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Abstract 

We discuss some property-property relationships (PPRs) for the estimation of vapour pressure 

with regard to their predictive power in terms of accuracy and applicability. Seven different 

PPRs mostly based on the Clausius-Clapeyron equation are analysed, including for example 

the method of Mackay or those of Fishtine/Vetere. A data set of 375 compounds was com-

piled, which contains all required quantities as measured ones. Several criteria are defined to 

determine the accuracy of the estimation methods. By applying partial order theory, it turns 

out that two equations by Fishtine/Vetere are optimal, i. e. yield the best estimation results, 

albeit they are not comparable. According to the main focus of this paper our data set is dis-

cussed in terms of chemical structures. Structural elements, such as carbonyl-function, amine-

function, halogen substitution etc., were identified, which were suitable to characterize the 

diversity of a set of organic chemicals. Given the composition of the current data set, it was 

necessary to reduce the number of structural elements to eight. Finally, we introduce the ad-

matrix, describing the quality of an estimation equation with respect to a certain structural 

element. The numerical differences of the adij-values among different estimation equations 

are not large. Hence a fuzzy partial order approach was applied to get the best vapour pressure 

estimation equations with respect to a distinct structural element. Four estimation methods 

can be recommended, concerning their accuracy with respect to different chemical structures. 
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1 Introduction 

In general, the validity of an estimation equation can be discussed in terms of accuracy and 

applicability. Both terms are closely interrelated. A higher required accuracy usually implies 

lower applicability, i. e. the validity of the estimation equation with respect to certain struc-

tural classes. The methods we apply here can be useful for any quantitative structure-activity 

relationship or property-property relationship. However, the technique of analysis for linear 

models has made large steps toward a conceptually closed theory (see for example [1-3]). It is 

interesting to note that already in 1994 the need of an analysis of analogies in chemical struc-

tures and estimation methods has been stressed [4]. 

The vapour pressure is an important thermodynamical property in its own right. Moreover, 

it is also a key property in the estimation of fate and distribution of chemicals in the environ-

ment. In consequence, many publications originate from fate modelling of environmental 

chemicals within the context of risk assessment (see e.g. [5-7]) or from investigations on 

aerosols [8,9]. 

Experimental determination of the vapour pressure is often time-consuming and expen-

sive; measurements are especially complicated for compounds with low and very low vapour 

pressure [10]. Consequently, estimation methods to predict vapour pressures are of increasing 

importance. The number of vapour estimation methods is large [11-13]. In the following we 

cite Barley et al. [8]: “The number of vapour pressure equations in the literature that could be 

combined with estimated Tb -(boiling temperatures)- values is large, although several equa-

tions are variations on each other.” In the same reference we find another sentence, which is 

characterizing the problem with the validation of estimation equations of the vapour pressure: 

“The selection of a vapour pressure estimation method for use (in the modelling of aerosol 

formation) is always going to be a compromise between accuracy, complexity and coverage 

of all the required functional groups.” Here, in this paper, we are confronted with this prob-

lem, too: Sophisticated estimation methods may use parameters whose values are specific for 

chemical groups (see for instance [14-16]). The advantage is the chance for a high accuracy 

for specific chemical classes but there is also a chance for a high input error as the group 

parameters have to be estimated, too (compare the famous Mc O’Neill parabolas, see for 

example [17]). Here, we do not discuss group-based methods at all; instead our aim is to 

verify the applicability domain of property-property estimation methods which do not contain 

group-specific parameters and which are considered as being applicable to a wide range of 

chemical classes. 
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Our paper is organized as follows. 

(i) Methods: Here we discuss some of the vapour pressure estimation methods and present 

seven different estimation equations. After introducing the data set, we define the criteria, 

which will be used for analyzing the accuracy and applicability. As more than one criterion 

will be necessary to evaluate the accuracy, partial order theory will be applied, which will be 

briefly introduced. The discussion of accuracy is, however not the main point of this paper. 

Our focus lies on the applicability part and consequently our data set is discussed in terms of 

chemical structures. A scheme of structural elements introduced previously [18] is used to 

describe and quantify the chemical characteristics of the data set of environmental chemicals. 

(ii) Results: With respect to the accuracy two variants of the Fishtine/Vetere equations 

yield the best estimations of vapour pressure. When the applicability domain has to be quanti-

fied, it is necessary to obtain statistically robust results. Therefore, the decisive quantity adij 

(ad: applicability domain) is introduced. This matrix (“ad-matrix”) describes the relative 

number of chemicals being no outliers with respect to the j
th

 structural element, applying the 

i
th

 estimation equation. The numerical differences of the adij-values among different estima-

tion methods are not large. Hence, a fuzzy partial order approach was applied to get optimal 

vapour pressure estimation equations concerning the j
th

 structural element. 

