Laplacian Spectrum, Laplacian-Energy-Like Invariant, and Kirchhoff Index of Graphs Constructed by Adding Edges on Pendent Vertices

Germain Pastén , Oscar Rojo
Department of Mathematics, Universidad Católica del Norte, Antofagasta, Chile

(Received September 24, 2014)

Abstract

Let G be a simple, undirected, connected and finite graph. For $i=1, \ldots, r$, let $K_{i, s_{i}}$ be a star in G with $s_{i}>1$ and let H_{i} be an arbitrary graph of order s_{i}. Let $G\left(H_{1}, \ldots, H_{r}\right)$ be the graph obtained from G and the graphs H_{1}, \ldots, H_{r} by identifying the vertices of H_{i} with the pendent vertices of $K_{1, s_{i}}$. It is proved that (i) if $\mu \neq 0$ and $\mu \neq 1$ is a Laplacian eigenvalue of G, then μ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$ and (ii) for $1 \leq i \leq r$, if μ is a Laplacian eigenvalue of $H_{i}, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the all ones vector, then $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$. Let $L E L(G)$ and $K f(G)$ be the Laplacian-energy-like invariant and the Kirchhoff index of G, respectively. The above results are used to find the differences $\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(G)$ and $K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-K f(G)$. These differences do not depend on the edges between nonpendent vertices of G.

1 Introduction

Let $G=(V(G), E(G))$ be a simple undirected graph on n vertices with vertex set $V(G)$ and edge set $E(G)$. The Laplacian matrix of G is the $n \times n$ matrix $L(G)=$ $D(G)-A(G)$ where $A(G)$ is the adjacency matrix of G and $D(G)$ is the diagonal matrix of vertex degrees. It is well known that $L(G)$ is a positive semidefinite matrix and that $\left(0, \mathbf{e}_{n}\right)$ is an eigenpar of $L(G)$ where \mathbf{e}_{n} is the corresponding all ones vector of n components. The eigenvalues of $L(G)$ are called the Laplacian eigenvalues of
G. Fiedler [5] proved that G is a connected graph if and only if the second smallest eigenvalue Laplacian of G is positive. This eigenvalue is called algebraic connectivity of G and is denoted by $a(G)$. The largest Laplacian eigenvalue of G is called the Laplacian spectral radius of G.

We recall the following result.
Theorem 1. [15], Corollary 4.2. Let G be a connected graph on n vertices. Suppose that $v_{1}, v_{2}, \ldots, v_{s}$ are s pendent vertices of G adjacent to a common vertex v. Let \widetilde{G} be a graph obtained from G by adding any $t, 0 \leq t \leq \frac{s(s-1)}{2}$, edges among $v_{1}, v_{2}, \ldots, v_{s}$. If $a(G) \neq 1$ then $a(\widetilde{G})=a(G)$.

A vertex of degree 1 is a called a pendent vertex. Theorem 1 tell us that if $a(G) \neq 1$ then $a(G)$ is also the algebraic connectivity of the graph obtained by adding edges between some of the pendent vertices adjacent to a common vertex in G. The next theorem tell us that the corresponding result also holds for the Laplacian spectral radius.

Theorem 2. [6], Theorem 2.3. Let G be a connected graph on n vertices. Suppose that $v_{1}, v_{2}, \ldots, v_{s}$ are s pendent vertices of G adjacent to a common vertex v. Let \widetilde{G} be a graph obtained from G by adding any $t, 0 \leq t \leq \frac{s(s-1)}{2}$, edges among $v_{1}, v_{2}, \ldots, v_{s}$. Then the Laplacian spectral radius of G is also the Laplacian spectral radius of \widetilde{G}.

A vertex in a graph is called a quasi-pendent vertex if it is adjacent to a pendent vertex. Let $p(G)$ and $q(G)$ be the number of pendent vertices and quasi-pendent vertices of a graph G, respectively. We recall the following result, due to I. Faria [4], concerning a lower bound for the multiplicity of 1 as a Laplacian eigenvalue of a graph.

