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Abstract

Benzenoid systems or hexagonal systems are subgraphs of a hexagonal lattice.
Open-ended carbon nanotubes alias tubulenes can be seen as an embedding of a
benzenoid system to a surface of a cylinder with some perimeter edges being joined.
Carbon nanotubes are interesting materials with some unusual properties and have
therefore been of great interest for researchers in the last 20 years. We use a new
term spherical benzenoid system for either a benzenoid system or a tubulene, since
both of them can be embedded on a sphere.

Zhang–Zhang polynomial (also called Clar covering polynomial) of a spherical
benzenoid system is a counting polynomial of resonant structures called Clar covers.
Cube polynomial is a counting polynomial of induced hypercubes in a graph. In
[39] authors established the one-to-one correspondence between Clar covers of a
benzenoid system G and hypercubes of its resonance graph R(G). In this paper
the equality of two polynomials is extended to spherical benzenoid systems using a
different method of proving in one part.

1 Introduction

Benzenoid graphs are 2-connected planar graphs such that every inner face is a hexagon.

Benzenoid graphs are generalization of benzenoid systems, also called hexagonal systems,

which can be defined as benzenoid graphs that are also subgraphs of a hexagonal lattice.

We refer to [18,20] for more information about these graphs, especially for their chemical

meaning as representation of benzenoid hydrocarbons. If we embed benzenoid systems on
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a surface of a cylinder and join some edges we obtain structures called open-ended carbon

nanotubes (note that there are also closed-ended carbon nanotubes i.e. carbon nanotubes

with caps). They were discovered in 1991 [25] and have been since then recognized

as fascinating materials with nanometer dimensions, unusual electrical and mechanical

properties. In 1996 Smalley group at Rice university successfully synthesized the aligned

closed-ends carbon nanotubes [34], which have the almost unusual property of electrical

conductivity and super-steel strength. Carbon nanotubes have attracted great attention

in different research fields such as nanotechnology, artificial materials, and so on. For the

details, see [12,13,40].

There are many papers regarding some topological indices of carbon nanotubes such as

Wiener, Schultz, Szeged and Harary index; for example see [1, 2, 11,15,16]. On the other

hand resonance graphs of carbon nanotubes are not so well investigated. A resonance

graph R(G) of a bipartite graph G reflects the structure of perfect matchings of G. The

concept is quite natural and has a chemical meaning, therefore it is not surprising that

it has been independently introduced in the chemical literature [14, 17] as well as in

the mathematical literature [37] under the name Z-transformation graph. A survey of

some basic properties of resonance graph of benzenoid systems can be found in [36] and

the structure of resonance graphs of some families of carbon nanotubes was considered

in [43–45].

Main motivation for our research was a result of Zhang et al. [39] where they proved

the equivalence of Zhang–Zhang polynomial of a benzenoid system G and cube polynomial

of its resonance graph R(G).

Zhang–Zhang polynomial (also called Clar covering polynomial) of a benzenoid system

G was introduced by Zhang and Zhang [41] in 1996 and it counts Clar covers of G

with different number of hexagons. This polynomial unifies some topological indices

such as the Clar number, the Kekulé count and the first Herndon number. Although

these authors reported some chemical application of this polynomial [35, 42], intensive

research along these lines started nearly 10 years later [21–24]. Basic properties of Zhang–

Zhang polynomial and methods to compute it were developed in [4–6, 19, 21, 38]. In

particular, Chou and Witek developed an automatic computation program for Zhang–

Zhang polynomial of benzenoid systems [7, 8] and obtained many fruitful results, among
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them closed formulas for the determination of Zhang–Zhang polynomial of some benzenoid

systems [9, 10].

Cube polynomial of a graph H was introduced by Brešar et al. in [3] as a counting

polynomial for the number of induced hypercubes in H of different dimensions; n- di-

mensional hypercube is a graph whose vertices are all binary strings of length n and two

vertices are adjacent if their strings differ exactly in one position. The role of hypercubes

as induced subgraphs of the resonance graph of benzenoid systems was established in

different papers (see [26,27,31–33,41]).

