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Abstract

We calculate the analytical expression of the chiral index of the disphenoids and we

show that this chiral index has a maximum value. It is reached when the disphenoids

have their four triangular faces congruent to a triangle with squared sidelengths ratios

1 : 3-
√

2/2 : 3. To our knowledge it is the first time that a maximal chirality three

dimensional set is characterized in the non labeled case.

1 Introduction

There were many attempts to quantify the geometric degree of chirality of a conformer or

of a set of points since more than a century (see [1] for a review). Although it is clearly

understood that the minimal degree of chirality corresponds to achirality, it is unclear

what could be the maximal degree of chirality, as noticed by Fowler [2]. We point out

that we do not look for maximizing physical quantities related to circular dichroism or

optical rotatory power, these latter having no simple relation with a geometric degree

of chirality, in some mathematical sense. Since several chirality measures exist, several

maximally chiral sets are potentially expected. This is exemplified by the case of triangles

(i.e. sets of three non labeled points in the plane), for which several maximally chiral

triangles were proposed [3–8].

To overcome this difficulty, we considered a chirality measure which operates both on

discrete sets and on continuous sets, with or without weights. Only one chirality measure

offering these properties was available in the literature: the chiral index [9], which is
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formally issued from a more general concept of shape dissimilarity [10], applied to the

case of mirror images. It is emphasized that, in the non labeled case, the chiral index

is an asymmetry coefficient which applies to probability distributions, these latter being

discrete or continuous, as desired. We do not consider anymore the labeled case for which

the points are labeled due to colors, or, for conformers, due to the molecular graph (e.g.,

in the bromochlorofluoromethane, all five points at which the atomics centers are located,

are labeled because the atoms are of different natures). In the labeled case, extremal

chirality objects are known for set of colored points [9, 11] and for conformers [12].

In the case of multivariate probability distributions (what we called the non labeled

case), the chiral index is an asymmetry coefficient. As for the labeled case, it is is zero if

and only if the distribution is indirect symmetric, i.e. achiral. Few results are available

in this case: the maximally chiral triangle is known [7], and only a conjecture is available

for general planar sets [13]. Due to the fundamental role of the tetrahedron in organic

chemistry, we would like to identify the most chiral tetrahedra. Alas, it is still an open

problem, and it is why we considered a subclass of the set of tetrahedra, the disphenoids,

for which the analytical treatment of our optimization problem remains feasible.

A disphenoid is a tetrahedron whose four faces are congruent triangles. It is also called

an isosceles tetrahedron [14] or an equifacial tetrahedron [15], and has several remarkable

geometric properties [14, 16]. Let α, β, γ be the face sidelengths. These latter define

an acute triangle, and no disphenoid can be built from an obtuse triangle [14]. The

limiting case of a right triangle corresponds to a degenerated tetrahedron whose edges are

those of a rectangle with its two diagonals. The disphenoid is achiral (i.e. it has mirror

symmetry) when the triangle (α, β, γ) is isosceles or has a right triangle. For an acute

scalene triangle, the disphenoid is chiral. Thus we look for the most chiral disphenoid, in

the sense of the upper bound of the chiral index in the space of the distributions of the

four vertices.

According to [9], the chiral index χ of a d-dimensional multivariate distribution P is

defined as the squared Wasserstein distance [17] between P and its mirror inverted image

P̄ , minimized for all rotations and translations of P̄ , and divided by 4T/d, T being the

inertia of P , i.e. the trace of its covariance matrix. The Wasserstein metric was introduced

by the Russian mathematician Wasserstein (originally written Vasershtein) [18]. This

metric is intimately related to the Monge-Kantorovitch transportation problem [19]. The

-376-



Wasserstein distance between two distributions P1 and P2 can be interpreted as the cost

to transform P1 into P2. In our context, the cost is quadratic, so that we refer implicitely

to the L2-Wasserstein metric. Thus, χ is an asymmetry coefficient taking values in [0; 1].

It is insensitive to isometries and scaling of P , and it is null if and only if P is achiral (i.e.,

if P has indirect symmetry). The optimal translation being null when the expectation of

P is null, we will further assume only null expectation distributions.

