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Abstract
The permanental polynomial of IPR fullerene C70(D5h) is computed with quadru-

ple precision arithmetic based on sparse graph on PC in acceptable time. The com-
puting adopts 128 bits to store one float and works well for C70, while the largest
fullerene computed before is C60, which can be easily obtained now. Some proper-
ties of the coefficients and zeroes of the permanental polynomials of IPR fullerenes
C60 and C70 are also investigated. Computational results show the quadruple preci-
sion method can handle permanental polynomial of C70 and even larger fullerenes,
which are of interest in applications.

1 Introduction

The permanental polynomial of a graph is of interest in chemical graph theory [1–5]. It

is defined as follows:

π(G, λ) = per(λI − A) =
n∑
k=0

bkλ
n−k , (1)

where A is the adjacency matrix of a graph G with n vertices, and I is the identity matrix

of order n. Here per(A) denotes the permanent of the matrix A, which is defined as

per(A) =
∑
σ∈Λn

n∏
i=1

aiσ(i) , (2)
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where Λn denotes the set of all permutations of {1,2,...,n}.

It can be traced back to 1981 that the permanental polynomial was considered in

chemistry. Kasum et al. [6] investigated the properties of the permanental polynomial

and demonstrated its relations to the structure of conjugated molecules. Computing the

permanental polynomial of a graph is based on the computation of the permanent of the

adjacency matrix of the graph. For a graph with n vertices, its permanental polynomial

can be computed by n/2 + 1 permanents of n × n matrices and an (n + 1)-element

FFT [7]. Evaluating the permanent of a matrix is proved to be a #P-complete problem

in counting [8]. Even for one 3-regular matrix,which is with 3 nonzero entries in each

row and column, computing its permanent is still a #P-complete problem [9]. Thus,the

permanental polynomial of a graph is much harder in computation. The research on the

graph polynomial was limited by the difficulty in its calculation for a long time. Over

the last decade, this situation has changed with some efficient algorithms were proposed

[5, 7, 10]. Cash investigated the properties of coefficients and zeroes by all fullerenes

C≤36 [11]. Then all the permanental polynomials of fullerenes C≤50 were computed and

some new properties were discovered [12]. Recently, a novel algorithm based on graph

bisection for permanent of sparse graph was proposed [13]. The algorithm increases the

computable scale of permanent for a sparse graph. However, it is also difficult to compute

the permanental polynomial of larger sparse graph Cn(n ≥ 60) because of the double

precision limitation.

Quadruple precision algorithm named as QPA is proposed in this paper to improve

the ability of computation of the permanental polynomials. The idea of the method is

simply based on the Fast Fourier Transformation (FFT) based method [7] and graph

bisection based method [13]. It is possible to compute C70 and even larger fullerenes,

which are of interest in many real-world applications.

The plan of this paper is the following. We give the quadruple precision algo-

rithm(QPA) detail in section 2. The permanental polynomial for IPR fullerene C70 is

given in section 3. The Properties of permanental polynomial of C60 and C70 are dis-

cussed in section 4. Finally some conclusions are given in Section 5.

-328-



2 Quadruple Precision Algorithm

2.1 Analysis of Computational Precision

The coefficients of a permanental polynomial are all integers, while inverse Fourier trans-

formation gives output in real numbers. The rounded part of the FFT shows the compu-

tational precision to some extent. Let round(x) be the integer which is the nearest to x

and cof Cn be the coefficients vector of Cn derived from FFT directly. The measure of

the computational precision is shown as follows [7, 12].

error = max
1≤k≤n+1

| round(cof Cn(k))− cof Cn(k) |

Table 1 shows the double precision for FFT based method is not fit to compute the

Table 1: The error trend of the computational precision with double precision [7]

Fullerene C20 C30(C2ν) C40(C1) C50(D5h)

Error 4.37× 10−11 3.44× 10−8 1.49× 10−5 1.76× 10−3

Fullerene C52(D2) C54(D3) C56(Td)

Error 1.47× 10−2 8.16× 10−2 1.44× 10−1

permanental polynomial of fullerene when the number of vertices n > 56.

2.2 The Quadruple Precision Algorithm

For handling the double precision limitation, in this paper we adapt fortran 95 as program-

ming language and quadruple precision(128 bits) to compute the permanental polynomial

of lager fullerene C70(D5h). It works well for the permanental polynomial of C70 and is

promising to compute larger fullerenes. The high precision algorithm based on the graph

bisection named as quadruple precision algorithm(QPA), is given as follows.

Algorithm QPA(Quadruple Precision Algorithm)

Input: A - an n× n 0-1 valued matrix.

Output: (a0, a1, ..., an)- the coefficients of per(xI − A).

Step1: Let ωn+1 = e(−2πi)/(n+1) be the (n+ 1)-th root of unity,

take xj = ωjn+1(j = 0, 1, · · · , n);

-329-



Step2: Computing pj = per(xjI − A) for j = 0, 1, · · · , n by sparse permanent

algorithm based on graph bisection(SP) [13];

Step3: Do inverse Fourier transform for (p0, p1, · · · , pn) to get aIFFT ;

Step4: (a0, a1, · · · , an) = ANINT(aIFFT ).