Theorem 3. For any graph G,

$$
m_{G}(1) \geq p(G)-q(G)
$$

where $m_{G}(1)$ denotes the multiplicity of 1 as a Laplacian eigenvalue of G.
As usual, $K_{1, s}$ denotes a star on $s+1$ vertices.
Definition 1. Let G be a connected graph, possesing a vertex to which s pendent vertices are attached, $s>1$. Let H be an arbitrary graph of order s. Then $G(H)$ denotes the graph obtained from G and H by identifying the vertices of H with the
s pendent vertices above mentioned. That is, $G(H)$ is the graph with vertex set $V(G(H))=V(G)$ and edge set $E(G(H))=E(G) \cup E(H)$.

Definition 2. Let G is a connected graph, possesing vertices, $i=1, \ldots, r$, to which $s_{i}>1$ pendent vertices are attached. Let H_{i} be an arbitrary graph of order s_{i}. Then $G\left(H_{1}, \ldots, H_{r}\right)$ denotes the graph obtained from G and the graphs H_{1}, \ldots, H_{r} by identifying the vertices of H_{i} with the s_{i} pendent vertices above mentioned. That is, $G\left(H_{1}, \ldots, H_{r}\right)$ is the graph with vertex set $V\left(G\left(H_{1}, \ldots, H_{r}\right)\right)=V(G)$ and edge set $E\left(G\left(H_{1}, \ldots, H_{r}\right)\right)=E(G) \cup \cup_{i=1}^{r} E\left(H_{i}\right)$.

The graph H and the graphs H_{i} in Definitions 1 and 2 are not necessarily connected graphs. Thus, if H or H_{i} is a no-connected graph then 0 is not a simple Laplacian eigenvalue of H or H_{i}, respectively.

We prove that (i) if $\mu \neq 0$ and $\mu \neq 1$ is a Laplacian eigenvalue of G then μ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$ and (ii) for $1 \leq i \leq r$, if μ is a Laplacian eigenvalue of $H_{i}, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the corresponding all ones vector, then $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$.

We observe that (i) generalizes Theorems 1 and 2. From Theorem 3 , since $s_{i}>1,1$ is a Laplacian eigenvalue of G. On the other hand, (ii) says that 1 is also a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$ whenever $\mu=0$ is a Laplacian eigenvalue of H_{i} with an eigenvector orthogonal to the corresponding all ones vector. Moreover, if $\mu \neq 0$ is a Laplacian eigenvalue of H_{i}, (ii) says that $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$.

For the connected graph G, the Laplacian-energy-like invariant of G is

$$
L E L(G)=\sum_{i=1}^{n-1} \sqrt{\mu_{i}(G)}
$$

and the Kirchhoff index of G is

$$
K f(G)=n \sum_{i=1}^{n-1} \frac{1}{\mu_{i}(G)}
$$

where

$$
\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n-1}(G) \geq \mu_{n}(G)=0
$$

are the Laplacian eigenvalues of G.
For $1 \leq i \leq r$, let

$$
\mu_{1}\left(H_{i}\right) \geq \mu_{2}\left(H_{i}\right) \geq \cdots \geq \mu_{s_{i}-1}\left(H_{i}\right) \geq \mu_{s_{i}}\left(H_{i}\right)=0
$$

be the Laplacian eigenvalues of the graphs H_{i} in Definition 2. In addition, we prove that

$$
\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(G)=\sum_{i=1}^{r} \sum_{j=1}^{s_{i}} \sqrt{1+\mu_{j}\left(H_{i}\right)}-\sum_{i=1}^{r} s_{i}
$$

and

$$
K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-K f(G)=n\left(\sum_{i=1}^{r} \sum_{j=1}^{s_{i}} \frac{1}{1+\mu_{j}\left(H_{i}\right)}-\sum_{i=1}^{r} s_{i}\right) .
$$

We see that the differences $\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-\operatorname{LEL}(G)$ and $K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-$ $K f(G)$ do not depend on the edges between non-pendent vertices of G. That is, if $\widetilde{G}=G+e$ is obtained from G by adding an edge e between two non-pendent vertices of G then

$$
\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(G)=L E L\left(\widetilde{G}\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(\widetilde{G})
$$

and

$$
K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-K f(G)=K f\left(\widetilde{G}\left(H_{1}, \ldots, H_{r}\right)\right)-K f(\widetilde{G})
$$

2 Laplacian spectrum after adding edges to pendent vertices

A^{T} denotes the transpose of $A,|A|$ is the determinant of a square matrix A, I_{s} is the identity matrix of order s and \mathbf{e}_{s} is the all ones column vector of size s.