2 Notations

Let P be a n-by-n permutation matrix, R a d-by-d rotation matrix and Q a negative

determinant d-by-d orthogonal matrix. Let X be the n-by-d matrix of the n equiprobable

observations, or, in other words, the n lines of X contain the cartesian coordinates of the

n input data points. We set V = X ′PX and we denote transposed matrices or vectors by

a quote. The trace of the covariance matrix is T = Tr(X ′X). Min{R,P} and Max{R,P}

denote respectively the minimum (resp. the maximum) of a quantity over the space of all

rotations R and permutations P . According to [11]

χ =
d

4T
Min{R,P}D

2 (2.1)

D2 = Tr[(X − PXQ′R′)′(X − PXQ′R′)] (2.2)

χ =
d

2T
(T −Max{R,P}Tr((V + V ′)Q′R′) (2.3)

Given P , the optimal solution R in equation 2.3 is known for any d value [20]. However,

for d = 3 there is a simpler expression of this solution if we set Q = −I and we use the

unit quaternion q representing the rotation R [9,11]. We denote by I the identity matrix

(any size). The quaternion is q =

(
p
u

)
, p being the real part of q (conventionnally set

non negative) and u being its vector part. The optimal quaternion in 2.3 is the eigenvector

associated to the largest eigenvalue in equation 2.5 and the minimized squared D value is

D2 = 2T + 2Tr(V )− 2L1 (2.4)

Bq = L1q (2.5)
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B =

(
0 ξ′

ξ Tr(V + V ′)I − (V + V ′)

)
(2.6)

ξ′ =
(
V2,3 − V3,2 V3,1 − V1,3 V1,2 − V2,1

)
(2.7)

Remark: equation 2.5 can be rewritten (JBJ)(−Jq) = L1(−Jq), where the 4-by-4

matrix J =

(
−1 0
0 I

)
, thus the eigenvalues solutions of equation 2.5 are the same for

P and P ′.

3 The chiral index of the disphenoid

The coordinates of the disphenoid vertices are parametrized according to [21]. Let a ≥

b ≥ c be non negative reals, and ∆ =

 a 0 0
0 b 0
0 0 c

, then X = Y∆, where Y contains the

canonical coordinates of the regular tetrahedron

Y ′ =

 1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


The triangle squared sidelengths are α2 = 4(b2 + c2), β2 = 4(a2 + c2), γ2 = 4(a2 + b2).

They unambiguously define the shape of the disphenoid.

Theorem 1 (Main Theorem). The chiral index of the disphenoid is

χ = 3
2(a2+b2+c2)

Min{2c2; (a− b)2; (b− c)2}

It is associated to at least one symmetric permutation, i.e., there is at least one symmetric

permutation matrix solving eq. 2.1 when the optimal rotation is given in eqns. 2.4-2.7.

Proof. V = ∆Y ′PY∆ and there are 24 permutations, which are classified according to

their cycles:

1. The identity permutation P = I

2. 6 symmetric permutations Pi,j, 1 ≤ i < j ≤ 4, with 1 cycle of length 2 and 2

invariant elements. Pi,j permutes rows i and j of X.

3. 3 symmetric permutations Pi,j;k,l, with 2 disjoint cycles of length 2 and no invariant

element: Pi,j;k,l = Pi,jPk,l = Pk,lPi,j.

4. 4 circular permutations Pi,j,k over 3 elements with 1 invariant element, plus their

4 transposed permutations. Pi,j,k is such that rows (j, k, i) of X are respectively in

rows (i, j, k) of Pi,j,kX.
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5. 3 circular permutations Pi,j,k,l over 4 distincts elements, i.e. 1 cycle of length 4 and

no invariant element, plus their 3 transposed permutations. Pi,j,k,l is such that rows

(i, j, k, l) of X are respectively in rows (1, 2, 3, 4) of Pi,j,k,lX.

For each class, we calculate the eigenvalues of B.

1. P = I, ξ is null, V = 4I is diagonal. The eigenvalues of B are:

8(a2 + b2), 8(a2 + c2), 8(b2 + c2), 0.

Then, T = 4(a2 + b2 + c2), L1 = 8(a2 + b2) and D2 = 16c2.