(iii) Conclusion: We present a methodology, which follows the traditional concept of 

estimation equations, where the chemical structures are not explicitly built-in. When this 

restriction is accepted, then our approach can be summarized as: 

 Find criteria for accuracy and apply partial order to obtain the relative best (i. e. opti-

mal) estimation equations. 

 Find structural elements and test the estimation equations concerning the number of 

outliers. 

 From the relative number of outliers the central adij-values are derived. These in turn 

relate the quality of the estimation method with the structural element of interest. 

2 Methods 

2.1 Property-property relationships for vapour pressure 

estimation 

Estimation methods for physicochemical and biological properties play an important role in 

different fields (see for example [11,19,20]). Basically, these methods fall into two categories: 

(i) Quantitative structure-property relationships (QSPRs) make use of molecular structure 
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descriptors; (ii) quantitative property-property relationships (PPRs) use other experimental 

data (e. g. boiling points) [12]. In the case of vapour pressure most of the PPRs are developed 

from the Clausius-Clapeyron equation and have therefore a sound thermodynamical basis. In 

order to break this equation down to easily accessible chemical properties, various approaches 

have been developed to account for the temperature dependence of the enthalpy of vaporiza-

tion as well as dealing with the enthalpy of vaporization at boiling temperature. These proce-

dures finally result in a number of semi-empirical estimation methods (see [11], for example). 

For the present validation study we have compiled seven PPRs which are mostly based on 

the Clausius-Clapeyron equation. Some others are empirical equations such as the August or 

the well-known Antoine equation. It may be useful to give first an overview by a flow chart 

(Figure 1). 

 

Figure 1: Schema of vapour pressure estimation methods. 

The equations for the estimation of the vapour pressure pv are given in detail below. The 

boiling point Tb, the melting point Tm, and the molecular mass M are required as experimental 

data. In some cases there is a need of extrapolation from the solid to the subcooled liquid 

state. This is done by eq. (1) [21]: 

   0  for liquids at 298 K 
 f(Tm) =  (1) 
   2.9532  (1 - Tm/T)  for solids at 298 K 
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T is the absolute temperature. 

AU1 (August) [22] 

 log pv = -5.87  Tb/T + 11.03 (2) 

AU2 (August) [23] 

Parameters of eq. (2) as fitting quantities at pv = p0 and T = T0  

 log pv = - /T  log (po/ps) + log po + /To  log (po/ps) + 2.125 + f(Tm) (3a) 

 with  = (To  Tb)/(To - Tb), log po = 6.68, To = 1750 K (3b) 

AN (Antoine) [19] 

 log pv = 5.0057 + A  B  C + f(Tm) (4a) 

 A = (2.09/Tb) + (0.4747/Tb)  ln Tb (4b) 

 B = (0.81 Tb + 18)
2
 (4c) 

 C = [1/(0.81 Tb + 18)] - [1/(T + 18 - 0.19 Tb)]  (4d) 

WA (Watson) [19] 

 log pv = 0.43429 ln pv + 5.0057 (5a) 

 ln pv = KF  Tb  (8.75 + R  ln Tb) A / (1.9274  Tb) (5b) 

 A = 1 - B - C (5c) 

 B = (3 - 2 y)
m

 / y (5d) 

 C = 2 m (3 - 2 y)
(m - 1)

  ln y (5e) 

 KF = 0.99 (5f) 

with y = T/Tb, R is the gas constant in cal/(mol  K). The parameter m is calculated as follows: 

 Tm < 298 K: m = 0.19 (5g) 

    0.36 for T/ Tb > 0.6 
 Tm > 298 K: m =  0.8 for 0.6 > T/ Tb > 0.5 (5h) 
    1.19 for T/ Tb < 0.5 

MC (Mackay) [24] 

 log pv = 0.43429 ln pv + f(Tm) + 5.0057 (6a) 

 ln pv = -(4.4 + ln Tb)  [(1 + K)  (Tb/T - 1) - K  ln Tb/T] (6b) 

 K = 0.803 (6c) 
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FV1 (Fishtine/Vetere) [20] 

 log pv = 0.43429 ln pv + f(Tm) + 5.0057 (7a) 

 ln pv = (HV (Tb)/R) [(1 + K)  (1/Tb - 1/T) + K/Tb  ln (Tb/T)] (7b) 

 HV(Tb) = SV  Tb (7c) 

