . . 4hr−1. Let Mi+1= Mi4hi, i =
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0, . . . , r − 1. Then we find a path M1M2 . . .Mr in Z(H), where M1 = M04h0 and

Mr = M∗.

h
i

s1 s2

s3

s4s5

s6 e
l

e
r

Figure 6. Illustration for the proof of Lemma 4.3: possible hexagons s1, . . . , s6 around

hi, and Mi-matched edges (bold) and Mi+1-matched edges (dashed) of hi.

Lemma 4.3. |f(H,Mi+1)− f(H,Mi)| ≤ 1 for all i = 1, 2, . . . , r − 1.

Proof. By Theorem 3.2, we only need to compute the difference between h(Mi) and

h(Mi+1). Note that Mi+1 = Mi4hi, hi 6= h0 and at most six hexagons in H are adjacent to

hi (see Fig. 6). hi is an Mi-alternating hexagon such that the left vertical edge el belongs

to Mi, and hi is also an Mi+1-alternating hexagon such that the right vertical edge er

belongs to Mi+1. Let d be the maximum number of disjoint Mi-alternating hexagons in

H − hi, F be a maximum Mi-resonant set of H and F ′ be a maximum Mi+1-resonant set

of H. It is obvious that s1, s3 and s5 are not in F and s2, s4 and s6 are not in F ′ (see

Fig. 6).

Claim 1. d+ 1 ≤ |F | ≤ d+ 2 and d+ 1 ≤ |F ′| ≤ d+ 2.

Proof. First, we prove the lower bounds. Let K be a set of disjoint Mi-alternating

hexagons of H − hi with the cardinality d. Then K is also an Mi+1-resonant set since Mi

and Mi+1 differ only in hi. Further, K ∪{hi} is an Mi-resonant set and Mi+1-resonant set

of H. Note that F is a maximum Mi-resonant set of H. Hence |K ∪ {hi}| = d+ 1 ≤ |F |.

Similarly, we have d + 1 ≤ |F ′|. For the upper bounds, we consider the following three

cases.

Case 1: hi intersects axis OB or hi is a hexagon in area AOB. We first consider F .

Since the two vertical edges of s2 lie to the right of el, by Property 2.3, none of the two

vertical edges of s2 is Mi-matched edge. So s2 is not Mi-alternating. Note that s4 and

s6 are two possible Mi-alternating hexagons in F , and F contains at most d disjoint Mi-

alternating hexagons of H − hi. Hence |F | ≤ d + 2. For F ′, since the two vertical edges

of s5 lie to the left of er, by Property 2.3 s5 is not Mi+1-alternating. Note that s1 and

-466-



s3 are two possible Mi+1-alternating hexagons in F ′, and F ′ contains at most d disjoint

Mi+1-alternating hexagons of H − hi. Hence |F ′| ≤ d+ 2.

Case 2: hi intersects axis OC or hi is a hexagon in area COA. For F , since the two

vertical edges of s4 lie to the right of el, by Property 2.3 s4 is not Mi-alternating. Note

that s2 and s6 are two possible Mi-alternating hexagons in F , and F contains at most d

disjoint Mi-alternating hexagons of H − hi. Hence |F | ≤ d + 2. For F ′, the two vertical

edges of s1 lie to the left of er, so s1 is not Mi+1-alternating by Property 2.3. Note that

s3 and s5 are two possible Mi+1-alternating hexagons, and F ′ contains at most d disjoint

Mi+1-alternating hexagons of H − hi. So |F ′| ≤ d+ 2.

Case 3: hi intersects axis OA. For F , the two vertical edges of s2 and the two vertical

edges of s4 all lie to the right of el, so none of s2 and s4 is Mi-alternating by Property

2.3. But s6 is a possible Mi-alternating hexagon. Note that F contains at most d disjoint

Mi-alternating hexagons of H − hi. Hence |F | ≤ d+ 1.

Now we prove that |F ′| ≤ d + 2. If s0,0,1 is not a hexagon of H, then there is

no hexagon of H under the axis OA by Theorem 2.1. So s5 is not a hexagon of H,

that is, s5 /∈ F ′. Suppose s0,0,1 is a hexagon of H. According to the above notations,

Mi+1=M04h0 4h1. . .4hi. Since hi intersects axis OA, each hj (1 ≤ j ≤ i) does not

intersect axis OC and does not lie in area COA. So s0,0,1 is the unique Mi+1-alternating

hexagon under axis OA since all Mi+1-matched vertical edges under axis OA lie on the

boundary of H and in area BOC. Since hi 6= h0, s5 6= s0,0,1. So s5 is not an Mi+1-

alternating hexagon of H, that is, s5 /∈ F ′. Note that s1 and s3 are two possible Mi+1-

alternating hexagons of F ′, and F ′ contains at most d disjoint Mi+1-alternating hexagons

of H − hi. Hence |F ′| ≤ d+ 2.

By Theorem 3.2, |F | = h(Mi) = f(H,Mi) and |F ′| = h(Mi+1) = f(H,Mi+1). Accord-

ing to Claim 1, we have d+ 1 ≤ f(H,Mi) ≤ d+ 2 and d+ 1 ≤ f(H,Mi+1) ≤ d+ 2, which

implies |f(H,Mi+1)− f(H,Mi)| ≤ 1.

As an immediate consequence of Lemma 4.3, we obtain the following corollary.

Corollary 4.4. The integer interval [f(H,M1), cl(H)] is a subset of Spec(H).