Notes: The function ANINT(x) in the algorithm gives the integer that is closest to

x; When compute wjn+1(j = 0, 1, · · · , n), take quadruple precision(128 bits) for π in step

1; Also adopt the same computational precision in step 2, 3, 4; Thus each function in the

algorithm QPA must support the quadruple precision computation.

3 The Permanental Polynomial of C70(D5h)

The result of permanental polynomial for buckminsterfullerene C60(Ih) was reported in

[10]. It was achieved with intensive parallel computation. Using the High precision

algorithm QPA, the permanental polynomial of IPR fullerene C60 can be easily obtained,

and C70(D5h) is computed within acceptable time by PC. All numerical experiments in

this paper are carried on an Intel Core i3 530(2930 MHz) with fortran 95 as the programing

language. The coefficients of permanental polynomial of C70 are listed in Table 2.

In order to test the validity of the numerical results, the following three identify

equations are applied,

per(I − A) =
n∑
i=0

ai , per(I + A) =
n∑
i=0

|ai| , per(2I − A) =
n∑
i=0

2iai .

For C70(D5h), the following equations holds:

per(I − A) = 425433425553580224,
70∑
i=0

ai = 425433425553580224;

per(I + A) = 3218848356932962496,
70∑
i=0

|ai| = 3218848356932962496;

per(2I − A) = 41858415748391960049622590200 =
70∑
i=0

2iai;

Computational results show that the coefficients of C70(D5h) obtained in this paper

satisfy all of the equations. Table 3 shows the maximal errors of all Cn for 30 ≤ n ≤ 70

and it shows very good performance for these fullerenes under the quadruple precision(128

bits). Permanental polynomials of lager fullerenes are promising to be obtained by the

algorithm QPA.
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Table 2: Coefficients of Permanental Polynomial of C70(D5h)

power coef power coef power coef

70 1 46 107008896432105 22 245494060539318985
69 0 45 -31722152142120 21 -199166020371411200
68 105 44 432795553705505 20 196878885263740003
67 0 43 -151016962132240 19 -155405515524027020
66 5250 42 1515742026255585 18 136830096741982390
65 -24 41 -613608311508140 17 -103153821051548260
64 166440 40 4610947639946519 16 81515675892315300
63 -2280 39 -2136939063152860 15 -57641574176393540
62 3758505 38 12214184625928020 14 40942439191026055
61 -102840 37 -6397962553436280 13 -26652478906287780
60 64388193 36 28232606977943430 12 16913747932999775
59 -2932200 35 -16501764332321040 11 -9920622582303100
58 870306935 34 57045847648168455 10 5539521700416647
57 -59361780 33 -36711510407500900 9 -2847465406090760
56 9530743885 32 100916922377539675 8 1360966721130985
55 -908688556 31 -70488373200886780 7 -589194336437960
54 86172442035 30 156516500476635226 6 230106708406160
53 -10936700360 29 -116816274006488920 5 -78766376928844
52 652299617065 28 213043407565260140 4 23162102035020
51 -106254055960 27 -167028339357103720 3 -5584320116600
50 4177691243662 26 254629627896509540 2 1044505555260
49 -848953954160 25 -205883109442953472 1 -134101348480
48 22821827937180 24 267117834605473780 0 9193937544
47 -5654832819880 23 -218479046798553080

4 Properties of Permanental Polynomial of C70

4.1 The Properties of Coefficients

Some relations between the coefficients of characteristic polynomial and permanental poly-

nomial are presented by Gutman [14] and Chou et al [15]. In this section, several relations

between the coefficients of the permanental and characteristic polynomials of C70(D5h)

are also observed. Let G be the C70(D5h) graph. The characteristic polynomial of the

adjacency matrix A of fullerene C70(D5h) is defined as follows.

φ(G, λ) = det(λI − A) (3)

In parallel to Eq.(2), we write it in the coefficient form

φ(G, λ) =
n∑
k=0

akλ
n−k . (4)

For k = 0, 1, · · · , 9, |ak| = |bk|. a10 = 64388193 and b10 = −64387665, so |b10| < a10 is

satisfied. Moreover, it is shown that |ak| = |bk| for the first few k’s and |ak| < |bk| for
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Table 3: The trend of the computational precision with n

Fullerene C30(C2ν) C40(D2h) C44(T ) C50(D5h)

error 4.2579e-026 3.0300e-023 4.3352e-022 1.4042e-020

Fullerene C52(D2) C56(Td) C60(Ih) C70(D5h)

error 4.2000e-020 8.3241e-019 1.1277e-017 4.5680e-013

larger k’s. Figure 1 shows ln(|ak|) and ln(|bk|) of C60 and C70. One can see that ln(|ak|)

and ln(|bk|) are very close before they reach the maximums. There is distinct difference

between ln(|ak|) and ln(|bk|) when k is larger. This a general conclusion for an IPR

fullerene from Theorem 3 by Ivan Gutman and Gordon G. Cash [14].

