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Abstract

Let G be a simple, undirected, connected and finite graph. For i = 1, . . . , r, let Ki,si be

a star in G with si > 1 and let Hi be an arbitrary graph of order si . Let G(H1, . . . , Hr)

be the graph obtained from G and the graphs H1, . . . , Hr by identifying the vertices of Hi

with the pendent vertices of K1,si . It is proved that (i) if µ ̸= 0 and µ ̸= 1 is a Laplacian

eigenvalue of G, then µ is a Laplacian eigenvalue of G(H1, . . . , Hr) and (ii) for 1 ≤ i ≤ r,

if µ is a Laplacian eigenvalue of Hi, µ ̸= 0 or µ = 0 with an eigenvector orthogonal to the

all ones vector, then 1 + µ is a Laplacian eigenvalue of G(H1, . . . , Hr). Let LEL(G) and

Kf(G) be the Laplacian–energy–like invariant and the Kirchhoff index of G, respectively.

The above results are used to find the differences LEL(G(H1, . . . ,Hr)) − LEL(G) and

Kf(G(H1, . . . , Hr))−Kf(G). These differences do not depend on the edges between non-

pendent vertices of G.

1 Introduction

Let G = (V (G), E(G)) be a simple undirected graph on n vertices with vertex set

V (G) and edge set E(G). The Laplacian matrix of G is the n × n matrix L(G) =

D(G) − A(G) where A(G) is the adjacency matrix of G and D(G) is the diagonal

matrix of vertex degrees. It is well known that L(G) is a positive semidefinite matrix

and that (0, en) is an eigenpar of L(G) where en is the corresponding all ones vector

of n components. The eigenvalues of L(G) are called the Laplacian eigenvalues of
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G. Fiedler [5] proved that G is a connected graph if and only if the second smallest

eigenvalue Laplacian of G is positive. This eigenvalue is called algebraic connectivity

of G and is denoted by a (G). The largest Laplacian eigenvalue of G is called the

Laplacian spectral radius of G.

We recall the following result.

Theorem 1. [15], Corollary 4.2. Let G be a connected graph on n vertices. Suppose

that v1, v2, . . . , vs are s pendent vertices of G adjacent to a common vertex v. Let G̃ be

a graph obtained from G by adding any t, 0 ≤ t ≤ s(s−1)
2

, edges among v1, v2, . . . , vs.

If a(G) ̸= 1 then a(G̃) = a(G).

A vertex of degree 1 is a called a pendent vertex. Theorem 1 tell us that if a(G) ̸= 1

then a(G) is also the algebraic connectivity of the graph obtained by adding edges

between some of the pendent vertices adjacent to a common vertex in G. The next

theorem tell us that the corresponding result also holds for the Laplacian spectral

radius.

Theorem 2. [6], Theorem 2.3. Let G be a connected graph on n vertices. Suppose

that v1, v2, . . . , vs are s pendent vertices of G adjacent to a common vertex v. Let G̃ be

a graph obtained from G by adding any t, 0 ≤ t ≤ s(s−1)
2

, edges among v1, v2, . . . , vs.

Then the Laplacian spectral radius of G is also the Laplacian spectral radius of G̃.

A vertex in a graph is called a quasi-pendent vertex if it is adjacent to a pendent

vertex. Let p(G) and q(G) be the number of pendent vertices and quasi-pendent

vertices of a graph G, respectively. We recall the following result, due to I. Faria [4],

concerning a lower bound for the multiplicity of 1 as a Laplacian eigenvalue of a

graph.

Theorem 3. For any graph G,

mG(1) ≥ p(G)− q(G)

where mG(1) denotes the multiplicity of 1 as a Laplacian eigenvalue of G.

As usual, K1,s denotes a star on s+ 1 vertices.

Definition 1. Let G be a connected graph, possesing a vertex to which s pendent

vertices are attached, s > 1. Let H be an arbitrary graph of order s. Then G(H) de-

notes the graph obtained from G and H by identifying the vertices of H with the
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s pendent vertices above mentioned. That is, G(H) is the graph with vertex set

V (G(H)) = V (G) and edge set E(G(H)) = E(G) ∪ E(H).

Definition 2. Let G is a connected graph, possesing vertices, i = 1, . . . , r, to which

si > 1 pendent vertices are attached. Let Hi be an arbitrary graph of order si .