 SV = b  (a1 + a2  log Tb + (1/M)   ai+2  Tb
i
)  (i = 1, 2, 3) (7d) 

with the following values for ai and b 

 b a1 a2 a3 a4 × 10
3
 a5 × 10

6
  

 1.03 10.604 3.664 0.09354 1.035 -1.345  

FV2 (Fishtine/Vetere) [20] 

 log pv = 0.43429 ln pv + f(Tm) + 5.0057 (8a) 

 ln pv = (HV(Tb)/R) [(1 + K)  (1/Tb - 1/T) + K/Tb  ln (Tb/T)] (8b) 

 HV(Tb) = SV  Tb (8c) 

 SV = 13.91 + 3.27  log M + 1.55  A/M (8d) 

Preliminary studies have shown that is reasonable to modify the term A, which is origi-

nally given by eq. (8e) [20], as follows: 

   [Tb - (263  M)
0.581

]
1.037

  for Tb - (263  M)
0.581

 < 0 (8e) 
 A =   
   0  otherwise (8f) 

2.2 Vapour pressure data set 

Measured vapour pressure data are required for the development and validation of estimation 

methods. Many data are available from the literature and are used here. Beyond this, six addi-

tional vapour pressures have been determined experimentally. These additional compounds 

belong to the class of aliphatic alcohols and phenols, respectively, which has shown striking 

number of outliers in former studies [25]. The gas saturation method [10,26] was applied and 

phenanthrene was used for calibration of the method. The obtained value is in fairly good 

agreement with the values obtained by other methods [27]. The measured vapour pressure of 

the six compounds is contained in the Supplementary Material. In general, the values were 

measured in the temperature range from 40–160 °C in five steps. 

For a validation study of the PPRs given in section 2.1, not only vapour pressure data but 

also the corresponding boiling points (and melting points) are required. In order to maintain 
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the same information content for all seven PPRs, we restricted ourselves to those compounds 

where all needed properties are available. This resulted in a set of 375 organic chemicals from 

various chemical classes. A full list of the compounds and their pV, Tb, and Tm data is given in 

the Supplementary Material. 

2.3 Criteria 

To test the validity of the estimation equations, we introduce different criteria following 

closely an earlier publication [18]. As a basic criterion we introduce the mean square error 

(MSE). This quantity combines variance and the bias, see [28]. 

 K1 = MSE (9) 

However, the MSE is a highly aggregated criterion. Therefore we introduce additional 

criteria, which are more specifically related to the different types of errors. 

We consider specifically the number of deterministic “outliers”, NQ, as a basic quantity. 

NQ is defined as the number of compounds for which the quotient between the experimental 

(Pexp) and the estimated value (Pest) of the considered substance property P 

 FQ(P) = Pexp/Pest (10) 

deviates by a certain factor FQ  1. In this paper we consider those compounds as outliers for 

which FQ ≤ 0.1 or FQ ≥ 10, respectively, holds. (Note: P is used as symbol for any chemical 

property, whereas PPR is used, when a specific estimation method concerning a single prop-

erty is meant.) 

The number of outliers has to be related to the total number of compounds N, hence the 

second criterion is given by: 

 K2 = NQ/N (11) 

Further criteria are developed on the basis of the linear regression equation relating 

measured and estimated values. 

 Pexp = a  Pest + b (12) 

In general, both, Pest and Pexp are to be considered as stochastic quantities; therefore the 

regression analysis is performed following the geometric mean technique [29]. In order to get 

the criteria oriented in the same way (the better, the lower the value of the specific criterion) 

we set: 

 K3 = abs(1 - a) (13) 
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and 

 K4 = abs(b) (14) 

Criterion K1 is a screening criterion. It will turn out that the criterion K2 is related to the 

applicability and K3 and K4 are bias-related criteria. The set {K2, K3, K4} will be used simul-

taneously, i. e. we do not want to favour one of these three criteria over the others or to com-

bine them numerically, for example by weighted sums. 

We speak of Ki(PPRj) as the i
th

 criterion applied on the j
th

 PPR estimation equation. 

2.4 Partial order concept 

2.4.1 Motivation 

We introduced four criteria in order to examine the validity of the estimation equations. Expe-

riences show [18,25] that the criteria K2, K3, K4 are in general not highly correlated. There-

fore, it is meaningful to study them simultaneously. To perform the analysis in this way, the 

concept of partial order has proven to be suitable [30]. In the following the concept of partial 

order is briefly introduced. 