2. P = P ′, V = V ′, ξ is null. Moreover, V (and thus B) has only 4 non null elements:

two identical diagonal values, and two identical ones out of the diagonal.

For P1,2 and P3,4, they are 8a2 (diagonal) and 8bc (out of diagonal).

For P1,3 and P2,4, they are 8b2 (diagonal) and 8ac (out of diagonal).

For P1,4 and P2,3, they are 8c2 (diagonal) and 8ab (out of diagonal).

For these three cases the four eigenvalues are respectively:

8(a2 + bc), 8(a2 − bc), 0, 0,

8(b2 + ac), 8(b2 − ac) (may be negative), 0, 0,

8(c2 + ab), 0, 0, 8(c2 − ab).

The respective values of D2 in these three cases are 8(a− b)2, 8(a− c)2, 8(b− c)2.

3. P = P ′, V = V ′, ξ is null. V is diagonal. The four tuples of eigenvalues of B

associated to P1,2;3,4, P1,3;2,4, P1,4;2,3, are respectively

8(a2 − c2), 8(a2 − b2), 0, 8(−b2 − c2),

8(b2 − c2), 0, 8(−a2 + b2), 8(−a2 − c2),

0, 8(−b2 + c2), 8(−a2 + c2), 8(−a2 − b2).

The values of D2 in these three cases are all 16c2.

4. For P3,4,2, P3,4,1, P2,4,1, P2,3,1 the respective V matrices are

4

 0 ab 0
0 0 bc
ac 0 0

, 4

 0 0 −ac
−ab 0 0

0 bc 0

,

4

 0 −ab 0
0 0 −bc
ac 0 0

, 4

 0 0 −ac
ab 0 0
0 −bc 0



-379-



We denote 1′ = (1, 1, 1, 1)′. The eigenvectors of the first and the third B matrices

are proportional to J1 and to the columns of JX. The eigenvectors of the second

and the fourth B matrices are proportional to 1 and to the columns of X. The four

B matrices have the same set of eigenvalues:

4(ab+ ac− bc), 4(ab− ac+ bc), 4(−ab+ ac+ bc), 4(−ab− ac− bc).

Tr(V ) = 0 and D2 = 8(a2 + b2 + c2 − ab− ac+ bc) in all cases.

5. For P2,3,4,1, P3,4,2,1, P2,4,1,3 the respective V matrices are

4

 0 0 −ac
0 −b2 0
ac 0 0

, 4

 −a2 0 0
0 0 −bc
0 bc 0

, 4

 0 −ab 0
ab 0 0
0 0 −c2


The matrices V + V ′ are diagonal with only one non null element. The vectors ξ

have only one non null element. The eigenvalues of the respective matrices B are:

8ac, −8b2, −8b2, −8ac (can be greater than −8b2),

8bc, −8bc, −8a2, −8a2,

8ab, −8c2, −8c2, −8ab.

The values of D2 in these three cases are respectively 8(a− c)2, 8(b− c)2, 8(a− b)2.

The smallest D2 value in each class are:

16c2, Min{8(a− b)2; 8(b− c)2}, 16c2, 8(a2 + b2 + c2 − ab− ac+ bc), 8(b− c)2. The value

for class 4 cannot be smaller than the half sum of 8(a− b)2 and 8(a− c)2, which in turn

cannot be smaller than the value in class 2, thus completing the proof.

Corollary 2. The disphenoid is achiral if and only if, either the triangle is isosceles or

it has a right angle.

Proof. From Theorem (1), χ = 0 either

(i) when c = 0, meaning that γ2 = α2+β2, i.e. the triangle is right and the disphenoid

is flat, or

(ii) when a = b, meaning that α = β, i.e. the triangle is isosceles, or

(iii) when b = c, meaning that β = γ, i.e. the triangle is isosceles.

