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Abstract

The energy E(G) of a graph G is defined as the sum of the absolute values of eigenvalues of

G. In this paper, we characterize the tree with minimal energy among the trees of order n with

at most k vertices of odd degree, where 2 ≤ k ≤ n.

1. INTRODUCTION

Apart from purely graph theoretical interest, the study of energy is considerably moti-

vated by applications in organic chemistry: for example, within the framework of Hückel

molecular orbital approximation. The calculation of the theoretically computed total π-

electron energy of a hydrocarbon molecule can be reduced to that of the energy of the

corresponding molecular graph [11]. Moreover, the energy of graphs has certain relations

to some well known topological indices such the Merrifield-Simmons index, defined as the

number of independent vertex subsets, and the Hosoya index.

Let T be a tree of order n and A(T ) the adjacency matrix of T . The characteristic

polynomial of T , denoted by χ(T ;x), is defined as χ(T ;x) = det(xIn − A(T )). It is well

known [3] that if T is a tree of order n, then

χ(T ;x) =

bn/2c∑
k=0

(−1)km(T, k)xn−2k, (1)
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where m(T, k) equals the number of k-matchings of T . The Hosoya index [11] of a graph

G of order n, denoted by Z(G), is defined as

Z(G) =

bn/2c∑
k=0

m(G, k).

Let G be a graph with n vertices, and dG(u) the degree of vertex u of G. Gutman [7]

defined the energy of G , denoted by E(G), as

E(G) =
n∑

i=1

|λi(G)|,

where λ1(G), λ2(G), · · · , λn(G) are the eigenvalues of the adjacency matrix of G.

For a tree T (acyclic graph) of order n, this energy is also expressible in terms of the

Coulson integral [11] as

E(T ) =
2

π

∫ ∞
0

x−2 ln

1 +

bn/2c∑
k=1

m(T, k)x2k

 dx. (2)

It is obvious that E(T ) is a strictly monotonously increasing function of all matching

numbers m(T, k), k = 2, 3, · · · , bn/2c. It provides us a way to compare the energies of

a pair of trees. Gutman [6] introduced a quasi-ordering relation “�” (i.e, reflective and

transitive relation) on the set of all forests (acyclic graphs) of order n: if T1 and T2 are

two forests with n vertices and with characteristic polynomials in the form (1), then

T1 � T2 ⇔ m(T1, k) ≥ m(T2, k) for all k = 0, 1, · · · , bn/2c.

If T1 � T2 and there exists a j such that m(T1, j) > m(T2, j), then we write T1 � T2.

Hence, by (2) and the definition of the Hosoya index, we have

T1 � T2 =⇒ E(T1) ≥ E(T2), Z(T1) ≥ Z(T2), (3)

T1 � T2 =⇒ E(T1) > E(T2), Z(T1) > Z(T2). (4)

This increasing property of E(G) has been successfully applied in the study of the

extremal values of energy over different classes of graphs (see for example papers [5,8,10,

13, 20–24]). Most of results about the energy of graphs can be seen in the book [14] by

Li, Shi, and Gutman and references therein.

Quite recently, Lin [15, 16] determined the trees of order n with a given number of

vertices of even degree which has the maximal Wiener index. Furthermore, Gutman,

-4-



and Lin [4] determined the first few trees whose all degrees are odd, having smallest and

greatest Wiener indices. Gutman, Cruz, and Rada [9] characterized the Eulerian graphs

with the smallest and greatest Wiener indices.

Let Tn denote the set of trees of order n and Tn,k the set of trees of order n with k

vertices of odd degree. Note that the number of vertices of odd degree is even. So k is

even. Obviously, Tn,k ⊂ Tn. If k = 2, the unique tree in Tn,2 is the path Pn. If k = n

and n is even or k = n− 1 and n is odd, the tree with minimal energy must be the star

K1,n−1. So, in the following, we just consider the case 4 ≤ k ≤ n−2. In order to formulate

our results, we need to define a tree On,k with n vertices as follows: On,k is obtained by

connecting the center of the star K1,k−1 and one endpoint of the path Pn−k, see Figure 1,

and we denote the set {On,k : 4 ≤ k ≤ n} by On,k.} }1k -

1n k- +

,n k
O

Figure 1: The tree On,k.