Then G(H1, . . . , Hr) denotes the graph obtained from G and the graphs H1, . . . , Hr by

identifying the vertices of Hi with the si pendent vertices above mentioned. That is,

G(H1, . . . , Hr) is the graph with vertex set V (G(H1, . . . , Hr)) = V (G) and edge set

E(G(H1, . . . , Hr)) = E(G) ∪ ∪r
i=1E (Hi).

The graphH and the graphsHi in Definitions 1 and 2 are not necessarily connected

graphs. Thus, if H or Hi is a no-connected graph then 0 is not a simple Laplacian

eigenvalue of H or Hi, respectively.

We prove that (i) if µ ̸= 0 and µ ̸= 1 is a Laplacian eigenvalue of G then µ is

a Laplacian eigenvalue of G(H1, . . . , Hr) and (ii) for 1 ≤ i ≤ r, if µ is a Laplacian

eigenvalue of Hi, µ ̸= 0 or µ = 0 with an eigenvector orthogonal to the corresponding

all ones vector, then 1 + µ is a Laplacian eigenvalue of G(H1, . . . , Hr).

We observe that (i) generalizes Theorems 1 and 2. From Theorem 3, since si > 1, 1

is a Laplacian eigenvalue of G. On the other hand, (ii) says that 1 is also a Laplacian

eigenvalue of G(H1, . . . , Hr) whenever µ = 0 is a Laplacian eigenvalue of Hi with

an eigenvector orthogonal to the corresponding all ones vector. Moreover, if µ ̸= 0

is a Laplacian eigenvalue of Hi, (ii) says that 1 + µ is a Laplacian eigenvalue of

G(H1, . . . , Hr).

For the connected graph G, the Laplacian-energy-like invariant of G is

LEL(G) =
n−1∑
i=1

√
µi(G)

and the Kirchhoff index of G is

Kf(G) = n
n−1∑
i=1

1

µi(G)

where

µ1 (G) ≥ µ2 (G) ≥ · · · ≥ µn−1 (G) ≥ µn (G) = 0

are the Laplacian eigenvalues of G.

For 1 ≤ i ≤ r, let

µ1 (Hi) ≥ µ2 (Hi) ≥ · · · ≥ µsi−1 (Hi) ≥ µsi (Hi) = 0
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be the Laplacian eigenvalues of the graphs Hi in Definition 2. In addition, we prove

that

LEL(G(H1, . . . , Hr))− LEL(G) =
r∑

i=1

si∑
j=1

√
1 + µj (Hi)−

r∑
i=1

si

and

Kf(G(H1, . . . , Hr))−Kf(G) = n

(
r∑

i=1

si∑
j=1

1

1 + µj(Hi)
−

r∑
i=1

si

)
.

We see that the differences LEL(G(H1, . . . , Hr))−LEL(G) andKf(G(H1, . . . , Hr))−
Kf(G) do not depend on the edges between non-pendent vertices of G. That is, if

G̃ = G+ e is obtained from G by adding an edge e between two non-pendent vertices

of G then

LEL(G(H1, . . . , Hr))− LEL(G) = LEL(G̃(H1, . . . , Hr))− LEL(G̃)

and

Kf(G(H1, . . . , Hr))−Kf(G) = Kf(G̃(H1, . . . , Hr))−Kf(G̃)

2 Laplacian spectrum after adding edges

to pendent vertices

AT denotes the transpose of A, |A| is the determinant of a square matrix A, Is is the

identity matrix of order s and es is the all ones column vector of size s.

In this section, H is a graph of order s with Laplacian eigenvalues

µ1 (H) ≥ µ2 (H) ≥ · · · ≥ µs−1 (H) ≥ µs (H) = 0

where µs (H) = 0 is the Laplacian eigenvalue with eigenvector es.

Lemma 1. Let K1,s(H) as in Definition 1. Then the characteristic polynomial of

K1,s(H) is

|λI − L(K1,s(H))| = λ (λ− (s+ 1))PH (λ) (1)

where

PH (λ) =
s−1∏
i=1

(λ− (1 + µi(H))) (2)
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Proof. We label the vertices of K1,s(H) with 1, 2, . . . , s, s+ 1 where 1, . . . , s are used

for the pendents vertices of K1,s and s + 1 is used for its root. With this labeling

L(K1,s(H)) becomes

L (K1,s(H)) =

[
L (H) + Is −es

−eTs s

]
.