2.4.2 Basic definition 

Standard partial order 

We call a certain estimation equation (briefly written as PPR1) worse than another one (PPR2) 

if the following holds: 

 PPR1  PPR2:  [K2(PPR1),K3(PPR1),K4(PPR1)]   

 [K2(PPR2),K3(PPR2),K4(PPR2)] (15) 

The -relation between vectorial quantities is not defined a priori. Nevertheless, there are 

several possibilities for a meaningful definition, for example within the concept of majoriza-

tion [31-33]. Here one of the simplest is selected, given by eq. (16): 

 [K2(PPR1),K3(PPR1),K4(PPR1)]  [K2(PPR2),K3(PPR2),K4(PPR2)]:   

 K2(PPR1)  K2(PPR2) and K3(PPR1)  K3(PPR2) and K4(PPR1)  K4(PPR2) (16) 

Consider two tuples [1, 2, 3] and [3, 4, 3]. Then eq. (16) is fulfilled and hence – according 

to eq. (15) – we can write: [3, 4, 3]  [1, 2, 3]. Consider another pair of tuples: [1, 2, 5] and 

[3, 4, 1]. Then eq. (16) is not fulfilled and hence an order relation such as  cannot be valid 

between these two tuples. If eqs. (15) and (16) are not fulfilled, PPR1 and PPR2 are “incompa-

rable”. I. e. the definitions from eqs. (15) and (16) constitute a partial order. According to eqs. 
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(15) and (16) the partial order is defined as a pair (X, IB) where X is a set of objects (here the 

set of PPRs) and IB is the set of criteria, here {K2, K3, K4}. The set (X, IB) is called a partially 

ordered set (poset). 

Fuzzy partial order 

According to definitions in eqs. (15) and (16) an order relation is only possible if the -rela-

tion of the single components of the criteria vector is valid for all three criteria simultane-

ously. This requirement does not take care for slight numerical differences, which may be 

thought of as non-relevant. Therefore also fuzzy-concepts can be applied, which are explained 

in depth elsewhere [30,34]. Consider the two tuples [3, 4, 3] and [2.9, 5, 3]. Then the incom-

parability is caused by the slight numerical difference with respect to the first component of 

the tuple. The only problem is: Which difference is considered as relevant? Therefore a “tol-

erance parameter” cut is introduced. Low values of  mean that large differences in the 

numerical values are considered as irrelevant, whereas for values of cut  1 only very small 

numerical differences will be thought of as being irrelevant and hence the values are equiva-

lent. Research is still going on, how an optimal value of cut can be defined. In this paper that 

poset will be selected that is informative enough. 

Further definitions concerning partial order 

Maximal elements: Elements x for which no other element y  X can be found with y ≥ x 

Minimal elements: Elements x for which no other element y  X can be found with y  x 

Cover relation: let x  z and z  y then it follows by the transitivity axiom that x  y. Pairs 

of objects x, y which are comparable and for which no object z can be found for which x < z 

and z < y are following a cover relation, denoted by “:”. In case of x  y, x is “covered by” 

y, or y “is covering” x. 

Hasse diagram: Objects are related to each other by cover relations. By cover relations a 

visualization of the partial order set is possible. Often this type of diagrammatical representa-

tion is called “Hasse diagram” [35]. In general, objects x, y for which x > y is valid are drawn 

with x in a vertical higher position than y. 

2.5 Structural elements 

In order to better analyse the applicability domain of a given PPR we have introduced struc-

tural elements Si, which characterize the chemical features of an organic compound. The 15 

structural elements have been chosen to fit our needs, i. e. the description of environmentally 

relevant organic chemicals and their physicochemical properties [18]. However, additional or 
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other types of structural elements could be applied depending on the composition of a specific 

data set or a different property/activity, for example. Here the use of dictionaries of chemical 

structures as developed in chemoinformatics could be helpful [36]. 

The 15 structural elements used here are shown in Table 1 together with some examples of 

organic compounds, which bear the given structural element. Basically, the concept of intro-

ducing s structural elements allows to discuss chemical classes with different degree of 

refinement, namely s not-necessarily disjoint sets of compounds to 2
s
 - 1 necessarily disjoint 

classes. 

Table 1. Definition of structural elements Si 

No. Structural element Si Examples 

(compounds that bear the corresponding structural element) 

1 Aromatic Benzene, naphthalene, biphenyl 

2 Nonaromatic cyclic Cyclohexane 

3 Nonaromatic C=C Butadiene 

4 Nonaromatic CC Acetylene 

5 Halogen substitution Bromobenzene, chloroform 

6 N-O function Nitrobenzene 

7 C=N or CN Benzonitrile 

8 NR3 Aniline, trimethylamine 

9 C=O function Acetone, acetic acid 

10 OH function Ethanol, phenol 

11 Phosphororganic Triethylphosphate 

12 Sulfurorganic Thiophene 

13 Topological genus  

(more than one ring) 

Biphenyl, camphene 

14 Heterocyclic Atrazine 

15 R-O-R function Diethylether, methyl benzoate 

 

The compounds may then be easily characterized by tuples of digits indicating the pres-

ence (“1”) or non-presence (“0”) of the corresponding structural element. Chlorobenzene, for 

example, is a halogenated aromatic chemical; thus S1 and S5 are present and the tuple reads 

[1,0,0,0,1,0,0,0,0,0,0,0,0,0,0]. Obviously, the presence of a certain structural elements does 

not imply the absence of other structural elements. Further examples have been given else-

where [18]. Using these tuples, distinct subsets of larger data set can easily be created and 

characterized. 