Our goal is to extend the equivalence of Zhang–Zhang polynomial and cube polynomial

to open-ended carbon nanotubes. This paper is organized in the following way; definitions

we use are given in the preliminaries, which are then continued by a section on some known

results on hypercubes and resonant sets that are important for the next section about new

results. We conclude this paper with an example.

2 Preliminaries

First we will formally define open-ended carbon nanotubes, also called tubulenes ( [28]).

Choose any lattice point in the hexagonal lattice as the origin O. Let ~a1 and ~a2 be the

two basic lattice vectors. Choose a vector ~OA = n~a1 + m~a2 such that n and m are two

integers and at least one of them is not zero. Draw two straight lines L1 and L2 passing

through O and A perpendicular to OA, respectively. By rolling up the hexagonal strip

between L1 and L2 and gluing L1 and L2 such that A and O superimpose, we can obtain

a hexagonal tessellation HT of the cylinder. L1 and L2 indicate the direction of the axis

of the cylinder. Using the terminology of graph theory, a tubulene G is defined to be the

finite graph induced by all the hexagons of HT that lie between c1 and c2, where c1 and

c2 are two vertex-disjoint cycles of HT encircling the axis of the cylinder. The vector ~OA

is called the chiral vector of G and the cycles c1 and c2 are the two open-ends of G.

For any tubulene G, if its chiral vector is n~a1 + m~a2, G will be called an (n,m)-type

tubulene, see Figure 1.

Now we can define a new family of graphs: graph G is a spherical benzenoid system

if G is either a benzenoid system or a tubulene. Spherical benzenoid systems can be

embedded on a sphere and are bipartite graphs.
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Figure 1: Illustration of a (4, 2)-type tubulene.

An 1-factor of a spherical benzenoid system G is a spanning subgraphs of G such that

every vertex has degree one. Edges of 1-factor form an independent set of edges i.e. a

perfect matching of G (in the chemical literature these are known as Kekulé structures;

for more details see [20]). Let M be a perfect matching of G. A hexagon h of G is M-

alternating if edges of h appear alternately in and off the perfect matching M . A perfect

matching of a hexagon of G is called a sextet.

Let G be a spherical benzenoid system. A Clar cover is a spanning subgraph of G

such that every component of it is either a hexagon or an edge. Set of hexagons in a Clar

cover is a resonant set of G. Resonant set with the maximum number of hexagons is a

Clar formula of G. Number of hexagons in the Clar formula is a Clar number Cl(G) of G.

It is not difficult to see that if P is a resonant set of a spherical benzenoid system G, then

G− P is empty or has a perfect matching (this fact was proved in [29, 30] for benzenoid

systems and can be extended to spherical benzenoid systems). A resonant set P such

that G− P is empty or has a unique perfect matching is called a canonical resonant set.

The resonance graph R(G) of a spherical benzenoid system G is the graph whose

vertices are the perfect matchings of G, and two perfect matchings are adjacent whenever

their symmetric difference forms an edge set of a hexagon of G.

Let G be a spherical benzenoid system. Zhang–Zhang polynomial of G is defined in

the following way:

ZZ(G, x) =

Cl(G)∑
k=0

z(G, k)xk,

where z(G, k) is the number of Clar covers of G with k hexagons. Note that for a spherical
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benzenoid system G z(G, 0) equals the number of vertices of R(G) and z(G, 1) equals the

number of edges of R(G).

Let H be a graph. Cube polynomial of H is defined as follows:

C(H, x) =
∑
i≥0

αi(H)xi,

where αi(H) denotes the number of induced subgraphs of H that are isomorphic to the

i-dimensional hypercube.

Now we can write the main result of Zhang et al. which was our motivation:

Theorem 2.1 [39] For a benzenoid system G with a perfect matching, we have

ZZ(G, x) = C(R(G), x) .

