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Abstract

Let G be a simple graph with n vertices and m edges. Let di be the degree of the i-th vertex

of G. The Randić matrix R = (rij) is defined by rij = 1/
√

di dj if the i-th and j-th vertices

are adjacent and rij = 0 otherwise. The Randić energy RE is the sum of absolute values of

the eigenvalues of R. Cavers et al. [On the normalized Laplacian energy and general Randić

index R1(G) of graphs, Lin. Algebra Appl. 433 (2010) 172–190] obtained some bounds on RE,

but did not characterize the extremal graphs. We now find these extremal graphs. Additional

lower and upper bounds for RE are obtained, in terms of n, m, maximum degree ∆, minimum

degree δ, and the determinant of the adjacency matrix.

1 Introduction

In this paper we are concerned with simple finite graphs, without directed, multiple, or

weighted edges, without self–loops, and without isolated vertices. Let G = (V,E) be

such a graph, with vertex set V = {v1, v2, . . . , vn} and edge set E = E(G) such that

|E(G)| = m. If the vertices vi and vj are adjacent, then we write vivj ∈ E(G).

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 73 (2015) 81-92 

                          
                                          ISSN 0340 - 6253  

 



For i = 1, 2, . . . , n, let di be the degree of the vertex vi . The minimum and maximum

vertex degrees will be denoted by δ = δ(G) and ∆ = ∆(G), respectively. A vertex of

degree zero is said to be isolated. In this work we assume that such vertices are not

present in the graphs considered, i.e., that δ ≥ 1.

The adjacency matrix A(G) of G is defined by its entries aij = 1 if vivj ∈ E(G)

and 0 otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of A(G) . These form

the (ordinary) spectrum of G [6]. The greatest graph eigenvalue λ1 is referred to as the

spectral radius of graph G .

For what follows we shall need the well known results [6]:

det A =
n∏

i=1

λi .

The (ordinary) energy of a graph G is [16]

E = E(G) =

n∑
i=1

|λi| . (1)

For recent papers on lower and upper bounds on E(G) see [8, 9, 13].

The Randić matrix R = R(G) = (rij)n×n is defined as [1, 2, 14]

rij =


1√
di dj

if vivj ∈ E(G)

0 otherwise

.

Denote its eigenvalues by ρ1, ρ2, . . . , ρn and label them in non-increasing order. Then,

in analogy to Eq. (1), the Randić energy is defined as [2]:

RE = RE(G) =

n∑
i=1

|ρi| . (2)

For several lower and upper bounds on RE, see [1, 2, 10, 14]. For comparing energy and

Randić energy, see [11].

Denote by D = D(G) the diagonal matrix of vertex degrees of the graph G. If the

graph G has no isolated vertices, then the matrix D−1/2 is well defined; this is just the

diagonal matrix whose i-th diagonal element is 1/
√
di.

The Laplacian matrix of the graph G is L := D − A. The normalized Laplacian

matrix is then defined as [5]

L̃ = L̃(G) = D−1/2 LD−1/2 = I−D−1/2 AD−1/2 .
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The eigenvalues of L and L̃ will be denoted by µ1 ≥ µ2 ≥ · · · ≥ µn and µ̃1 ≥ µ̃2 ≥ · · · ≥
µ̃n , respectively.

Recall that D−1/2AD−1/2 = R. Therefore, L̃ = I − R and µ̃i = 1 − ρi for all

i = 1, 2, . . . , n and for all graphs [14].

The normalized Laplacian energy of G is defined as [4]

E
L̃
= E

L̃
(G) =

n∑
i=1

|µ̃i − 1| .

It immediately follows [14] that the normalized Laplacian energy and the Randić energy

coincide.

Recently, two of the present authors [10] reported the following bounds for Randić

energy:

RE ≥ 1 + (n− 1)

 |detA|
n∏

i=1

di


1/(n−1)

(3)

RE ≥ 1 +

√√√√√√√ n

∆
− 1 + (n− 1)(n− 2)

 |detA|
n∏

i=1

di


2/(n−1)

(4)

RE ≤ 1 +

√
(n− 1)(n− δ)

δ
. (5)

The present paper is organized as follows. In Section 2, we state some previously known

results, needed for the subsequent considerations. In Section 3, we characterize graphs

extremal w.r.t. Randić energy. In Section 4, we obtain some novel lower and upper

bounds on RE.