Our idea can now be explained more precisely: We want to validate nonlinear estimation 

methods with classes as large as possible, taking into account that probably some structure 

dependencies must be acknowledged. 
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3 Results and Discussion 

3.1 Accuracy 

3.1.1 Measured vs. calculated data 

Figure 2 shows the estimation results from the 7 PPRs by comparing experimental and calcu-

lated vapour pressures of the whole data set of 375 compounds. By simple optical inspection 

one can see that the estimation error for MC, FV1, FV2, and AU2 is relatively small and con-

stant over the entire vapour pressure range. These four PPRs seem to yield the best overall 

results, whereas the results obtained from AU1 seem to be the worst. The PPRs AN and WA 

tend to underestimate the vapour pressure in particular at low values, whereas AU1 overesti-

mates at low values. There are also a couple of chemicals with poor estimation results inde-

pendent of the PPR used. 
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Figure 2. Calculated versus measured 

vapour pressures for the seven PPRs. 

 

 

 

A decision about the “best” PPR from these figures only is not reasonable. To discuss 

these differences further, the criteria defined in section 2.3 have been calculated and will be 

analysed using the partial order concept described in section 2.4. 

3.1.2 Accuracy with respect to the criteria 

Results with respect to any single criterion K1 – K4 

The four criteria describing the validity of the seven PPRs are summarized in Table 2. The 

values are rounded to three decimals. 

With respect to K1 we find the following order among the estimation equations: 

 K1: FV1 < FV2 < MC < AU2 < AN < WA < AU1 #1 
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Table 2: The four criteria of the seven PPRs (for definition see section 2.3). 

PPR K1 K2 K3 K4 

AU1 0.668 0.128 0.297 0.923 

AU2 0.363 0.083 0.023 0.266 

AN 0.388 0.080 0.074 0.154 

MC 0.361 0.061 0.046 0.263 

FV1 0.279 0.056 0.033 0.099 

FV2 0.289 0.053 0.015 0.105 

WA 0.652 0.120 0.128 0.201 

 

This sequence altogether confirms the optical inspection of the measured vs. calculated 

data from Figure 2, and provides a deeper insight into the comparison of the PPRs. Based on 

the MSE-criterion K1 (see section 2.3) FV1 is the best and AU1 the worst estimation equa-

tion. We further observe that FV1 < FV2 and AU2 < AN. However, the reason for a high 

position of a PPR in the sequence #1 is not obvious. Is MC for example worse than FV2 

because of the bias or because of its scatter of values? The analysis of the criteria K2-K4 is 

helpful in this respect. 

With respect to K2 we find the following sequence: 

 K2: FV2 < FV1 < MC < AN < AU2 < WA < AU1 #2 

This sequence differs from that obtained from K1. The order of the pairs FV1 and FV2 as 

well as of AU2 and AN are reversed comparing the results of K1 and K2, respectively. 

As can be seen in the sequences #3 and #4, which result from the criteria K3 and K4, 

respectively, there are many inversions of the orders, indicating that the medium to poor val-

idation results as found by sequence #1 have different reasons. 

 K3: FV2 < AU2 < FV1 < MC < AN < WA < AU1 #3 

 K4: FV1 < FV2 < AN < WA < MC < AU2 < AU1 #4 

For all criteria the PPR AU1 is always the worst, whereas FV2 is the best estimation 

equation in two of the three sequences #2-#4, and second best in the other two. In general, 

however, it is difficult to decide on an order among the PPRs considering all three criteria K2, 

K3, and K4 simultaneously. 

Results from applying partial order theory 

Based on the three criteria K2, K3, and K4 applied on seven PPRs and the set of 375 com-

pounds an evaluation matrix is derived, whose rows are related to the seven PPRs and whose 

columns are numerical values referring to K2, K3, and K4. 
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The correlation matrix (see Table 3) shows that there is no perfect correlation and hence 

partial order concepts come into play. 

Table 3: Pearson correlation index of the four criteria. 

 K3 K4 

K2 0.857 0.704 

K3  0.912 

 

Application of partial order, eqs. (15) and (16), leads to a Hasse diagram shown in Figure 

3. 

 

Figure 3: Hasse diagram based on the criteria K2, K3, and K4. 