0 20 40 60
0

10

20

30

40

k

ln
|a

k
| v

s 
ln

|b
k

|

 

 

0 20 40 60
0

10

20

30

40

k

ln
|a

k
| v

s 
ln

|b
k

|

 

 

b
k

a
k

b
k

a
k

C
60

C
70

Figure 1: ln(|ak|) and ln(|bk|) of C60 and C70

Let bmax be the largest positive coefficient of the permanental polynomial. The

properties of bmax were studied by Cash [11] and Tong et al [12]. It was shown that

bmax’s are very close in an isomer set Cn. Using the data of all fullerenes in C≤50, a linear

regression function of the average values of ln(bmax) was given in [12].

Y = 0.58463n− 0.95477 , r = 0.999991 , (5)

where n is the number of atoms.

The numerical results show that the maximum coefficient of C60 is b40 and that of

C70 is b46. The ln(bmax)’s of C60 and C70 fit the equation (5) also very well. As shown in

Table 4, the relative residual errors,
|Y − ln(bmax)|

Y
, are no more than 0.4%.
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Table 4: ln(amax) of C60 and C70

Fullerene n amax location ln(amax) Y

C60(Ih) 60 710621056476228 40 34.1972 34.1230

C70(D5h) 70 267117834605473780 46 40.1265 39.9693

4.2 The Properties of Zeroes

The following two results were addressed by Cash [11] and confirmed by Tong et al [12].

Property 4.1. There are n/2 independent zeroes for each permanental polynomial. Ten

of them are nearly a constant for all isomers in Cn with fixed n, while the remaining

n/2− 10 zeroes vary with structure.

The ten clustered zeroes that seem to characterize any given isomer sets also vary in

a systematic way with molecular size n.

Property 4.2. The average values of three clusters among the ten are nearly straight

lines for each isomer sets Cn as n varies. In all three cases, the order of points on the

line is monotonic to the carbon numbers n.

The n/2 independent zeroes of C60 and C70 are shown in Figure 2. The distributions

of the zeroes of the two fullerenes are close, and we also note that the zeroes are all

complex with nonzero real and imaginary parts.

The linear equations for the average values of the three zero clusters were given from

the data of all fullerenes in C≤50 [12].

cluster(1) : y = −5.20722x− 2.69918, r = 0.999026 (6)

cluster(2) : y = +2.16174x+ 2.16390, r = 0.993564 (7)

cluster(3) : y = −0.45937x+ 2.91265, r = 0.990359 (8)
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Figure 2: Zeroes of the permanental polynomials of C60(◦) and C70(∗)
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Figure 3: The linear patterns of zeroes

The roots of the permanental polynomials of the fullerenes C60 and C70 are shown in

Figure 2. Because of the demand of precision, the roots can be obtained with symbolic

computation from many scientific computation software, such as MATLAB, MAPLE and

MATHEMATICA. Since all their roots appear in conjugate pairs, only up-half plane is

plotted. Roots of the characteristic polynomials are useful in chemical graphs. As with

the coefficients, this may suggest future uses of the roots of the permanental polynomial

as well. The zeroes of C60 and C70, which are corresponding to the three linear patterns,

cluster 1-3, are marked in Figure 2. The average values of the zero clusters for each isomer

series from C20 to C50 are given in Figure 3. The six zeroes, which are associated to C60

and C70 are also plotted in the Figure 3 and marked by dash ellipses. It is obvious that

they fit the equations (6)-(8) very well. The order of points on the line is monotonic to

the carbon numbers. The residual errors of the six points are no more than 0.08.
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There are more linear patterns were observed in the two locations [12], which are

enclosed by 0.15, 0.15+1.3i, 0.42, 0.42+1.3i and -0.1+2i, -0.1+2.9i, 0.3+2i, 0.3+2.9i

and marked in Figure 2 and Figure 3. In location 1, there are 8 zeroes of permanental

polynomial of C60(◦) and 10 zeroes of permanental polynomial of C70(∗). In the location

2, the numbers of zeroes are 7 and 6 respectively. Almost half of the zeroes of C60 and

C70 are contained in the two locations. These zeroes show the regularity obviously.

5 Conclusions

In this paper, an efficient quadruple precision algorithm(QPA) is proposed for computing

the permanental polynomial of fullerenes(n ≥ 60). For fullerene-type graph, the com-

putable scale of permanents and permanental polynomial increases in acceptable time by

PC. By the algorithm QPA, the permanental polynomial of fullerene C70 is obtained. We

find that some of the properties of the permanental polynomials of IPR C60 and C70 are

consistent with those proposed by [11, 12], which are obtained through data of C≤36 and

C≤50.

With the analysis of the precision trend of the algorithm QPA, it is promising to

compute the permanental polynomials of larger fullerenes(n ≥ 60) in bulk. The algorithm

is also applicable to other types of chemical graphs. Using the more plentiful data, more

work could be done in identifying the relationship of the permanental polynomial to

chemical structure and properties. This is one of our future projects.
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