2 Preliminaries

In this section, we list some previously known results that are needed in the next two

sections.

Lemma 1. [18] Let B be a p × p symmetric matrix and let Bk be its leading k × k

submatrix. Then, for i = 1, 2, . . . , k,

ξp−i+1(B) ≤ ξk−i+1(Bk) ≤ ξk−i+1(B) (6)
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where ξi(B) is the i-th greatest eigenvalue of B.

Lemma 2. [15] Let M be a real symmetric matrix of order n and S a nonsingular matrix

of order n. For each k = 1, 2, . . . , n, there exists a positive real number θk such that

ξn(SSt) ≤ θk ≤ ξ1(SSt) and ξk(SMSt) = θk ξk(M)

where by ξi is denoted the i-th greatest eigenvalue of the underlying matrix.

Lemma 3. [19] Let G be a simple graph of order n, and λ1 its spectral radius. Then

λ1 ≥
1

n

√√√√ n∑
i=1

d2i .

Equality holds if and only if G is either a regular or a bipartite semiregular graph.

Lemma 4. [7] Let G be a simple graph of order n with m edges. Then

M1(G) =
n∑

i=1

d2i ≥ ∆2 + δ2 +
(2m−∆− δ)2

n− 2
.

Equality holds if and only if d2 = d3 = · · · = dn−1 .

Lemma 5. [6, 14, 17] Let G be a graph of order n. Then ρ1 = 1 .

Lemma 6. [14] If G possesses isolated vertices, then det R = det A = 0. If G does not

possess isolated vertices, then

det R =
det A
n∏

i=1

di

.

Lemma 7. [3] Let G be a graph of order n with no isolated vertices. Then

µ2

∆
≤ µ̃2 ≤

µ2

δ

where µ2 is the second largest Laplacian eigenvalue.

3 Characterization of graphs extremal

with regard to Randić energy

In [4], Cavers et al. obtained a lower bound on Randić energy RE(G), but they did not

characterize the extremal graphs. Here we determine these extremal graphs.
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Lemma 8. [4] Let G be a graph of order n with no isolated vertices. Then

E
L̃
≥
√

2R−1 + n(n− 1) det(I− L̃)2/n

where

R−1 =
∑

vivj∈E(G)

1

di dj
.

Evidently [14], det(I− L̃) = detR, and Lemma 6 is applicable. We now can reformu-

late and strengthen Lemma 8 as follows:

Theorem 1. Let G be a connected graph of order n. Then

RE ≥

√√√√√√√2R−1 + n(n− 1)

 | det A|
n∏

i=1

di


2/n

. (7)

Equality holds in (7) if and only if G ∼= K2 .

Remark 1. Inequality (7) holds also if the graph is not connected, but has no isolated

vertices. Equality in (7) is then attained whenever G is regular of degree 1.

Proof. We have
n∑

i=1

ρ2i = 2
∑

vivj∈E(G)

1

di dj
= 2R−1 .

By the arithmetic–geometric mean inequality,∑
1≤i<j≤n

|ρi||ρj | ≥
n(n− 1)

2

(
n∏

i=1

|ρi|
)2/n

with equality holding if and only if |ρ1| = |ρ2| = · · · = |ρn| . This implies(
n∑

i=1

|ρi|
)2

=
n∑

i=1

ρ2i + 2
∑

1≤i<j≤n

|ρi||ρj|

≥ 2R−1 + n(n− 1)

(
n∏

i=1

|ρi|
)2/n

(8)

= 2R−1 + n(n− 1)

 | det A|
n∏

i=1

di


2/n

.

The first part of the proof is done.
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Suppose now that the equality holds in (7). Then all the above inequalities must be

equalities. From equality in (8), we get |ρ1| = |ρ2| = · · · = |ρn|. Since by Lemma 5,

ρ1 = 1, all Randić eigenvalues must be equal to +1 or −1. If G ∼= K2 , then ρ1 = 1,

ρ2 = −1, and thus the equality holds in (7).