A number of conclusions can be drawn by analyzing this Hasse diagram: 

 FV1 and FV2 are minimal elements. Inspection of the three criteria (Table 2) shows 

that FV1 is better than FV2 in only K4, whereas FV2 is (slightly) better than FV1 in K2 

and K3. 

 With respect to all three criteria AU1 is the worst estimation equation. 

 The PPRs AU2, MC, and WA are found in the middle range of the Hasse diagram, i. e. 

there are some PPRs which are better and some others which are worse in all three cri-

teria. 

 According to the three criteria K2, K3, and K4 possible sequences can be found: for ex-

ample FV1 < AN < WA < AU1 (the longest sequence) or FV2 < AU2 < AU1 (a shorter 

one). In the terminology of partial order theory these subsets, where each object (each 
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PPR) is comparable to each other, are called chains. Identification of chains provides 

important information: The values of all criteria are simultaneously (weakly) increas-

ing, when starting at the bottom and progressing up to the top along a chain. 

 AU2 is the estimation equation with the highest degree of incomparabilities. For exam-

ple FV1 can be compared with almost all other estimation equations, FV2 being the 

only exception. AU2 can only be compared with two other estimation methods, namely 

AU1 and FV2. 

 WA cannot be compared with MC. Although both coincide with respect to the model-

ling of HV(Tb) (both: Kistiakowski-approach), they differ in the description of the 

temperature dependency: WA follows the Watson approach, whereas MC is a linear 

approximation of HV(T), introducing the parameter K. 

 AU2 could be drawn at the same horizontal level as AN without violating the laws of 

partial order. Nevertheless the simple method AU2 cannot be compared with AN. 

Although the Antoine equation has three adjustable parameters, but AU2 only two, the 

two PPRs are not comparable: There is only a slight numerical difference in K2, but 

with respect to K3 and K4 it is found: K3: AN > AU2 and K4: AN < AU2. Bias and 

scatter lead to the incomparability between AN and AU2. 

3.2 Applicability Domain 

3.2.1 Outliers with respect to the structural elements 

Figure 4 shows the distribution of the 15 structural elements in the data set of 375 com-

pounds. Aromatic (S1), halogen substitution (S5), and hydroxy-groups (S10) are well, whereas 

phosphororganic chemicals (S11) and triple bonds (S4) are only poorly represented in the data 

set. Due to the fact that some Si are not well represented in the data set and since we want to 

get statistically robust results, we retain only those Si whose representation exceeds the 

median of the Ni-distribution, i. e. 36. Thus eight structural elements remain. 

For all seven PPRs the number of outliers (as defined in eq. (10)) are shown in Table 4 for 

each of the eight structural elements. We call the number of outliers referring to the j
th

 struc-

tural element of the i
th

 PPR NQ
(i)

(Sj). 

In Table 5 some striking observations, which can be deduced from Table 4, are summa-

rized. 
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Figure 4: Distribution of the structural elements within the data set. 

Table 4: Absolute number of outliers NQ
(i)

(Sj) of the seven PPRs with respect to the 

remaining eight structural elements Sj. 

Sj Nj                             NQ
(i)

(Sj) 

  AU1 AU2 AN MC FV1 FV2 WA 

S1 172 30 11 17 8 8 8 27 

S3 36 2 0 0 0 0 0 1 

S5 80 6 3 1 2 2 2 3 

S8 45 5 6 6 6 6 7 7 

S9 73 6 3 2 3 3 3 6 

S10 102 22 20 12 15 13 12 15 

S13 38 19 6 14 4 5 4 17 

S15 52 4 3 0 1 1 1 6 

 

Table 5: Best and worst PPR with respect to the structural elements. 

Si structural element best PPR worst PPR 

S1 aromatic MC, FV1, FV2 AU1 

S3 C=C AU2, AN, MC, FV1, FV2 AU1 

S5 halogens AN AU1 

S8 NR3 AU1 FV2, WA 

S9 C=O AN AU1, WA 

S10 OH AN, FV2 AU1 

S13 topological genus MC, FV2 AU1 

S15 R-O-R AN WA 
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The number of outliers of the i
th

 PPR with respect to the j
th

 structural element Sj as shown 

in Table 5 is misleading because the number of compounds bearing the structural element Sj 

is strongly varying. Therefore, it is convenient to introduce the quantity adij in order to get 

results independent of the realisation for each structural element. 

 adij = 1 - NQ
(i)

(Sj)/Nj (17) 

Obviously, the less the relative number of outliers, the better the corresponding i
th

 PPR. 

The ad-matrix is given in Table 6. 

Table 6: The adij-values of the seven PPRs and the eight Si. 