Let µ = µi(H), 1 ≤ i ≤ s − 1. There exists x ̸= 0 such that L (H)x = µx with

eTs x = 0. Hence[
L (H) + Is −es

−eTs s

] [
x
0

]
=

[
µx+ x

0

]
= (µ+ 1)

[
x
0

]
.

Then µ1 (H)+1, µ2 (H)+1, . . . , µs−1 (H)+1 are eigenvalues of L (K1,s(H)). Moreover,[
L (H) + Is −es

−eTs s

] [
−es
s

]
=

[
−es − ses
s+ s2

]
= (s+ 1)

[
−es
s

]
.

Then s+ 1 is also an eigenvalue of L (K1,s(H)). Therefore the characteristic polyno-

mial of L (K1,s(H)) is given by (1) with PH(λ) as in (2).

Let I and E be the identity matrix and the matrix whose entries are zeros except

for the entry in the last row and last column which is 1, respectively. The sizes of

these matrices will be clear from the context where they occur. Moreover, A denotes

the submatrix obtained from A by deleting its last row and its last column.

We recall the following fact. For square matrices A and B, we have∣∣∣∣ A E
ET B

∣∣∣∣ = |A| |B| − |A| |B| . (3)

In addition, we recall that the complement of the complete graphKn is the null graph,

that is, V (Kn) = V (Kn) and E(Kn) = ∅.

Theorem 4. Let G(H) as in Definition 1. Then

|λI − L(G(H))| = λPH (λ)R(λ) (4)

and

|λI − L(G)| = λ(λ− 1)s−1R(λ). (5)

where PH(λ) is the polynomial in (2) and R(λ) is a polynomial of degree n − s such

that R(0) ̸= 0.
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Proof. Let v be the root of K1,s. Let d(v) be the degree of v as a vertex of G. Observe

that d(v) is also the degree of v as a vertex of G(H). Then d(v) = s+ t where t is the

number of the non-pendent vertices of G adjacent to v. We label the vertices of G

and G(H) as follows: the labels 1, 2, . . . , s are used for the pendent vertices of K1,s,

the label s + 1 is used for v and the labels s + 2, . . . , n − (t − 1), . . . , n are used for

the rest of the vertices in which n− (t− 1), . . . , n are the labels for the non-pendent

vertices adjacent to v. With this labeling

L (G) =

[
A F
F T B

]
and

L(G(H)) =

[
C F
F T B

]
(6)

where A and C are matrices of order (s+ 1)× (s+ 1) given by

A =

[
Is −es

−eTs s+ t

]
and

C =

[
L (H) + Is −es

−eTs s+ t

]
. (7)

The matrices B and F are the same for L(G) and L(G(H)). The matrix F of

order (s+ 1)× (n− s− 1) has entries equal to 0 except for the entries

(s+ 1, n− t+ 1) , (s+ 1, n− t+ 2) , . . . , (s+ 1, n)

all of them equal to −1. From (6) the characteristic polynomial of L (G(H)) is

|λI − L (G(H))| =
∣∣∣∣ λI − C −F

−F T λI −B

∣∣∣∣ .
Subtracting the last column from the (t− 1)− precedent columns and then, in

the resultant matrix, subtracting the last row from the (t− 1)− precedent rows, we

obtain

|λI − L (G(H))| =
∣∣∣∣ λI − C E

ET λI −D

∣∣∣∣
for some matrix D and a matrix E having entries equal to 0 except for the entry in

the last row and last column which is 1. We use (3) to get

|λI − L (G(H))| = |λI − C| |λI −D| − |λI − C| |λI −D| .
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From (7), we have

|λI − C| =

∣∣∣∣ λIs − (L (H) + Is) es
eTs λ− s− t

∣∣∣∣ .
By linearity on the last column, we have

|λI − C| =

∣∣∣∣ λIs − (L (H) + Is) es + 0
eTs λ− s+ (−t)

∣∣∣∣
=

∣∣∣∣ λIs − (L (H) + Is) es
eTs λ− s

∣∣∣∣+ ∣∣∣∣ λIs − (L (H) + Is) 0
eTs (−t)

∣∣∣∣ .
Hence

|λI − C| = |λIs+1 − L (K1,s(G))|+ (−t) |λIs − (L (H) + Is)| .

Applying Lemma 1, we obtain

|λI − C| = λ (λ− (s+ 1))PH (λ)− t (λ− 1)PH (λ)

= PH (λ) [λ (λ− s− 1)− t (λ− 1)]

where PH (λ) is the polynomial in (2). Moreover

|λI − C| = |λIs − (L (H) + Is)| = (λ− 1)PH (λ) .

