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Abstract

The matching energy of a graph is defined as the sum of the absolute values of
the zeros of its matching polynomial. Let Gn,m be the set of connected graphs of
order n and with m edges. In this note we determined the extremal graphs from
Gn,m with n ≤ m ≤ 2n−4 minimizing the matching energy. Also we determined the
minimal matching energy of graphs from Gn,m where m = n−1+t and 1 ≤ t ≤ β−1
and with a given matching number β. Moreover, the above extremal graphs have
been completely characterized.

1 Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let G be

a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). The cardinality of

E(G) is usually denoted by m(G). The degree of vi ∈ V (G), denoted by dG(vi) or di
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for short, is the number of vertices in G adjacent to vi. In particular, ∆(G) denotes the

maximum degree of vertices in G, and ∆2(G) is the second maximum degree of vertices

in G. For each vi ∈ V (G) , the set of neighbors of the vertex v is denoted by NG(vi). For

a subset W of V (G), let G −W be the subgraph of G obtained by deleting the vertices

of W and the edges incident with them. Similarly, for a subset E ′ of E(G), we denote

by G − E ′ the subgraph of G obtained by deleting the edges of E ′. If W = {v} and

E ′ = {xy}, the subgraphs G −W and G − E ′ will be written as G − v and G − xy for

short, respectively. For any two nonadjacent vertices x and y of graph G, we let G+xy be

the graph obtained from G by adding an edge xy. In the following we always denote by

Sn the star graph of order n, and by Kn the complete graph of order n. Other undefined

notations and terminology on the graph theory can be found in [1].

For any graph G with edge set E(G), if any two edges of e1, e2, . . . , ek ∈ E(G) have no

common vertices, we say that {e1, e2, . . . , ek} is a k-matching of graph G. Moreover, we

denote by m(G, k) the number of k-matchings in G. In particular, m(G, 1) = m(G) and

m(G, k) = 0 when k > n
2
for any graph G of order n. For the sake of convenience, we set

m(G, 0) = 1 for any graph G. Recall that the Hosoya index z(G) [16] of a graph G is the

sum of total number of all matchings, including the empty edge subset, in G. Thus, for

a graph G of order n, we have

z(G) =

[n
2
]∑

k=0

m(G, k) .

For some details of the results on the Hosoya index, please refer to [22–24, 26, 28, 29].

The matching polynomial of a graph G of order n is defined as

α(G, λ) =
∑
k≥0

(−1)km(G, k)λn−2k . (1)

Moreover, the theory of matching polynomial of a graph G is well elaborated in [3, 9,

10,14]. From the expression of matching polynomial (1) of graph G, a quasi-order on the

set of graphs of order n can be deduced as follows:

G � H ⇐⇒ m(G, k) ≥ m(H, k) for k = 1, 2, . . . ,
⌊n
2

⌋
.

If G � H and there exists at least one integer k such that m(G, k) > m(H, k), then we

write G ≻ H .
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Let λ1, λ2, . . . , λn be the eigenvalues of a graph G, i.e., the eigenvalues of its (0, 1)-

adjacency matrix [4]. The energy of the garph G is defined as

ε(G) =
n∑

i=1

|λi| .

Nowadays the theory of energy of graphs have been well developed. Some details on the

energy of graphs can be found in the book [21].

Recently Gutamn and Wagner [15] have first introduced the definition of matching

energy of a graph G as follows:

ME(G) =

∫ +∞

0

1

x2
ln

[∑
k≥0

m(G, k)x2k

]
dx . (2)

Also in [15] they pointed out that, for any forest G, its matching energy coincides its

energy, and the following formula:

ME(G) =

n∑
k=1

µi , (3)

where µ1, µ2, . . . , µn are the zeros of matching polynomial of graph G. Very recently

the matching energy has attracted the attention of some researchers. Ji, Li and Shi [19]

determined the extremal matching energies of all bicyclic graphs of order n. Li and Yan

[20] characterized the maximal matching energy of some graphs with given parameters,

including chromatic number and connectivity. The maximal matching energy of tricyclic

graphs of order n have been determined in [2].