Assume thus that n ≥ 3. If G ∼= Kn , then by direct calculations we can check that

equality in (7) does not hold. Otherwise, if G 6∼= Kn , then by Lemma 1, ρ2 ≥ 0. From

Lemma 7 and µ2 > 0, we get

µ̃2 = 1− ρ2 ≥
µ2

∆
that is, ρ2 ≤

∆− µ2

∆
< 1 .

Thus, 0 ≤ ρ2 < 1, which shows that the condition |ρ1| = |ρ2| = · · · = |ρn| cannot be

satisfied.

In [4], Cavers et al. obtained the following relation between the ordinary graph energy

E and the Randić energy RE.

Lemma 9. [4] Let G be a graph of order n with no isolated vertices. Then

δ RE(G) ≤ E(G) ≤ ∆RE(G) (9)

where ∆ and δ are, respectively, the maximum and minimum vertex degree of G.

We now offer another relation between E and RE.

Theorem 2. Let G be a graph of order n with no isolated vertices and spectral radius

λ1 . Then

δ RE(G) + λ1 − δ ≤ E(G) ≤ ∆RE(G) + λ1 −∆ . (10)

Proof. Setting in Lemma 2, S = D1/2 and M = R, we get

SMSt = D1/2RD1/2 = A

ξn(D) ≤ θk ≤ ξ1(D) i.e., δ ≤ θk ≤ ∆

ξk(A) = θk ξk(R) i.e., λk = θk ρk

for k = 1, 2, . . . , n. Thus

δ |ρk| ≤ θk |ρk| ≤ ∆ | ρk|
that is,

δ |ρk| ≤ |λk| ≤ ∆ | ρk| . (11)
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By summing (11) over all k , k = 1, 2, . . . , n, and by taking into account Eqs. (1) and

(2) we arrive at (9). By summing (11) over k = 2, . . . , n and recalling that ρ1 = 1, we

obtain

δ (RE − 1) ≤ E − λ1 ≤ ∆(RE − 1)

from which (10) straightforwardly follows.

Remark 2. Because δ ≤ λ1 ≤ ∆ [6], the inequalities (10) improve the result of Lemma

9. If the graph G is regular, then (10) reduces to (9).

In Lemma 9, Cavers et al. did not characterize the extremal graphs. We now note

that both equalities in (9) hold if and only if G regular.

4 Bounds for the Randić energy of graphs

A graph is nonsingular if all its eigenvalues are different from zero. For non-singular

graphs, | det A| > 0. We now give some lower and upper bounds on the Randić energy

in terms of n, maximum degree ∆, and the determinant of the adjacency matrix.

Theorem 3. Let G be a connected non-singular graph of order n with maximum degree

∆. Then

RE ≥ 1 +

n− 1 + ln

( | det A|
∆

)
∆

(12)

with equality holding if and only if G ∼= Kn .

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix of graph G. In [9],

it was shown that x ≥ 1 + ln x for x > 0, with equality if and only if x = 1. Using this

result, we get

E(G)− λ1 =

n∑
i=2

|λi| ≥ n− 1 +

n∑
i=2

ln |λi| (13)

= n− 1 + ln | det A| − ln λ1

≥ n− 1 + ln | det A| − ln ∆ . (14)

Combining above result with Theorem 2, we get

RE(G) ≥ 1 +
E(G)− λ1

∆
≥ 1 +

n− 1 + ln | det A| − ln ∆

∆

which completes the first part of the proof.
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One can easily check that equality in (12) holds for G ∼= Kn .

Suppose now that the equality holds in (12). Then all the above inequalities must

be equalities. The equality in (13) implies |λ2| = |λ3| = · · · = |λn| = 1 and therefore

λn = −1.

From the equality in (14), we get λ1 = ∆. Thus G must be a regular graph. If

∆ = n− 1 , then G ∼= Kn and the above equality holds. Therefore, it remains to consider

the case ∆ ≤ n− 2. Then K1,2 is an induced subgraph of G. By Lemma 1,

λn ≤ λ3(K1, 2) = −
√
2

which contradicts to the requirement λn = −1.