3 Hypercubes and resonant sets

In [31] (and later in [32], [33]) authors considered the relation between resonant sets of

a benzenoid system G and subgraphs of its resonance graph R(G) that are isomorphic

to hypercubes. To a resonant set of cardinality k for some positive integer k we can

associate a unique subgraph of R(G) isomorphic to a k-dimensional hypercube if P is a

canonical resonant set, otherwise we can associate as many (vertex-disjoint) subgraphs of

R(G) isomorphic to the k-dimensional hypercube as the number of perfect matchings in

G− P .

For a benzenoid system G let H(R(G)) be the set of all hypercubes of its resonance

graph R(G) and let RS(G) be the set of all resonant sets of G. The main result of [31]

is:

Theorem 3.1 [31] Let G be a benzenoid system possessing at least one perfect matching.

Then there exists a surjective map f : H(R(G)) −→ RS(G), where |f(Q)| = k for a k-

dimensional hypercube Q of R(G).

Proof of this result and relation between resonant sets of G and hypercubes of R(G)

can also be applied to spherical benzenoid systems since the embedding of the hexagonal
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lattice to a surface of a cylinder does not affect proofs. We could have used the same

proof as in [31], but in the next section we will prove stronger result (using some ideas

from [31]) such that Theorem 3.1, extended to spherical benzenoid systems, will be just

a corollary.

4 Main result

Lemma 4.1 Let G be a spherical benzenoid system with a perfect matching. Then there

exists a surjective mapping from the set of Clar covers of G (with at least one hexagon)

to the set of resonant sets of G.

Proof. Let G be a spherical benzenoid system with a perfect matching and let g be a

mapping from the set od Clar covers of G to the set of resonant sets of G defined in the

following way: for a Clar cover C with k-hexagons h1, h2, . . . , hk let g(C) be the set of

hexagons {h1, h2, . . . , hk}. From the definitions of Clar cover and resonant set it follows

that g is a well-defined mapping.

Now, let P = {h1, h2, . . . , hk}, 1 ≤ k ≤ Cl(G), be a resonant set of G. Therefore

hexagons h1, h2, . . . , hk are pairwise disjoint and G − P is either empty or has a perfect

matching. Let M be a perfect matching of G such that hexagons h1, h2, . . . , hk are M -

alternating. Then the subgraph of G induced with edges M ∪
(
∪ki=1E(hi)

)
is the Clar

cover of G with k hexagons.

Our main result is a generalization of Theorem 2.1 from [39] to spherical benzenoid

systems. First two lemmas of the proof are proved almoust analogously as in Theorem

2.1 and the proof of the third lemma is new and shorter.

Theorem 4.2 Let G be a spherical benzenoid system. Then Zhang–Zhang polynomial of

G equals cube polynomial of its resonance graph R(G) i.e.

ZZ(G, x) = C(R(G), x) .

Proof. Let k be a nonnegative integer. For a spherical benzenoid system G we denote

by Z(G, k) the set of all Clar covers of G with exactly k hexagons. On the other hand,

consider a graph H; the set of subgraphs of H that are isomorphic to a k-dimensional

-448-



hypercube is denoted by Qk(H). Let us define a mapping fk from the set of Clar covers of

a spherical benzenoid system G with k hexagons to the set of subgraphs of the resonance

graph R(G) isomorphic to the k-dimensional hypercube

fk : Z(G, k) −→ Qk(R(G))

in the following way: for a Clar cover C ∈ Z(G, k) consider those perfect matchings M1,

M2, . . ., Mi of G that each hexagon in C is Mj-alternating and each isolated edge of C is

in Mj, for all j = 1, 2, . . . , i. Assign fk(C) as an induced subgraph of R(G) with vertices

M1,M2, . . . ,Mi.