Si AU1 AU2 AN MC FV1 FV2 WA 

S1 0.826 0.936 0.901 0.953 0.953 0.953 0.843 

S3 0.944 1 1 1 1 1 0.972 

S5 0.925 0.963 0.988 0.975 0.975 0.975 0.963 

S8 0.889 0.867 0.867 0.867 0.867 0.844 0.844 

S9 0.918 0.959 0.973 0.959 0.959 0.959 0.918 

S10 0.784 0.804 0.882 0.853 0.873 0.882 0.853 

S13 0.5 0.842 0.632 0.895 0.868 0.895 0.553 

S15 0.923 0.942 1 0.981 0.981 0.981 0.885 

 

S3 differentiates the seven PPRs in only three values. Interestingly, S13 differentiates 

strongly, namely by six different values, i. e. almost each PPR has its own value. 

The well-known amoeba diagrams can help visualizing the differences between two PPRs 

with respect to their applicability domain. In Figure 5 such an amoeba diagram is shown, 

which compares the two estimation equations FV1 and FV2. As can be seen, it cannot be 

stated that FV1 has less outliers than FV2 nor that FV1 has generally more outliers than FV2. 

Additionally, FV1 and FV2 behave differently with respect to the structural elements. 

Whereas for the topological genius adFV2,topol > adFV1,topol, holds, the situation is reversed with 

respect to the structural element NR3, i. e. adFV2,NR3 < adFV1,NR3 holds in this case. In other 

words, FV1 and FV2 are not only incomparable with respect to the accuracy criteria K2-K4, 

but also with respect to their applicability domain. 

The seven estimation equations will lead to 21 pairwise amoeba diagrams or to one 

amoeba diagram with seven lines, which are close to each other. Such a figure with 7 lines or 

a set of 21 pairwise amoeba diagrams is certainly not suitable for a general analysis. Instead 

once again concepts of partial order are applied. 
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Figure 5: Amoeba diagram for the comparison of FV1 (full line) and FV2 (dashed line) due 

to the adij-values from Table 6. 

3.2.2 Fuzzy partial order 

The ad-matrix is the basis for the partial order analysis. The seven PPRs are now character-

ized by the adij-values. The larger the value the better the results obtained by the correspond-

ing PPR. Examination of Table 6 shows that the numerical differences can be very small. 

Therefore the concept of fuzzy posets is applied (cf. sect. 2.4.2). As we are interested in veri-

fying strong differences in ad-values, the tolerance parameter cut was selected in that way 

that at least six equivalence classes are found, which is more than 75% of all PPRs. Figure 6 

shows a Hasse diagram, whose construction is based on concepts of fuzzy theory. 

The Hasse diagram from Figure 6 shows two striking aspects. A chain can be found with 

WA as worst, FV2 as middle ranged and MC and FV1 as relatively best PPRs. There are two 

maximal elements (MC  FV1 and AN) and one isolated element (AU1). In Table 7 we con-

sider all possibly incomparable PPRs due to the Hasse diagram in Figure 6, such as AU1 and 

AN, or AU2 and FV1 and identify the structural elements by which a PPR is favoured over 

the other one. 

As can be expected from Table 6, AU1 with its bad value with respect to S13 and its pretty 

good value with respect to S8 is isolated. With respect to WA, only S8 and S13 lead to the ob-
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served incomparability. AN is better than FV1, FV2, and MC with respect to the structural 

elements S5, S9, and S15. In some cases S9 and S10 favour AN. For three pairs of PPRs, namely 

(AN, FV1), (AU2, AN), and (AN, MC), the structural elements S3 and S8 do not differentiate 

among the PPRs. Taken S3 alone, five PPRs are not differentiated among each other. 

 

Figure 6: Hasse diagram of seven PPRs based on ad-values and generated by applying fuzzy 

concepts with cut = 0.95. “Good” PPRs are here at the top of the diagram in contrast to 

Figure 3, where deviations from best values are the basis. 

Table 7: Comparison of PPRs with respect to certain structural elements (those structural 

elements are shown, for which the PPRs show better or equal results than others) 

PPR1 PPR2 Si: PPR1 > PPR2 Si: PPR1 = PPR2 Si: PPR1 < PPR2 

AU1 AU2, AN, FV1, 

FV2, MC 

8 - 1, 3, 5, 9, 10, 13, 15 

AU1 WA 8, 15 - 1, 3, 5, 9, 10, 13 

AU2 AN 1, 13 3, 8 5, 9, 10, 15 

AU2 FV2 8 3, 9 1, 5, 10, 13, 15 

AU2 WA 1, 3, 8, 9, 13, 15 5 10 

AN FV1 5, 9, 10, 15 3, 8 1, 13 

AN FV2 5, 8, 9, 15 3, 10 1, 13 

AN MC 5, 9, 10, 15 3, 8 1, 13 

 
A closer examination of Table 7 shows: 

  S1 and S13 are causing a preference of {FV1, FV2, MC} compared to the remaining 

PPRs. 