Replacing these identities in the above expression of |λI − L (G(H))| and then fac-

toring, we get

|λI − L(G(H))|

= PH (λ) [(λ (λ− s− 1)− t (λ− 1)) |λI −D| − (λ− 1) |λI −D|].

Let

T (λ) = (λ (λ− s− 1)− t (λ− 1)) |λI −D| − (λ− 1) |λI −D| .

Then

|λI − L(G(H))| = PH (λ)T (λ). (8)

Observe that the polynomial T (λ) does not depend on H. If H = Ks, the null graph,

then G(H) = G and PKs
(λ) = (λ− 1)s−1. Hence taking H = Ks in (8), we obtain

|λI − L(G)| = (λ− 1)s−1T (λ). (9)
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Since G is a connected graph, 0 is a simple eigenvalue of L(G). From (9), it follows

that T (λ) = λR(λ), where R(λ) is a polynomial of degree n− s such that R(0) ̸= 0.

Hence |λI − L(G(H))| = λPH (λ)R(λ) and |λI − L(G)| = λ(λ− 1)s−1R(λ), and the

proof is complete.

Theorem 5. Let G(H) as in Definition 1.

(i) If µ ̸= 0 and µ ̸= 1 is a Laplacian eigenvalue of G then µ is a Laplacian

eigenvalue of G(H), and

(ii) if µ is a Laplacian eigenvalue of H, µ ̸= 0 or µ = 0 with an eigenvector

orthogonal to the corresponding all ones vector, then 1 + µ is a Laplacian eigenvalue

of G(H).

Proof. (i) Let µ ̸= 0 and µ ̸= 1 be a Laplacian eigenvalue of G. From (5), we get

R(µ) = 0. Then, replacing in (4), we have |µI − L(G(H))| = 0.

(ii) Let µ be a Laplacian eigenvalue of H, µ ̸= 0 or µ = 0 with an eigenvec-

tor orthogonal to the corresponding all ones vector. Then 1 + µ is a zero of the

polynomial PH(λ) in (2), that is, PH(1 + µ) = 0. Replacing in (4), we obtain

|(1 + µ)I − L(G(H))| = 0.

Theorem 6. Let G(H1, . . . , Hr) as in Definition 2.

(i) If µ ̸= 0 and µ ̸= 1 is a Laplacian eigenvalue of G then µ is a Laplacian

eigenvalue of G(H1, . . . , Hr), and

(ii) if µ is a Laplacian eigenvalue of Hi, 1 ≤ i ≤ r, µ ̸= 0 or µ = 0 with an

eigenvector orthogonal to the corresponding all ones vector, then 1+µ is a Laplacian

eigenvalue of G(H1, . . . , Hr).

Proof. We apply induction on r. The case r = 1 is given in Theorem 5. Let r > 1.

Suppose that the theorem holds for G(H1, . . . , Hr−1) and that G(H1, . . . , Hr−1, Hr)

is the graph obtained from G(H1, . . . , Hr−1) and Hr by identifying the vertices of

Hr with the pendent vertices of K1,sr . The below Theorem 5 will be applied to

G = G(H1, . . . , Hr−1) with H = Hr.

(i) Let µ ̸= 0 and µ ̸= 1 be a Laplacian eigenvalue of G. By the induction

hypothesis, µ is a Laplacian eigenvalue of G(H1, . . . , Hr−1). From Theorem 5, it

follows that µ is a Laplacian eigenvalue of G(H1, . . . , Hr).

(ii) Let µ be a Laplacian eigenvalue of Hi, 1 ≤ i ≤ r − 1, µ ̸= 0 or µ = 0 with

an eigenvector orthogonal to the corresponding all ones vector. By the induction
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hypothesis, 1 + µ is a Laplacian eigenvalue of G(H1, . . . , Hr−1). Using Theorem 5,

part (i) when µ ̸= 0 or part (ii) when µ = 0, we conclude that 1 + µ is a Laplacian

eigenvalue of G(H1, . . . , Hr). Let now µ be a Laplacian eigenvalue of Hr, µ ̸= 0 or

µ = 0 with an eigenvector orthogonal to the corresponding all ones vector. Again, we

apply Theorem 5 to obtain that 1+µ is a Laplacian eigenvalue of G(H1, . . . , Hr).