Remark 3. The lower bounds (3) and (4) from [10] and the presently deduced lower

bounds (7) and (12) are incomparable. This is seen from the data given in Table 1,

pertaining to the graphs depicted in Fig. 1.

graph Eq. (3) Eq. (4) Eq. (7) Eq. (12)
G1 1.82 2.11 2.89 1.71
G2 1.998 1.999 1.908 2
G3 3.941 3.923 3.921 3.095
G4 3.749 3.762 3.737 2.864

Table 1. The values of the lower bounds (3), (4), (7), and (12) for the graphs depicted
in Fig. 1. These show that the four bounds are mutually incomparable.

G G G G1 2 3 4

Fig. 1. Graphs used to illustrated the fact that the four lower bounds (3), (4), (7), and
(12) are incomparable; see Table 1.

A strongly regular graph with parameters (n, r, λ, µ), denoted SRG(n, r, λ, µ), is an

r-regular graph on n vertices such that for every pair of adjacent vertices there are λ

vertices adjacent to both, and for every pair of non-adjacent vertices there are µ vertices

adjacent to both [12].
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Theorem 4. Let G be a simple graph of order n , n > 2. Then

RE(G) ≤ 1 +
1

δ

√
n− 1

n(n− 2)

[
2mn(n− 2)− (2m−∆− δ)2 − (n− 2)(∆2 + δ2)

]
(15)

with equality holding if and only if G ∼= Kn or G ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

Proof. By Lemma 3,

λ1 ≥
1

n

√√√√ n∑
i=1

d2i ≥
√

(n− 2)(∆2 + δ2) + (2m−∆− δ)2

n(n− 2)
(16)

because by Lemma 4,

n∑
i=1

d2i ≥ ∆2 + δ2 +
(2m−∆− δ)2

n− 2
.

Now,

E(G)− λ1 =

n∑
i=2

|λi| ≤

√√√√(n− 1)

n∑
i=2

λ2
i (17)

=
√

(n− 1)(2m− λ2
1) .

Since f(x) = 2m− x2 is a decreasing function on any x, by (16),

E(G)− λ1 ≤
√
(n− 1)

[
2m− (n− 2)(∆2 + δ2) + (2m−∆− δ)2

n(n− 2)

]
.

Using the above in (10), we get

RE(G) ≤ 1 +
E(G)− λ1

δ

≤ 1 +
1

δ

√
(n− 1)

[
2m− (n− 2)(∆2 + δ2) + (2m−∆− δ)2

n(n− 2)

]
. (18)

The first part of the proof is done.

One can easily check (see [10]), that equality in (15) holds in the case when G ∼= Kn

and G ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

Suppose now that the equality holds in (15). Then all the above inequalities must

be equalities. By Lemma 3, G must be either a regular graph or a bipartite semiregular

graph. By Lemma 4, d2 = d3 = · · · = dn−1 . From this we conclude that G ∼= K1, n−1 or

that G is a regular graph. From equality in (17), it follows |λ2| = |λ3| = · · · = |λn|.
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Since

|λ2(K1, n−1)| = 0 6=
√
n− 1 = |λn(K1, n−1)|

G must be a regular graph of degree r. Thus, λi = r ρi , i = 1, 2, . . . , n.

From the above results, we conclude that |ρ2| = |ρ3| = · · · = |ρn| . In view of ρ1 = 1,

we have

|ρ2| = |ρ3| = · · · = |ρn| =
√

n− r

r(n− 1)
.

From the equality in (18), it follows

RE(G) = 1 +
1

δ

√
(n− 1)

[
2m− (n− 2)(∆2 + δ2) + (2m−∆− δ)2

n(n− 2)

]
.

Employing the same arguments as in the proof of Theorem 3.5 in [10], we arrive at

G ∼= Kn or G ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
, as the graphs for which equality in (15) is

attained.

Remark 4. The upper bound (5) from [10] and the presently deduced upper bounds (15)

are incomparable. This is seen from the data given in Table 2, pertaining to the graphs

depicted in Fig. 2.

graph Eq. (5) Eq. (15)
G5 3.828 3.725
G6 6 6.845

Table 2. The values of the upper bounds (5) and (15) for the graphs depicted in Fig. 2.
These show that the two bounds are mutually incomparable.

G G5 6

Fig. 2. Graphs used to illustrated the fact that the two upper bounds (5) and (15) are
incomparable; see Table 2.
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