Note first that in case when k = 0 Clar covers are without hexagons, i.e. Clar covers

are perfect matchings of a spherical benzenoid system and if C is such Clar cover then

fk(C) is a vertex of the resonance graph and the mapping is obviously bijective. So from

now on k will be a positive integer.

The following lemma shows that fk is a well-defined mapping.

Lemma 4.3 For each Clar cover C ∈ Z(G, k) we have fk(C) ∈ Qk(R(G)).

Proof. We can apply similar proof as in [39]:

It is sufficient to show that fk(C) is isomorphic to the k-dimensional hypercube Qk. Let

h1, h2, . . . , hk be hexagons of C. Obviously, every hexagon of C has two possible perfect

matchings. Let us call these “possibility 0” and “possibility 1”. For any vertex M of

fk(C) let b(M) = (b1, b2, . . . , bk), where bi = 1 if on hi possibility 1 is selected, and

bi = 0 otherwise, i = 1, 2, . . . , k. It is obvious that b : V (fk(C)) → V (Qk) is a bijection.

For M ′ ∈ V (fk(C)), let b(M ′) = (b′1, b
′
2, . . . , b

′
k). If M and M ′ are adjacent in fk(C) then

M⊕M ′ = E(hi) for some i, 1 ≤ i ≤ k. Therefore, bj = b′j for each j 6= i and bi 6= b′i, which

implies (b1, b2, . . . , bk) and (b′1, b
′
2, . . . , b

′
k) are adjacent in Qk. Conversely, if (b1, b2, . . . , bk)

and (b′1, b
′
2, . . . , b

′
k) are adjacent in Qk, it follows that M and M ′ are adjacent in fk(C).

Hence b is an isomorphism between fk(C) and Qk.

The following lemma shows that fk is an injective mapping.

Lemma 4.4 The mapping fk : Z(G, k) −→ Qk(R(G)) is injective for each positive inte-

ger k.

Proof. We can apply the same proof as in [39].

Let C and C ′ be distinct Clar covers from Z(G, k). If C and C ′ contain the same set
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of hexagons, then the isolated edges of C and C ′ are distinct. Therefore, fk(C) and

fk(C ′) are disjoint induced subgraphs of R(G) and thus fk(C) 6= fk(C ′). Suppose C

and C ′ contain different sets of hexagons and let h be a hexagon in C − C ′. Hence at

least one edge e of h does not belong to C ′. From the definition of the function fk, e is

thus unsaturated by those perfect matchings that correspond to the vertices in fk(C ′).

However, there exist vertices M1 and M2 of fk(C) (M1 and M2 are perfect matchings of

G) such that M1 ⊕M2 = E(h) because h is a hexagon in C. Hence e is saturated by one

of M1 or M2, say M1. As a result, M1 /∈ V (fk(C ′)) and fk(C) 6= fk(C ′).

The following lemma shows that fk is a surjective mapping.

Lemma 4.5 The mapping fk : Z(G, k) −→ Qk(R(G)) is surjective for each positive

integer k.

Proof. Let k be a positive integer and Q ∈ Qk(R(G)). Since Q is a subgraph of R(G)

isomorphic to a k-dimensional hypercube, vertices of Q can be identified with binary

strings (u1, u2, . . . , uk), so that two vertices of Q are adjacent in Q if and only if their

binary strings differ in precisely one position. Consider the following vertices of Q: M =

(0, 0, 0, . . . , 0), N1 = (1, 0, 0, . . . , 0), N2 = (0, 1, 0, . . . , 0), . . . , Nk = (0, 0, 0, . . . , 1). It is

obvious that MN i is an edge of R(G) for every i, 1 ≤ i ≤ k. By definition of R(G),

the symmetric difference of perfect matchings M and N i is the edge set of a hexagon of

G. We denote this hexagon by hi and we obtain the set of hexagons {h1, . . . , hk} of the

spherical benzenoid system G. Similar as in the proof of Theorem 2 in [31] we can show

that the following two claims hold true:

1. The hexagons hi, 1 ≤ i ≤ k, are pairwise disjoint.

2. Let XY be an edge of Q. If the binary representations of X and Y differ at the j-th

place, then the symmetric difference X ⊕ Y is the edge set of the hexagon hj.

