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Abstract

The energy £(G) of a graph G is defined as the sum of the absolute values of eigenvalues of
G. In this paper, we characterize the tree with minimal energy among the trees of order n with
at most k vertices of odd degree, where 2 < k < n.

1. INTRODUCTION

Apart from purely graph theoretical interest, the study of energy is considerably moti-
vated by applications in organic chemistry: for example, within the framework of Hiickel
molecular orbital approximation. The calculation of the theoretically computed total -
electron energy of a hydrocarbon molecule can be reduced to that of the energy of the
corresponding molecular graph [11]. Moreover, the energy of graphs has certain relations
to some well known topological indices such the Merrifield-Simmons index, defined as the
number of independent vertex subsets, and the Hosoya index.

Let T be a tree of order n and A(T) the adjacency matrix of T. The characteristic
polynomial of T', denoted by x(T;x), is defined as x(T;z) = det(xl, — A(T)). It is well
known [3] that if 7" is a tree of order n, then

[n/2]
X(T;z) = Z(fl)km(T7 k)an—2k, (1)

k=0
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where m(T, k) equals the number of k-matchings of 7. The Hosoya index [11] of a graph

G of order n, denoted by Z(G), is defined as
[n/2]

Z(G) =) _ m(G,k).

k=0
Let G be a graph with n vertices, and d(u) the degree of vertex u of G. Gutman [7]
defined the energy of G , denoted by £(G), as

£(G) = Z|Ai<0>|7

where A\ (G), \a(G), -+, \,(G) are the eigenvalues of the adjacency matrix of G.
For a tree T (acyclic graph) of order n, this energy is also expressible in terms of the

Coulson integral [11] as

. [n/2]
(T) = % / |14 3 m(T, k) | da. @)
0 k=1

Tt is obvious that £(T) is a strictly monotonously increasing function of all matching
numbers m(T, k), k = 2,3,--- ,|n/2]. It provides us a way to compare the energies of
a pair of trees. Gutman [6] introduced a quasi-ordering relation “>” (i.e, reflective and
transitive relation) on the set of all forests (acyclic graphs) of order n: if T} and T are

two forests with n vertices and with characteristic polynomials in the form (1), then

Ty =Ty & m(Th, k) > m(Ty, k) for all k =0,1,--- , [n/2].

If Ty > Ty and there exists a j such that m(T3,5) > m(Ts,j), then we write 77 > To.

Hence, by (2) and the definition of the Hosoya index, we have
T =Ty = E(N) > &(Ta), Z(Th) > 2(1), (3)

T1 - T2 - g(Tl) > (C/‘(TQ), Z(Tl) > Z(TQ) (4)

This increasing property of £(G) has been successfully applied in the study of the
extremal values of energy over different classes of graphs (see for example papers [5,8, 10,
13,20-24]). Most of results about the energy of graphs can be seen in the book [14] by
Li, Shi, and Gutman and references therein.

Quite recently, Lin [15, 16] determined the trees of order n with a given number of

vertices of even degree which has the maximal Wiener index. Furthermore, Gutman,
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and Lin [4] determined the first few trees whose all degrees are odd, having smallest and
greatest Wiener indices. Gutman, Cruz, and Rada [9] characterized the Eulerian graphs
with the smallest and greatest Wiener indices.

Let 7, denote the set of trees of order n and 7, the set of trees of order n with k&
vertices of odd degree. Note that the number of vertices of odd degree is even. So k is
even. Obviously, 7,1 C T,. If k = 2, the unique tree in 7, is the path P,. If k = n
and n is even or k = n — 1 and n is odd, the tree with minimal energy must be the star
K1 ,—1. So, in the following, we just consider the case 4 < k < n—2. In order to formulate
our results, we need to define a tree O, with n vertices as follows: O, is obtained by
connecting the center of the star K ;_; and one endpoint of the path P,_;, see Figure 1,

and we denote the set {0, : 4 <k <n} by O, .

AN
k-1
/ n-k+1
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Figure 1: The tree O,, .
In this paper, we prove that if T € T, (4 < k < n —2), then E(T) > £(0,,x) and
Z(T) > Z(Oyp,), with two equalities if and only if T' = O, ;. This result can be obtained

from Theorem 27 in [2]. In this paper, we use different methods to prove it.

2. Main results

Let G be a graph and uwv an edge of G. Denote G — uv (resp. G — u) the graph
obtained from G by deleting the edge uv (resp. the vertex u and edges incident to u). In

order to prove the main results, we introduce some lemmas as follows.

Definition 2.1. Let T be a tree in 7, (n > 4). Let e = uv be a nonpendant edge of T,
and let 77 and T5 be the two components of T'— e, u € T1, v € Ty. Tj is obtained from T'
in the following ways.

1) Contract the edge e = uv, denote the new vertex by w;

2) Attach a pendent vertex w’ to the vertex w.

The procedures 1) and 2) are called the edge-growing transformation of T' [18] (on

edge e=uv), or e.g.t of T' (on edge e = uv) for short, see Figure 2.
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Remark: It is easy to check that if T € T, dr(u), dr(v) are both odd, then by the
e.g.t of T (on edge e = wv), dy,(w) is odd, and Ty € Ty, x. Similarly, if dr(u) is odd, dp(v)
is even (resp. dr(u) is even, dr(v) is odd), then by the e.g.t of T' (on edge e = wv), dr, (w)

is even, and Ty € Tp .