In this paper, we prove that if T ∈ Tn,k (4 ≤ k ≤ n − 2), then E(T ) ≥ E(On,k) and

Z(T ) ≥ Z(On,k), with two equalities if and only if T = On,k. This result can be obtained

from Theorem 27 in [2]. In this paper, we use different methods to prove it.

2. Main results

Let G be a graph and uv an edge of G. Denote G − uv (resp. G − u) the graph

obtained from G by deleting the edge uv (resp. the vertex u and edges incident to u). In

order to prove the main results, we introduce some lemmas as follows.

Definition 2.1. Let T be a tree in Tn (n ≥ 4). Let e = uv be a nonpendant edge of T ,

and let T1 and T2 be the two components of T − e, u ∈ T1, v ∈ T2. T0 is obtained from T

in the following ways.

1) Contract the edge e = uv, denote the new vertex by w;

2) Attach a pendent vertex w
′

to the vertex w.

The procedures 1) and 2) are called the edge-growing transformation of T [18] (on

edge e=uv), or e.g.t of T (on edge e = uv) for short, see Figure 2.
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Remark: It is easy to check that if T ∈ Tn,k, dT (u), dT (v) are both odd, then by the

e.g.t of T (on edge e = uv), dT0(w) is odd, and T0 ∈ Tn,k. Similarly, if dT (u) is odd, dT (v)

is even (resp. dT (u) is even, dT (v) is odd), then by the e.g.t of T (on edge e = uv), dT0(w)

is even, and T0 ∈ Tn,k.

1
T

2
T

u v
. .e g t

1
T

2
Tw

w'

T 0
T

Figure 2: The tree T and T0.

Lemma 2.2. [17] Let T ∈ Tn (n ≥ 4) with at least a nonpendent edge. If T0 can be

obtained from T by one step of e.g.t (on edge e = uv), then T � T0, and E(T ) > E(T0).

Let P = v0v1...vk be a path of a tree T . If dT (v0) ≥ 3, dT (vk) ≥ 3, we call P an

internal path of T . If dT (v0) ≥ 3 and dT (vk) = 1, dT (vi) = 2 (0 < i < k), we call P a

pendent path of T with root v0, particularly, when k = 1, we call P a pendent edge. Let

s(T ) the be the number of vertices in T with degree more than 2 and p(T ) the number

of pendent paths in T with length more than 1. For example, we consider the tree T as

shown in Figure 3. v3v4v5 is an internal path of T , while v5v6v7, v5v8v9, v3v1, and v3v2

are all pendent paths of T ; s(T ) = 2 and p(T ) = 2.

1
v

2
v

3
v 4

v
5

v

6
v

7
v

8
v

T

9
v

Figure 3: The tree T .

If T ∈ Tn,k (4 ≤ k ≤ n − 2), T 6= On,k, and p(T ) 6= 0, then T can be seen as the

tree as shown in Figure 4, where Ps (s ≥ 3) is the pendent path of T with s vertices and

root u, T1 and T2 are two subtrees of T with vertices u and v as roots, respectively, and

T1, T2 6= P1. If T
′

is obtained from T by replacing Ps with a pendent edge and replacing

the edge uv with a path Ps, we say that T
′

is obtained from T by α − transformation

(as shown in Figure 4). It is easy to see that T
′ ∈ Tn,k.
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Figure 4: The α−transformation of the tree T .

Lemma 2.3. [19] Let T ∈ Tn (n ≥ 6), if T
′

is obtained from T by α−transformation,

then T
′ ≺ T , E(T

′
) < E(T ).

If T ∈ Tn,k (4 ≤ k ≤ n−2), T 6= On,k and p(T ) = 0, then there exists at least a longest

path P of the tree T , we assume that the vertices u1 and v1 are two endpoints of the path P .