From Formula (2) and the monotony of the function logarithm, the following two

relations between the quasi-order defined as above and the matching energy, Hosoya

index, respectively, can be deduced [15]:

G � H =⇒ ME(G) ≥ ME(H) , (4)

G � H =⇒ z(G) ≥ z(H) . (5)

Let Gn,m be the set of connected graphs of order n and withm edges. Denote by Gn,m(β)

the set of connected graph from Gn,m and with matching number β where 2 ≤ β ≤ ⌊m
2
⌋.

In this note we characterized the extremal graphs from Gn,m where n + 1 ≤ m ≤ 2n− 3

minimizing the matching energy. Moreover, we determined the extremal graph from

Gn,n−1+t(β) (where 1 ≤ t ≤ β − 1) minimizing the matching energy.
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2 Some lemmas

Before stating our main results, we will list or prove some lemmas as preliminaries, which

will play an important role in the next proofs.

Lemma 2.1. ( [9, 14]) For any graph G with vq ∈ V (G) and e = vivj ∈ E(G), we have

(i) m(G, k) = m(G− e, k) +m(G− {vi, vj}, k − 1);

(ii) m(G, k) = m(G− vq, k) +
∑

vr∈NG(vq)

m(G− vq − vr, k − 1).

Lemma 2.2. ( [15]) Let G be a graph with e ∈ E(G). Then we have

ME(G− e) < ME(G).

Recall that the first Zagreb index of a graph G is defined ( [12, 13]) as M1(G) =∑
vi∈V (G)

d2i . Some results of first Zagreb index can be seen in [5–7,25]. For convenience, we

let
(
a
b

)
= 0 for two positive integers a and b with a < b.

Lemma 2.3. ( [15]) For any connected graph G with m edges, we have

m(G, 2) =

(
m

2

)
+m− 1

2
M1(G) .

Proof. Note that
(
1
2

)
= 0 for any pendent vertex vp in the graph G. From the result

in [15], we have

m(G, 2) =

(
m

2

)
−

∑
vi∈V (G)

(
di
2

)

=

(
m

2

)
− 1

2

∑
vi∈V (G)

d2i +
1

2

∑
vi∈V (G)

di

=

(
m

2

)
+m− 1

2
M1(G) .

For any integer m satisfying n+1 ≤ m ≤ 2n− 4, we denote by Gn,m a graph of order

n and with m edges in which maximum degree is n− 1 and the second maximum degree

is m − n + 2. The structure of graph Gn,m can be seen in Fig. 1. Moreover, a graph

G
′

n,n+2 is shown in Fig. 2.
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Figure 1: The graph Gn,m

Figure 2: The graph G′
n,n+2 in Gn,n+2

Lemma 2.4. ( [7, 27]) For any graph G ∈ Gn,m with n+ 1 ≤ m ≤ 2n− 4, we have

M1(G) ≤ n(n− 1) + (m− n+ 1)(m− n+ 6)

with equality holding if and only if G ∼= Gn,m for m = n+ 1 or n+ 3 ≤ m ≤ 2n− 4; and

G ∼= Gn,m or G′
n, n+2 for m = n+ 2.

3 Main results

In [15] the extremal (n, n)-graph maximizing the matching energy has been determined,

which is just S+
n obtained by adding a new edge in a star Sn. In the next theorem we

determine the extremal graph from Gn,m with n+1 ≤ m ≤ 2n−3 maximizing the matching

energy, which can be viewed as a more general one of the above result for (n, n)-graphs.
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Theorem 3.1. For any graph G ∈ Gn,m with n+ 1 ≤ m ≤ 2n− 4, we have

ME(G) ≥ 2

√m+
√

m2 − 4(m− n + 1)(n− 3)

2

+

√
m−

√
m2 − 4(m− n+ 1)(n− 3)

2


with equality holding if and only if G ∼= Gn,m for n+ 3 ≤ m ≤ 2n− 4 or m = n+ 1; and

G ∼= Gn,m or G′
n, n+2 for m = n+ 2.