3 Laplacian–energy–like invariant and Kirchhoff

index of graphs constructed by adding edges

to pendent vertices

The signless Laplacian matrix of G is the n× n matrix L+ (G) = D (G) + A (G). It

is known that L+ (G) is a positive semi-definite matrix and if G is a bipartite graph

then L+ (G) and L (G) have the same characteristic polynomial [1]. Let

0 = µn (G) ≤ µn−1 (G) ≤ · · · ≤ µ1 (G)

µ+
n (G) ≤ µ+

n−1 (G) ≤ · · · ≤ µ+
1 (G)

be the eigenvalues of L (G) and L+ (G), respectively.

The line graph L (G) is the graph whose vertex set is in one-to-one correspondence

with the set of edges of G where two vertices of L (G) are adjacent if and only if the

corresponding edges in G have a vertex in common [12]. Let V (G) = {v1, v2, . . . , vn}
and let E (G) = {e1, e2, . . . , em} be the vertex set and edge set of the graph G,

respectively. The incidence matrix of G is the n×m matrix I(G) whose (i, j)−entry

is 1 if vi is incident to ej and 0 otherwise. It is known [1] that

I (G) I (G)T = D (G) + A (G) = L+ (G) . (10)

The notion of the energy of a graph was introduced by Gutman in 1978 as the sum

of the absolute values of its adjacency eigenvalues, it is studied in chemistry and used

to approximate the total π-electron energy of a molecule [7,9]. In [11], the Laplacian

energy of G is introduced as follows

LE (G) =
n∑

j=1

∣∣∣∣µj(G)− 2m

n

∣∣∣∣ .
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Similarly, the signless Laplacian energy of G is defined by

L+E (G) =
n∑

j=1

∣∣∣∣µ+
j (G)− 2m

n

∣∣∣∣ .
In [10] relations between the energy of the line graph of G, the Laplacian energy

and signless Laplacian energy of G are established. In [14] the authors define the

Laplacian–energy–like invariant LEL(G) of G as

LEL (G) =
n∑

j=1

√
µj(G) .

In [16] a lower bound for LEL(G) in terms of the maximum degree is given and also

an upper bound and a lower bound for the Laplacian–energy–like invariant of the

line graph of a regular graph G are obtained. More recently, in [2], lower and upper

bounds for LEL(G) are obtained, in terms of the order, number of edges, maximum

vertex degree, and number of spanning trees, of the graph G.

The Kirchhoff index of a connected graph G of order n is

Kf(G) = n
n−1∑
j=1

1

µj(G)
.

In [3] the authors compare the Kf(G) and LEL(G), among other results, they arrive

at a complete comparison of Kf(G) and LEL(G) for trees, unicyclic graphs, and

bicyclic graphs.

In [13], the authors introduce the concept of the incidence energy IE (G) of G as

the sum of the singular values σi of the incidence matrix I(G). It is well known that

the singular values of a matrix M are the nonnegative square root of MMT . From

this fact and (10), it follows that

IE (G) =
n∑

j=1

√
µ+
j (G).

Clearly, for bipartite graphs, LEL(G) = IE(G).

Let G(H1, . . . , Hr) as in Definition 2. We search for a relationship between

LEL(G) and LEL(G(H1, . . . , Hr)).

Theorem 7. Let G(H) as in Definition 1. Let

µ1 (H) ≥ µ2 (H) ≥ · · · ≥ µs−1 (H) ≥ µs (H) = 0 .
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be the Laplacian eigenvalues of H. Then

LEL(G(H))− LEL(G) =
s∑

j=1

√
1 + µj (H)− s . (11)

Proof. From Theorem 4, we have

|λI − L(G(H))| = λPH (λ)R(λ) (12)

and

|λI − L(G)| = λ(λ− 1)s−1R(λ) . (13)

where PH(λ) is the polynomial in (2) and R(λ) is a polynomial of degree n− s such

that R(0) ̸= 0. Hence, from (12) and (13),

LEL(G(H)) =
s−1∑
j=1

√
1 + µj(H) +

∑
µ:R(µ)=0

√
µ . (14)

and

LEL(G) = (s− 1) +
∑

µ:R(µ)=0

√
µ . (15)

Sustracting (15) from (14), we obtain

LEL(G(H))− LEL(G) =
s∑

j=1

√
1 + µj(H)− s .

The proof is complete.

Let G(H1, . . . , Hr) as in Definition 2. We know that G(H1) is the graph obtained

from G and H1 by identifying the vertices of H1 with the pendent vertices of K1,s1 .

