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Abstract 

In our recent paper [MATCH Commun. Math. Comput. Chem. 71 (2013) 741-764] some 

formulas and figures were misprinted. In this paper, we correct these problems giving formal 

derivations of Zhang-Zhang (ZZ) polynomials for two classes of benzenoid systems, zigzag-

edge coronoids and fenestrenes.  

1 Introduction 

Zhang–Zhang (ZZ) polynomials, [1-5] sometimes referred to as Clar cover polynomials, 

are combinatorial polynomials used to enumerate conceivable Clar covers of benzenoid 

structures. Determination of ZZ polynomials for various classes of benzenoids is an 

intensively developing discipline of chemical graph theory.[6-12] In our recent paper [9], 

formal derivations of ZZ polynomials for various families of benzenoids were presented. 

However, due to inattentive typesetting and an editorial oversight, one of the figures (showing 

recursive decomposition of zigzag-edge coronoid) was missing, which made part of the text 

incomprehensible and resulted in wrong ordering of the following figures. Therefore, in this 

paper, we formally coherent derivation of the ZZ polynomials of two families of benzenoid 

structures: zigzag-edge coronoids   (     )and fenestrenes  (   ). In addition, we take 

here the liberty to correct two mistakes in the citation list; the references 32 and 33 of [9] are 

now correctly given as references 12 and 13.  
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2 ZZ polynomials of zigzag-edge coronoids ZC(n,m,l) 

The derivation of the ZZ polynomial for a general zigzag-edge coronoid   (     ) is 

schematically represented in Figure 1.   (  (     ))  can be expressed via the ZZ 

polynomials of variable-length multiple segment polyacenes as  
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  (1) 

The recursive formula for the ZZ polynomials of variable-length multiple segment polyacenes 

was given previously by Zhang and Zhang (Eq. (4.6) of [1] with initial conditions 

  ( ([  ])  )    ( (  )  ) and   ( ([     ])  ); see also p. 352 of [15]) as 
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Figure 1. Graph decomposition of a zigzag-edge coronoid 𝑍𝐶(5 4 3) suggests how the ZZ 

polynomial of a general structure 𝑍𝐶(𝑛 𝑚 𝑙) can be expressed in terms of ZZ polynomials of 

variable-length, multiple segment polyacenes 𝐿([𝑛 − 1 𝑚 𝑙 𝑛 − 1])  and 

𝐿([𝑙 − 1 𝑛 𝑚 𝑙 𝑛 𝑚 − 1]), studied earlier by Zhang and Zhang.[1]  
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Note that this equation is a generalization of Eq. (6) of [9] to multiple segment polyacenes 

with variable length. Direct repeated application of this recursive formula to Eq. (2) allows 

one to express it as a sixth-order polynomial in   with quite lengthy coefficients being 

functions of  ,  , and   only identical with Eq. (31) of [8], which can be transformed to a 

highly compact form 
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  (3) 

exploiting the invariance of   (  (     )  ) under the permutations of the indices  ,  , 

and   as explained in [8]. This equation is identical to Eq. (33) of [8] and is consistent with the 

corrected version [16] of the formula derived by Guo, Deng, and Chen [15] for cyclo-

polyphenacenes with six segments. Note that for zigzag-edge coronoids   (     ), it would 

be relatively difficult to discover the final highly-symmetric formula given by Eq. (3) directly 

from the recursive decomposition properties of ZZ polynomials. In this sense, the previously 

performed analysis of finite members of this class of benzenoids was helpful not only to 

discover the closed form of their ZZ polynomials but also to put this form in structurally 

simplest form. 

3 ZZ polynomials of fenestrenes F(n,m) 

The derivation of the closed formula for a general fenestrene  (   ) is schematically 

represented in Figure 2. The formula of the ZZ polynomial of a general fenestrene  (   ) 

can be expressed by 
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Repeated application of Eq. (2) allows us to express this formula in the form given by Eq. (28) 

of [8] 
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Use of the width mode of the ZZDecomposer allows us to find an alternative formula for 

the ZZ polynomial of fenestrenes  (   ). Repeated decomposition of  (   ) with respect 

to the edges connecting the armchair and zigzag single chains produces four distinct 

disconnected fragments, as shown in Figure 3 for  (5  ). The decomposition again is general 

(after accounting for the color scheme) and yields the following closed-form formula for the 

ZZ polynomial of  (   ) 
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Figure 2. Graph decomposition of a fenestrene 𝐹(5  ) suggests how the ZZ polynomial 

of a general structure 𝐹(𝑛 𝑚)  can be expressed in terms of ZZ polynomials of 
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Eq. (2). 
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consistent with our previous result (Eq. (5) of the current paper and Eq. (28) of [8]). Note 

finally that both the classes of the zigzag coronoids   (     )  and fenestrenes  (   ) 

analyzed in the last two subsections are special cases of cyclic polyphenacenes studied earlier 

by Guo, Deng, and Chen[15, 16] and therefore their ZZ polynomials can in principle be 

computed in terms of variable-length multiple segment polyacenes  ([      …    ]) 

introduced by Zhang and Zhang [1] but such calculations may prove to be quite cumbersome 

and lengthy in practice. 
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