Let u1u, v1v ∈ E(T ), then NT (u) = {u1, u2, ..., us, w} (s ≥ 2), NT (v) = {v1, v2, ..., vt, w
′}

(t ≥ 2), where u1, u2, ..., us, v1, v2, ..., vt are pendent vertices of T , dT (w) ≥ 2 and dT (w
′
) ≥

2. Note that w = v (resp. u = w
′
) when the length of the path P equals 3. If T

′
=

T − {uu2, ..., uus} + {vu2, ..., vus} or T
′

= T − {vv2, ..., vvt} + {uv2, ..., uvt}, we say that

T
′

is obtained from T by β−transformation. It is easy to see that p(T
′
) = 1 and

s(T
′
) = s(T )− 1.

}1
Tu v

T T '

w w'

1
u

2
u

s
u

1
v

2
v

t
v

}

s t }1
Tu vw w'1

u

s
u

1
v

2
v

1s t+ -
β

Figure 5: The β−transformation of the tree T .

Lemma 2.4. [19] Let T ∈ Tn (n ≥ 6). If T
′

is obtained from T by β−transformation,

then T
′ ≺ T , E(T

′
) < E(T ), and s(T

′
) = s(T )− 1, p(T

′
) = 1.

Theorem 2.5. For T ∈ Tn,k, and 4 ≤ k ≤ n− 2, then

E(T ) ≥ E(On,k),

with equality if and only if T = On,k.

Proof. For T ∈ Tn,k, T 6= On,k, denote Ta is obtained from T by continually using the

e.g.t of T (on e = uv) as shown in the previous Remark until all degrees of the nonpendent

vertices of the tree Ta are even. Obviously, Ta ∈ Tn,k, if all degrees of the nonpendent
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vertices of T are even, we let T = Ta. Then, by Lemma 2.2, we have E(T ) ≥ E(Ta), with

equality if and only if T = Ta. In this case, if Ta = On,k, then E(T ) > E(On,k). In the

following, we just deal with the case when Ta 6= On,k.

We shall show E(Ta) > E(On,k) by induction on s(Ta). When s(Ta) = 1, note

Ta 6= K1,n−1, Pn, On,k, then p(Ta) ≥ 2, we can finally get the tree On,k from Ta by

α−transformation, by Lemma 2.3, we have E(Ta) > E(On,k). We suppose the result

holds for any tree T
′ ∈ Tn,k with s(T

′
) = s− 1. Let s(Ta) = s ≥ 2. If p(Ta) 6= 0, we can

finally get a tree Tb ∈ Tn,k from Ta by α−transformation such that p(Tb) = 0, s(Tb) = s

and E(Ta) > E(Tb). If p(Ta) = 0, we let Ta = Tb. By Lemma 2.4, we can get a tree

Tc ∈ Tn,k from Tb by one step of β−transformation such that p(Tc) = 1, s(Tc) = s − 1,

and E(Tb) > E(Tc). Hence E(Ta) ≥ E(Tb) > E(Tc). By the hypothesis of the induction,

we have

E(T ) ≥ E(Ta) ≥ E(Tb) > E(Tc) > E(On,k).

Therefore, if T ∈ Tn,k, and 4 ≤ k ≤ n− 2, then E(T ) ≥ E(On,k), and the equality holds if

and only if T = On,k. �

By using the e.g.t of On,k and Lemma 2.2, the following result is immediate.

Lemma 2.6. For the trees of On,k (4 ≤ k ≤ n), we have

E(K1,n−1) ≤ E(On,k) < E(On,k−1) < · · · < E(On,4) < E(On,3) < E(Pn),

with the equality holds if and only if K1,n−1 = On,k.

Lemma 2.6 can be obtained from the so called “Sliding along a path” [1, 12].

Theorem 2.7. Let T be a tree of order n with at most k (4 ≤ k ≤ n) vertices of odd

degree. Then

E(T ) ≥ E(On,k),

with equality if and only if T = On,k.

By the same way as used in proving Theorem 2.5, for T ∈ Tn,k, we have T � On,k,

with equality if and only if T = On,k. By (3) and (4), the following result is immediate.

Corollary 2.8. For T ∈ Tn,k, and 4 ≤ k ≤ n− 2, then

Z(T ) ≥ Z(On,k),
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with equality if and only if T = On,k.
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