We notice that M0 = M = (0, 0, 0, . . . , 0), M1 = N1 = (1, 0, 0, . . . , 0), M2 =

(1, 1, 0, . . . , 0), . . . , Mk = (1, 1, 1, . . . , 1) is the path in Q and by second claim, the edge

M iM i+1 corresponds to the hexagon hi+1 for every i, 0 ≤ i ≤ k − 1. So going from M0

to Mk the perfect matchings only change in pair-wise disjoint hexagons h1, . . . , hk, hence

the perfect matching Mk contains a sextet of each hexagon in {h1, . . . , hk}. Since Q is
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connected graph it follows that every vertex of Q contains a sextet of each hexagon from

{h1, . . . , hk} and also vertices of Q differ only on edges of exactly these same hexagons.

Let C be a subgraph of G, induced with edges in the set Mk ∪E(h1)∪ . . .∪E(hk). It

is easy to see that C is a Clar cover with k hexagons and V (fk(C)) = V (Q). Since both

Q and fk(C) are induced subgraphs of the resonance graph, it follows fk(C) = Q.

From Lemmas 4.3, 4.4, 4.5 follows the equality of two polynomials:

ZZ(G, x) = C(R(G), x) ,

what concludes the proof of Theorem 4.2.

h2

h1 h3

h4

h5

h6

h7 h8

Figure 2: Perfect matchings of a (2, 2)-type tubulene G.

Using Lemma 4.1 and Theorem 4.2 we obtain the following result from [31], extended

to spherical benzenoid systems.

Corollary 4.6 Let G be a spherical benzenoid system possessing at least one perfect

matching. Then there exists a surjective map f : H(R(G)) −→ RS(G), where |f(Q)| = k

for a k-dimensional hypercube Q of R(G).
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5 Example

We will conclude with an example of a spherical benzenoid system G that is similar to

a very well known benzenoid system named coronene. Graph G is a (2, 2)-type tubulene

consisted of 8 hexagons denoted by h1, . . . , h8, see Figure 2. On that figure we can see

all 33 perfect matchings of G what is then the number of vertices in the resonance graph

R(G).

Figure 3: Clar covers of G with one hexagon.

As we can see on Figure 3 there are 46 Clar covers of G with one hexagon and this is

the number of edges of the resonance graph R(G).

There are 18 Clar covers of G with exactly two hexagons (see Figure 4) and this is the

number of subgraphs of R(G) that are isomorphic to a 2-dimensional hypercube.

On Figure 5 we can see both maximum cardinality Clar covers of G, what means that

Cl(G) = 3, and the number of induced 3-dimensional hypercubes in R(G) is two.
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Figure 4: Clar covers of G with two hexagons.

Figure 5: Clar covers of G with three hexagons.

The resonance graph R(G) of the (2, 2)-type tubulene G can be seen on Figure 6 and

Zhang–Zhang polynomial of G is equal to the cube polynomial of R(G):

ZZ(G, x) = C(R(G), x) = 2x3 + 18x2 + 46x+ 33 .

Let us remark that labels hi for i = 1, 2, . . . , 8 of edges on Figure 6 shows that the

symmetric

difference of corresponding perfect matchings (end-vertices of an edge) are edges of the

hexagon hi. Also note that the resonance graph R(G) has three connected components,

one consisting of a single vertex (i.e. the perfect matching of G without alternating

hexagons).

h6

h5

h6

h4h4

h7h7

h8

h8

h1

h1
h2

h3

h3

h1

h1h1 h1 h1

h5

h5

h5

h5

h5

h7

h3h3

h3 h3

h3

h7

h6

h4

h4

h4

h4

h4

h2h2h2h2
h2

h6h6

h6h6

Figure 6: Resonance graph R(G) of G.
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