 WA > AU1 and WA > AU2: in both cases S10 is causing this preference. 

WA < AU1 and WA < AU2: in both cases S8 and S15 are causing this preference. 
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 AN is incomparable with five PPRs, namely AU1, AU2, FV2, and MC, and FV1: 

adAN,3 = 1, therefore AN is better than WA and AU1. 

 AU2 (as one of the minimal elements) can only be compared with MC and FV1, i. e. 

AU2 is in all eight structural elements worse than MC and FV1. However, AU2 cannot 

be compared with AU1, FV2, WA, and AN. This incomparability is caused by a pretty 

complex pattern of structural elements. Details can be deduced from Table 6. 

4 Discussion 

4.1 Our methods compared to others 

Validation concepts have been described before (see for instance [2,37,38]). However, they 

often concentrate on the accuracy aspects of the validation, such as division of the data set 

into training and test sets and cross-validation procedures. These methods are well established 

and do not need any reinvestigation. Compared to these aspects, besides of the Williams plot 

[37] and the use of leverage values (known in regression analysis as ‘influence statistics’ (hat 

matrix) [39]), methods to evaluate the applicability domain of estimation methods are not in 

broad use. 

We have chosen the vapour pressure as example for a chemical property to be estimated. 

Our chosen set of seven estimation methods is sufficiently large enough to introduce our 

methodological approach. The advantage of this selection is given by its simplicity and the 

availability of a data set with adequate chemical diversity. A complete analysis of a broader 

set of estimation methods for vapour pressures must be subject to additional studies. 

4.2 Summary of results 

Seven PPRs are identified to estimate the vapour pressure from other macroscopic properties. 

By simultaneous evaluation of three accuracy criteria, we obtained a Hasse diagram (see Fig-

ure 3) where the Fishtine/Vetere equations FV1 and FV2 turned out to be the relative best 

ones, whereas the simple method AU1 is the worst one. These results do not take into account 

that different PPRs may turn out to be better applicable, when specific substance sets (of spe-

cific chemical classes) are selected. Here we finally investigated eight substance subsets with 

respect to one criterion (number of outliers, K2). Each of these sets is characterized by the 

presence of one of the eight most relevant structural elements for all substances. Checking the 

ad-matrix for each PPR and substance subset (see Figure 6) the relative best PPRs are MC and 

FV1 and AN. Even for the overall worst PPR AU1 the analysis by fuzzy partial order set the-
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ory has shown that there is one structural element (S8), for which AU1 is better than all other 

PPRs. Although the PPR AN is a maximal element, i. e. yielding good results with respect to 

the ad-matrix, it is incomparable with FV1 and MC. The structural elements S5, S9, S10, and 

S15 favour AN over FV1 and MC, whereas S1 and S13 favour FV1 and MC over AN. 

The concept of validation of estimation methods by checking the accuracy first and then 

identifying those substance subsets with low number of outliers might be summarized by a 

general evaluation procedure, which is shown (and proposed for general application in the 

field of QSAR) in the next section. 

4.3 Summary of the evaluation procedure 

In Figure 7 the procedure to check the accuracy and applicability of PPRs is shown in general 

terms. Following the flow chart shown in Figure 7 the analysis includes (i) selecting suitable 

estimation methods, (ii) applying suitable accuracy criteria to find the relatively best PPRs, 

(iii) describing the chemical diversity by structural elements, and (iv) applying (fuzzy) partial 

order to identify the applicability domain. 

 

Figure 7: Procedure to evaluate property-property estimation methods. 
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4.4 Conclusion 

We started with seven vapour pressure estimation equations and 15 structural elements. 

According to the accuracy criteria defined here, the Fishtine/Vetere equations FV1 and FV2 

were optimal (i. e. yielded the best overall estimation results), whereas the empirical equation 

AU1 is the least element in partial order and is not recommendable. However, the inclusion of 

structural elements can change this result. In order to obtain statistical robust results the set of 

structural elements was reduced to eight. Here the representation by our basis set of 375 sub-

stances was sufficiently satisfying. Application of the ad-matrix relates the outliers to the 

eight remaining structural elements. Because the numerical differences were too small, we 

applied fuzzy partial order. Now the optimal estimation equations are AN, MC1, FV1, and 

AU1. The inclusion of structural elements, i. e. the applicability aspect, justified the simple 

August-equation (AU1) as an equation suitable for specific substance classes. 
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6 Supplementary Material 

A list with the experimental vapour pressures as well as the boiling and melting temperatures 

of the 375 compounds is available from the corresponding author. 
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