Proof. For any graph G ∈ Gn,m, we have m(G, 0) = 1 = m(Gn,m, 0), m(G, 1) = m =

m(Gn,m, 1) and m(G, k) ≥ 0 = m(Gn,m, k) for k ≥ 3. Next we should prove that, for any

graph G ∈ Gn,m,

m(G, 2) ≥ m(Gn,m, 2) (6)

for n+ 3 ≤ m ≤ 2n− 4 or m = n+ 1, and

m(G, 2) ≥ m(Gn,m, 2) = m(G
′

n,n+2, 2) (7)

for m = n + 2.

By Lemmas 2.3 and 2.4, Eq.s (6) and (7) hold immediately.

Now the only task for proving this theorem is to compute the value of ME(Gn,m) for

n+ 1 ≤ m ≤ 2n− 3 and ME(G
′

n,n+2). Thanks to Lemmas 2.3 and 2.4, again, we have

m(Gn,m, 2) =

(
m

2

)
+m− 1

2
[n(n− 1) + (m− n + 1)(m− n+ 6)]

= (m− n+ 1)(n− 3) .

Then the matching polynomial of Gn,m is

α(Gn,m, λ) = λn −mλn−2 + (m− n + 1)(n− 3)λn−4.

Thus the non-zero roots of α(Gn,m, λ) are

√
m+

√
m2−4(m−n+1)(n−3)

2
with twice and√

m−
√

m2−4(m−n+1)(n−3)

2
with twice. Therefore our result in this theorem follows.

From Theorem 3.1, the following corollary can be easily deduced.

Corollary 3.2. ( [19]) Let G be an (n, n+ 1)-graph. Then we have

ME(G) ≥ 2

√n + 1 +
√
n2 − 6n+ 25

2
+

√
n + 1−

√
n2 − 6n+ 25

2


with equality holding if and only if G ∼= Gn, n+1.

-98-



Based on the relation (5), by a very similar reasoning as that in the proof of Theorem

3.1, the following corollary is straightforward.

Corollary 3.3. ( [8, 22]) For any graph G ∈ Gn,m with n+ 2 ≤ m ≤ 2n− 4, we have

z(G) ≥ m(n− 2)− (n− 1)(n− 3) + 1

with equality holding if and only if G ∼= Gn,m for n + 3 ≤ m ≤ 2n− 4; and G ∼= Gn,m or

G′
n, n+2 for m = n+ 2.

After obtaining the result in Theorem 3.1, we naturally ask the following problem: if

matching number of graphs from Gn,m are given, what are the extremal graphs maximizing

the matching energy under this condition? Equivalently, which graph has the maximal

matching energy among all graphs from Gn,m(β)?

Figure 3: The graph Ft(n, β)

Before dealing with this problem, we first introduce some notations. Recall that

friendship graph Fk is a graph of order 2k + 1 obtained from k triangles intersecting in

a single vertex. An edge e in Fk is called linking edge if e is incident with the vertex

of degree 2k + 1 in it. Denote by Ft(n, β) (see Fig. 3) a graph obtained by attaching

n− 2β + 1 pendent edges and β − t − 1 paths of length 2 to the vertex of degree 2t + 1

in Ft. Clearly, we have Ft(n, β) ∈ Gn,n−1+t(β) with 1 ≤ t ≤ β − 1. A vertex v of a tree

T is called a branching point if d(v) ≥ 3. Let Tn(n1, n2, . . . , nm) be the tree of order n

obtained by inserting, respectively, n1 − 1, . . . , nm − 1 vertices into the m edges of the

star Sm+1, where n1 + . . . + nm = n − 1. For convenience, when considering the trees

Tn(n1, n2, . . . nk, . . . , nm) we use the symbols nlk
k to indicate that the number of nk is

lk > 1 in the following. For example, T16(2, 2, 3, 3, 5) will be written as T16(2
2, 32, 5).
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Lemma 3.4. ( [18]) Let T be a tree of order n and with matching number β. Then

m(T, k) ≥ m(Tn(2
β−1, 1n−2β+1), k) for k = 0, 1, . . . , β

with all equalities holding if and only if T ∼= Tn(2
β−1, 1n−2β+1).