Moreover, for i = 2, . . . , r, G(H1, . . . , Hi) is the graph obtained from G(H1, . . . , Hi−1)

and Hi by identifying the vertices of Hi with the pendent vertices of K1,si .

Theorem 8. Let G(H1, . . . , Hr) as in Definition 2. For 1 ≤ i ≤ r, let

µ1 (Hi) ≥ µ2 (Hi) ≥ · · · ≥ µsi−1 (Hi) ≥ µsi (Hi) = 0

be the Laplacian eigenvalues of the graphs Hi. Then

LEL(G(H1, . . . , Hr))− LEL(G) =
r∑

i=1

si∑
j=1

√
1 + µj (Hi)−

r∑
i=1

si . (16)
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Proof. By a repeated application of (11), we obtain

LEL (G (H1))− LEL(G) =

s1∑
j=1

√
1 + µj (H1)− s1

LEL (G (H1, H2))− LEL(G (H1)) =

s2∑
j=1

√
1 + µj (H2)− s2

LEL (G (H1, H2, H3))− LEL(G (H1, H2)) =

s3∑
j=1

√
1 + µj (H3)− s3

...

LEL (G (H1, . . . , Hr−1))− LEL(G (H1, . . . , Hr−2)) =

sr−1∑
j=1

√
1 + µj (Hr−1)− sr−1

LEL (G (H1, . . . , Hr))− LEL(G (H1, . . . , Hr−1)) =
sr∑
j=1

√
1 + µj (Hr)− sr .

Adding these equalities, (16) is obtained.

Now we derive a relationship between Kf(G(H1, . . . , Hr)) and Kf(G).

Theorem 9. Let G(H) as in Definition 1. Let

µ1 (H) ≥ µ2 (H) ≥ · · · ≥ µs−1 (H) ≥ µs (H) = 0.

be the Laplacian eigenvalues of H. Then

Kf(G(H))−Kf(G) = n
s∑

j=1

1

1 + µj(H)
− ns . (17)

Proof. We start by observing that R(λ) is a polynomial of degree n − s, such that

R(0) ̸= 0. From (12) and (13),

Kf(G(H)) = n

s−1∑
i=1

1

1 + µi(H)
+ n

∑
µ:R(µ)=0

1

µ
. (18)

and

Kf(G) = n(s− 1) + n
∑

µ:R(µ)=0

1

µ
. (19)

Subtracting (19) from (18), (17) is obtained.
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Theorem 10. Let G(H1, . . . , Hr) as in Definition 2. For 1 ≤ i ≤ r, let

µ1 (Hi) ≥ µ2 (Hi) ≥ · · · ≥ µsi−1 (Hi) ≥ µsi (Hi) = 0

be the Laplacian eigenvalues of the graphs Hi. Then

Kf(G(H1, . . . , Hr))−Kf(G) = n

(
r∑

i=1

si∑
j=1

1

1 + µj(Hi)
−

r∑
i=1

si

)
. (20)

Proof. By a repeated application of (17), we obtain

Kf (G (H1))−Kf(G) = n

s1∑
j=1

1

1 + µj(H1)
− ns1

Kf (G (H1, H2))−Kf(G (H1)) = n

s2∑
j=1

1

1 + µj(H2)
− ns2

Kf (G (H1, H2, H3))−Kf(G (H1, H2)) = n

s3∑
j=1

1

1 + µj(H3)
− ns3

...

Kf (G (H1, . . . , Hr−1))−Kf(G (H1, . . . , Hr−2)) = n

sr−1∑
j=1

1

1 + µj(Hr−1)
− nsr−1

Kf (G (H1, . . . , Hr))−Kf(G (H1, . . . , Hr−1)) = n
sr∑
j=1

1

1 + µj(Hr)
− nsr .

Adding these equalities, (20) is obtained.

Therefore, the differences LEL(G(H1,. . ., Hr))−LEL(G) and Kf(G(H1,. . ., Hr))−
Kf(G) do not depend on the edges between non-pendent vertices of G. That is, if

G̃ = G+ e is obtained from G by adding an edge e between two non-pendent vertices

of G then

LEL(G(H1, . . . , Hr))− LEL(G) = LEL(G̃(H1, . . . , Hr))− LEL(G̃)

and

Kf(G(H1, . . . , Hr))−Kf(G) = Kf(G̃(H1, . . . , Hr))−Kf(G̃) .
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