Theorem 3. The most chiral disphenoids exist and have a chiral index χ = 3(13 −

6
√

2)/97 (χ = 0.139630...). The faces are congruent to triangles whose squared sidelengths

are in ratios 1 : 3-
√

2/2 : 3.
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Proof. Setting b̂ = b/a and ĉ = c/a, from Theorem (1), χ is a function of (b̂, ĉ) which

is the minimum over E = {0 < ĉ ≤ b̂ ≤ 1} of the following three functions: f1(b̂, ĉ) =

3c2/(1 + b̂2 + ĉ2), f2(b̂, ĉ) = 3(1− b̂)2/2(1 + b̂2 + ĉ2), and f3(b̂, ĉ) = 3(b̂− ĉ)2/2(1 + b̂2 + ĉ2).

All partial derivatives of f1, f2, f3 are monotonic over E: ∂f1/∂b̂ < 0, ∂f1/∂ĉ > 0,

∂f2/∂b̂ ≤ 0, ∂f2/∂ĉ ≤ 0, ∂f3/∂b̂ ≥ 0, ∂f3/∂ĉ ≤ 0. The partial derivatives of f2 are null

iff b̂ = 1 and the ones of f3 are null iff b̂ = ĉ. The boundaries for f1 = f2, f1 = f3 and

f2 = f3, are respectively at ĉ = (1 − b̂)
√

2/2, ĉ = b̂(
√

2 − 1) and ĉ = (2b̂ − 1). Then we

deduce from the signs of the partial derivatives that χ is maximized at the intersection

of these boundaries (see Figure 1), located at b̂ = (3 +
√

2)/7 and ĉ = (2
√

2 − 1)/7. In

other words, the maximal χ is reached when the three quantities 2c2, (a− b)2 and (b− c)2

are equal. Then we get b = (a+ c)/2, a
c

= 1 + 2
√

2 and b
c

= 1 +
√

2. The maximal chiral

index and the ratios of the sidelengths are deduced from these values.

Figure 1: The areas where f1, f2 and f3 are respectively retained to calculate the chiral index.
Abscissas: 0 < b̂ ≤ 1, ordinates: 0 < ĉ ≤ 1.

Theorem 3 was also checked via generating more than 2 · 109 random disphenoids:

the highest observed chiral index was lower than the maximal one, the difference being

smaller than 10−5.
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4 Conclusion

In this paper we insist that the four vertices of a tetrahedron are modeled by a finite

discrete distribution rather than by a set of four points in the 3D space, despite that

the geometric approach is used for solving analytically our optimization problem. It was

shown in the past that modelers missed the following crucial point: the probabilistic model

is better than the geometric one because it handles both geometry and mass and charges

distributions, discrete or continuous [9, 10]. However, the full mathematical description

of this probabilistic model is already published and it is outside the scope of this paper.

Few attempts to exhibit maximal chirality sets or maximally asymmetric distributions

appeared in the literaure [1]. Moreover, despite that the tetrahedron is a 3D shape basic

for chemistry and stereoisomerism, no analytical result was available about maximally

asymmetric tetrahedra, and it is why this paper focussed on isosceles tetrahedra. A

maximally chiral triangle based on the chirality measure as used in this paper was found

in [7]. In addition to a geometric property that it shares with the most direct dissymetric

triangle [11], we observe from the coordinates of its vertices (−
√

2 | 0), ((
√

2 + k)/2 | k/2),

((
√

2 − k)/2 | −k/2), where K = k2 is root of K2 − 24K + 9 = 0, that the acute angles

side-median are θ1 = π/4, θ2 = π/4, and cos 2θ3 = 3/5. It seems the scalene triangle of the

most chiral disphenoid does not offer such properties. These two triangles are displayed

in Figure 2.

Figure 2: The triangular face of the maximally chiral disphenoid (on the left), and the maximally
chiral triangle (on the right), from ref. [7].

Some open problems are: find the most chiral d-simplex, d ≥ 3, and find the upper

bound of the chiral index for any set of n points in dimension d ≥ 2 [22]. This latter
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bound is known to lie in the interval [1/2; 1] [23]. A narrower interval, [1−1/π; 1−1/2π],

is known in the planar case [13]. Despite that these problems seem to be non trivial ones,

at least the case of the tetrahedron should be investigated because the geometry of the

tetrahedron still raises interest, not only in the recent mathematical literature [24–26],

but also in the very recent chemistry literature [27]. Random tetrahedra were generated,

indicating that the most chiral tetrahedron should have a chiral index greater than 0.194.
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