Proof. f(H,Mi) ∈ Spec(H) for all i = 1, 2, . . . , r since Mi is a perfect matching of H.

Note that Mr = M∗ and F (H) = f(H,M∗) = h(M∗) = cl(H) by Lemma 4.2. By Lemma

4.3, the integer interval [f(H,M1), cl(H)] is a subset of Spec(H).
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(a) The case that abc 6= 0 and H contains sa,b,0.
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s0 0, ,1
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(b) The case that abc 6= 0 andH does not contain

any one of sa,b,0 and sa,0,c.

Figure 7. Illustrations for the proof of Theorem 4.5, bold edges are M -matched.

Now we give the following main result.

Theorem 4.5. If abc 6= 0 and H does not contain any one of sa,b,0 and sa,0,c, then

Spec(H) = [1, cl(H)] \ {2}. Otherwise, Spec(H) = [1, cl(H)].

Proof. It is obvious that f(H,M0) = 1. By Corollary 3.3, cl(H) = F (H). By Corollary

4.4, [f(H,M1), F (H)] ⊆ Spec(H). If abc = 0, then f(H,M1) = 1 or f(H,M1) = 2. Hence

Spec(H) = [1, cl(H)].

So suppose that abc 6= 0. Then f(H,M1) = 3, and {1, 3, 4, . . . , cl(H)} ⊆ Spec(H). So

we only need to determine whether 2 ∈ Spec(H) or not. If H contains sa,b,0, then there

is a perfect matching M of H such that only sa,b,0 and s0,0,1 are M -alternating hexagons

of H (see Fig. 7(a)). By Theorem 3.2, f(H,M) = h(M) = 2. If H contains sa,0,c,

symmetrically we can find a perfect matching M ′ of H such that only sa,0,c and s0,1,0 are

M ′-alternating hexagons of H, so f(H,M ′) = 2.

For the case abc 6= 0 and H contains neither sa,b,0 nor sa,0,c, we will prove that 2 /∈

Spec(H). Suppose to the contrary that H has a perfect matching M with f(H,M) = 2.

Let ek be the M -matched vertical edge in the k-th row of H (intersecting axis OA). Then

ek is not a forcing edge of H since f(H,M) = 2. So ek can intersect axis OA. Let H ′ be

the subgraph obtained from H by deleting the two end-vertices of ek and all vertices in

the right area of ek together with their incident edges, and removing those vertical edges

in the k-th row of H. By Properties 2.2 and 2.3 the restriction of M on H ′ is still a

perfect matching of H ′. If H ′ has a pendent edge, it must be an M -matched edge. Delete
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its end-vertices and their incident edges from H ′. Do the same operations repeatedly

until there is no vertices with degree one in the resulting graph. The resulting graph is a

disjoint union of two forced hexagonal systems G1 and G2, where G1 contains s0,1,0 and

G2 contains s0,0,1, and the left vertical edge of s0,1,0 is a forcing edge of G1 and the left

vertical edge of s0,0,1 is a forcing edge of G2 as pointed out in Section 2 (see Fig. 7(b)).

Let F1 and F2 be the restrictions of M on G1 and G2 respectively. Then F1 and

F2 are perfect matchings of G1 and G2 respectively. We claim that f(G1, F1) = 1 and

f(G2, F2) = 1. By Theorem 3.2, f(G1, F1) = h(F1) ≥ 1 and f(G2, F2) = h(F2) ≥ 1. If one

of f(G1, F1) and f(G2, F2) is more than one, then h(F1) + h(F2) is more than two, which

implies that there are at least three disjoint M -alternating hexagons of H. By Theorem

3.2, we have f(H,M) ≥ 3, contradicting that h(M) = f(H,M) = 2. So the claim holds.

Hence G1 (resp. G2) has exactly one M -alternating hexagon s1 (resp. s2), which contains

a forcing edge of G1 (resp. G2).

The hexagons to the left and right side of ek and with common edge ek are denoted

by sl and sr respectively. Note that sr may be not contained in H (see Fig. 7(b)). If sr is

a hexagon of H, by Property 2.3 sr is an M -alternating hexagon. Hence s1, s2 and sr are

three disjoint M -alternating hexagons. This contradicts that f(H,M) = 2. So suppose

that sr is not a hexagon of H. Then ek is on the boundary of H, the coordinate of the

center of sl on axis OA is a, and a 6= 0. Now we show that the two edges f1 and f2 of sl

(see Fig. 7(b)) both are M -matched, that is, sl is an M -alternating hexagon. If f1 lies on

the boundary of H, then f1 is M -matched since f1 is a pendent edge in graph H ′. Note

that G1 does not contain f1, so s1 and sl are disjoint. If f1 does not lie on the boundary

of H, then f1 is on the boundary of G1. Since abc 6= 0 and H does not contain sa,b,0, G1 is

neither a linear hexagonal chain nor a parallelogram hexagonal system. It is known that

only e1 and e2 are forcing edges of G1 from Section 2 (see Fig. 7(b)). Since f(G1, F1) = 1,

e1, e2 ∈ F1. So s0,1,0 is the unique F1-alternating hexagon of G1, that is, s1 = s0,1,0. Note

that f1 is parallel to e2. So f1 is F1-matched and thus M -matched. Hence f1 is always

M -matched and s1 and sl are disjoint. Similarly, we can prove that f2 is M -matched,

and s2 and sl are disjoint. So s1, s2 and sl are three disjoint M -alternating hexagons,

contradicting that f(H,M) = 2.
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