From the definition of quasi-order introduced in Section 1 and Formula (4), the fol-

lowing corollaries can be obtained immediately.

Corollary 3.5. For any tree T ∈ Gn,n−1(β), we have

ME(T ) ≥ ME(Tn(2
β−1, 1n−2β+1))

with equality holding if and only if T ∼= Tn(2
β−1, 1n−2β+1).

Corollary 3.6. Let G be a graph of order n and with matching number β. Then we have

m(G, k) ≥ m(βK2 ∪ (n− 2β)K1, k) for k = 0, 1, . . . , β

with all equalities holding if and only if T ∼= βK2 ∪ (n− 2β)K1.

In the following we will prove a generalized result of Lemma 3.4.

Theorem 3.7. For any graph G ∈ Gn,n−1+t(β) with 1 ≤ t ≤ β − 1, we have ME(G) ≥
ME(Ft(n, β)) with equality holding if and only if G ∼= Ft(n, β).

Proof. We prove this result by induction on t. Firstly we deal with the case when t = 1.

From the definition of the set Gn,n−1+t(β), we find that, for any graph G ∈ Gn,n−1+t(β)

with t = 1, there exists an edge e = vivj in a unique cycle of G such that e /∈ M where

M is a maximum matching of G. Note that G − e ∈ Gn,n−1(β) and G − {vi, vj} is with

matching number β − 2. In view of Lemma 2.1, for k = 0, 1, 2 . . . , β, we have

m(G, k) = m(G− e, k) +m(G− {vi, vj}, k − 1)

≥ m(Tn(2
β−1, 1n−2β+1), k) +m((β − 2)K2 ∪ (n− 2β + 2)K1, k − 1)

by Lemma 3.4 and Corollary 3.6.

Similarly, by choosing e = v′iv
′
j as an edge in the triangle incident with the vertex of

maximum degree in F1(n, β), for k = 0, 1, 2 . . . , β, we have

m(F1(n, β), k) = m(F1(n, β)− e, k) +m(F1(n, β)− {v′i, v′j}, k − 1)

= m(Tn(2
β−1, 1n−2β+1), k) +m((β − 2)K2 ∪ (n− 2β + 2)K1, k − 1).
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By the definition of quasi-order, we have G � F1(n, β) for any graph G ∈ Gn,n(β) with

equality holding if and only if G ∼= F1(n, β). Thanks to Formula (4), again, our result

holds for t = 1.

Assume that our result holds for any graph G ∈ Gn,n−1+k(β) with k fewer than t ≤
β − 1. For any graph G ∈ Gn,n−1+t(β) with M as its β-matching, we choose an edge

e = vivj ∈ E(G) in a cycle of G but not in M . By Lemma 2.1, Corollary 3.6 and

induction hypothesis, for k = 0, 1, 2 . . . , β, we have

m(G, k) = m(G− e, k) +m(G− {vi, vj}, k − 1)

≥ m(Ft−1(n, β), k) +m((β − 2)K2 ∪ (n− 2β + 2)K1, k − 1)

since G− e ∈ Gn,n−2+t(β)

= m(Ft(n, β)− e′, k) +m(Ft(n, β)− {v′i, v′j}, k − 1)

where e′ = v′iv
′
j ∈ E(Ft(n, β)) is a linking egde of Ft in it

= m(Ft(n, β), k).

Moreover, the above equality holds if and only if G− vivj ∼= Ft−1(n, β) and G−{vi, vj} ∼=
(β − 2)K2 ∪ (n− 2β + 2)K1, that is, G ∼= Ft(n, β). Therefore our result holds for k = t,

finishing the proof of this theorem.