W
e.g.t
u vV —_—
T I

Figure 2: The tree T and Tp.

Lemma 2.2. [17] Let T' € 7, (n > 4) with at least a nonpendent edge. If T can be

obtained from T by one step of e.g.t (on edge e = uv), then T > Ty, and E(T) > E(Ty).

Let P = vgv;...v be a path of a tree T. If dr(vg) > 3, dr(vg) > 3, we call P an
internal path of T. If dr(vg) > 3 and dr(vy) = 1, dr(v;) =2 (0 < i < k), we call P a
pendent path of 7" with root vy, particularly, when & = 1, we call P a pendent edge. Let
s(T) the be the number of vertices in T' with degree more than 2 and p(T") the number
of pendent paths in 7" with length more than 1. For example, we consider the tree T" as
shown in Figure 3. vsvyvs is an internal path of T, while vsvgvr, vsvsvg, v3v1, and v3vs

are all pendent paths of T'; s(T') = 2 and p(T) = 2.

Figure 3: The tree T'.

UT e Ty 4<k<n-—2),T+# Opy, and p(T) # 0, then T can be seen as the
tree as shown in Figure 4, where P; (s > 3) is the pendent path of T with s vertices and
root u, T and Ty are two subtrees of 7" with vertices u and v as roots, respectively, and
Ty, T, # Py. If T' is obtained from T by replacing P, with a pendent edge and replacing
the edge uv with a path P;, we say that 7" is obtained from T by a — transformation

(as shown in Figure 4). It is easy to see that T € T,4.
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Figure 4: The a—transformation of the tree T.

Lemma 2.3. [19] Let T € 7,, (n > 6), if T" is obtained from T' by a—transformation,
then T' < T, E(T") < £(T).

UTeTh(4<k<n—2),T# O,y and p(T) = 0, then there exists at least a longest
path P of the tree T', we assume that the vertices u; and v, are two endpoints of the path P.
Let uyu, vv € E(T), then Np(u) = {uy, ug, ..., us,w} (s > 2), Np(v) = {vy,vg, ..., v, w'}

(t > 2), where uy, us, ..., U, V1, Vg, ..., v; are pendent vertices of T, dp(w) > 2 and dyp(w') >

2. Note that w = v (resp. u = w’) when the length of the path P equals 3. If T =
T — {uug, ..., uus} + {vug, ..., vus} or T =T — {vvy, .., vv,} + {uvs, ..., uv,}, we say that
T is obtained from T by S—transformation. It is easy to see that p(T') = 1 and
s(T') = s(T) — 1.

Figure 5: The f—transformation of the tree T

Lemma 2.4. [19] Let T € 7, (n > 6). If T' is obtained from T by S—transformation,
then T' < T, £(T") < E(T), and s(T') = s(T) — 1, p(T') = 1.

Theorem 2.5. For T € T, x, and 4 < k <n — 2, then
E(T) = E(Onp),
with equality if and only if T = O,, .

Proof. For T € T, 4, T # Oy, denote T, is obtained from 7' by continually using the
e.g.t of T (on e = uv) as shown in the previous Remark until all degrees of the nonpendent

vertices of the tree T, are even. Obviously, T, € T, if all degrees of the nonpendent
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vertices of T' are even, we let T = T,. Then, by Lemma 2.2, we have £(T) > £(T,), with
equality if and only if T = T,. In this case, if T, = O,y, then E(T) > £(O,). In the
following, we just deal with the case when T, # O, .

We shall show £(T,) > &(O,x) by induction on s(T,). When s(T,) = 1, note
T, # Kin-1,P,,Onp, then p(T,) > 2, we can finally get the tree O, from T, by
a—trans formation, by Lemma 2.3, we have £(T,) > £(O,). We suppose the result
holds for any tree T' € T, with s(T/) =s—1. Let s(T,) = s > 2. If p(T,) # 0, we can
finally get a tree T, € T, from T, by a—transformation such that p(T,) = 0, s(T}) = s
and E(T,) > &E(Ty). If p(T,) = 0, we let T, = T,. By Lemma 2.4, we can get a tree
T. € Toyx from T, by one step of f—transformation such that p(T.) = 1, s(T.) = s — 1,
and E(T;) > £(T.). Hence E(T,) > £(T}) > E(T.). By the hypothesis of the induction,
we have

E(T) > £(T,) > E(Ty) > E(T.) > £(Oup).
Therefore, if T € Ty, and 4 < k < n — 2, then £(T) > £(O,1), and the equality holds if
and only if T'=0,,;,. W

By using the e.g.t of O, and Lemma 2.2, the following result is immediate.
Lemma 2.6. For the trees of O, (4 < k <n), we have
S(K]’nfl) < g(On,k) < 5(0711];,1) < e < 5(07114) < E(Om;;) < 5(Pn),

with the equality holds if and only if K7 ,,_1 = Op .

Lemma 2.6 can be obtained from the so called “Sliding along a path” [1,12].

Theorem 2.7. Let T be a tree of order n with at most & (4 < k < n) vertices of odd
degree. Then
S(T) 2 S(On,k)7

with equality if and only if T = O, 4.

By the same way as used in proving Theorem 2.5, for T' € T, ;, we have T' = O, ,

with equality if and only if T = O,, ;. By (3) and (4), the following result is immediate.

Corollary 2.8. For T' € T, and 4 < k <n — 2, then

Z(T) Z Z(OTL,k)‘,



with equality if and only if 7" = O, 4.
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