In view of the definition of Hosoya index and an efficient tool [11] to it: z(G) =

z(G−vivj)+ z(G−{vi, vj}), we can obtain z(Tn(2
β−1, 1n−2β+1)) = 2β−2(2n−3m+3) [17]

(by induction on β) and

z(Ft(n, β)) = z(Ft(n, β)− vivj) + z(G− {vi, vj})

where e = vivj is a linking egde of Ft in Ft(n, β)

= z(Ft−1(n, β)) + z((β − 2)K2 ∪ (n− 2β + 2)K1)

= z(Ft−1(n, β)− vkvj) + z(G− {vk, vj}) + 2β−2

where e = vkvj is a linking egde of Ft in Ft−1(n, β)

= z(Ft−2(n, β)) + z((β − 2)K2 ∪ (n− 2β + 2)K1) + 2β−2

= z(Ft−2(n, β)) + 2× 2β−2

· · · · · ·

= z(Tn(2
β−1, 1n−2β+1)) + t2β−2
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= 2β−2(2n− 3m+ 3) + t2β−2

= 2β−2(2n− 3m+ t+ 3)

Based on Lemma 2.3 and quasi-order with Formula (4), respectively, the following tow

corollaries can be deduced immediately.

Corollary 3.8. Let 1 ≤ t ≤ β − 1 be a integer and G ∈ Gn,n−1+t(β). Then we have

M1(G) ≤ (n− β + t)2 + 3(β + t) + n− 4

with equality holding if and only if G ∼= Ft(n, β).

Corollary 3.9. Let 1 ≤ t ≤ β − 1 be a integer and G ∈ Gn,n−1+t(β). Then we have

z(G) ≥ 2β−2(2n− 3m+ t+ 3)

with equality holding if and only if G ∼= Ft(n, β).

By now we have completely determined the extremal graphs from Gn,m with n ≤ m ≤
2n− 4 and Gn,n−1+t(β) with 1 ≤ t ≤ β − 1, respectively, minimizing the matching energy.

Naturally we will ask: what graphs from these two sets have the maximal matching energy,

respectively? Furthermore, how about this problem when only limiting the order n and

matching number β for the connected graphs? These problems are unknown to us, maybe

they will be our research task in the future.
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[13] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular

orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.

[14] I. Gutman, The matching polynomial, MATCH Commun. Math. Comput. Chem. 6

(1979) 75–91.

[15] I. Gutman, S. Wagner, The matching energy of a graph, Discr. Appl. Math. 160

(2012) 2177–2187.

[16] H. Hosoya, Topological index. A newly proposed quantity characterizing the topolog-

ical nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan

44 (1971) 2332–2339.

[17] Y. Hou, On acyclic systems with minimal Hosoya index, Discr. Appl. Math. 119

(2002) 251–257.

[18] Y. Hou, On trees with the least energy and a given size of matching, J. Systems Sci.

Math. Sci. 23 (2003) 491–494. (in Chinese).

-103-



[19] S. Ji, X. Li, Y. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun.

Math. Comput. Chem. 70 (2013) 697–706.

[20] S. Li, W. Yan, The matching energy of graphs with given parameters, Discr. Appl.

Math. 162 (2014) 415–420.

[21] X. Li, Y. Shi, I. Gutman, Graph Energy , Springer, New York, 2012.

[22] X. Pan, Z. Sun, The (n,m)-graphs of minimum Hosoya index, MATCH Commun.

Math. Comput. Chem. 64 (2010) 811–820.

[23] S. Wagner, I. Gutman, Maxima and minima of the Hosoya index and the Merrifield–

Simmons index: A survey of results and techniques, Acta Appl. Math. 112 (2010)

323–346.

[24] K. Xu, On the Hosoya index and the Merrifield–Simmons index of graphs with a

given clique number, Appl. Math. Lett. 23 (2010) 395–398.

[25] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett.

24 (2011) 1026–1030.

[26] K. Xu, The smallest Hosoya index of unicyclic graphs with given diameter, Math.

Commun. 17 (2012) 221–239.

[27] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of (n,m)-graphs,

MATCH Commun. Math. Comput. Chem. 72 (2014) 641–654.

[28] K. Xu, I. Gutman, The greatest Hosoya index of bicyclic graphs with given maximum

degree, MATCH Commun. Math. Comput. Chem. 66 (2011) 795–824.

[29] K. Xu, J. Li, L. Zhong, The Hosoya indices and Merrifield–Simmoms indices of graphs

with connectivity at most k, Appl. Math. Lett. 25 (2012) 476–480.

-104-