In this section, H is a graph of order s with Laplacian eigenvalues

$$
\mu_{1}(H) \geq \mu_{2}(H) \geq \cdots \geq \mu_{s-1}(H) \geq \mu_{s}(H)=0
$$

where $\mu_{s}(H)=0$ is the Laplacian eigenvalue with eigenvector \mathbf{e}_{s}.
Lemma 1. Let $K_{1, s}(H)$ as in Definition 1. Then the characteristic polynomial of $K_{1, s}(H)$ is

$$
\begin{equation*}
\left|\lambda I-L\left(K_{1, s}(H)\right)\right|=\lambda(\lambda-(s+1)) P_{H}(\lambda) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{H}(\lambda)=\prod_{i=1}^{s-1}\left(\lambda-\left(1+\mu_{i}(H)\right)\right) \tag{2}
\end{equation*}
$$

Proof. We label the vertices of $K_{1, s}(H)$ with $1,2, \ldots, s, s+1$ where $1, \ldots, s$ are used for the pendents vertices of $K_{1, s}$ and $s+1$ is used for its root. With this labeling $L\left(K_{1, s}(H)\right)$ becomes

$$
L\left(K_{1, s}(H)\right)=\left[\begin{array}{cc}
L(H)+I_{s} & -\mathbf{e}_{s} \\
-\mathbf{e}_{s}^{T} & s
\end{array}\right]
$$

Let $\mu=\mu_{i}(H), 1 \leq i \leq s-1$. There exists $\mathbf{x} \neq \mathbf{0}$ such that $L(H) \mathbf{x}=\mu \mathbf{x}$ with $\mathbf{e}_{s}^{T} \mathbf{x}=0$. Hence

$$
\left[\begin{array}{cc}
L(H)+I_{s} & -\mathbf{e}_{s} \\
-\mathbf{e}_{s}^{T} & s
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
0
\end{array}\right]=\left[\begin{array}{c}
\mu \mathbf{x}+\mathbf{x} \\
0
\end{array}\right]=(\mu+1)\left[\begin{array}{l}
\mathbf{x} \\
0
\end{array}\right]
$$

Then $\mu_{1}(H)+1, \mu_{2}(H)+1, \ldots, \mu_{s-1}(H)+1$ are eigenvalues of $L\left(K_{1, s}(H)\right)$. Moreover,

$$
\left[\begin{array}{cc}
L(H)+I_{s} & -\mathbf{e}_{s} \\
-\mathbf{e}_{s}^{T} & s
\end{array}\right]\left[\begin{array}{c}
-\mathbf{e}_{s} \\
s
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{e}_{s}-s \mathbf{e}_{s} \\
s+s^{2}
\end{array}\right]=(s+1)\left[\begin{array}{c}
-\mathbf{e}_{s} \\
s
\end{array}\right]
$$

Then $s+1$ is also an eigenvalue of $L\left(K_{1, s}(H)\right)$. Therefore the characteristic polynomial of $L\left(K_{1, s}(H)\right)$ is given by (1) with $P_{H}(\lambda)$ as in (2).

Let I and E be the identity matrix and the matrix whose entries are zeros except for the entry in the last row and last column which is 1 , respectively. The sizes of these matrices will be clear from the context where they occur. Moreover, \underline{A} denotes the submatrix obtained from A by deleting its last row and its last column.

We recall the following fact. For square matrices A and B, we have

$$
\left|\begin{array}{cc}
A & E \tag{3}\\
E^{T} & B
\end{array}\right|=|A||B|-|\underline{A}||\underline{B}| .
$$

In addition, we recall that the complement of the complete graph K_{n} is the null graph, that is, $V\left(\overline{K_{n}}\right)=V\left(K_{n}\right)$ and $E\left(\overline{K_{n}}\right)=\emptyset$.

Theorem 4. Let $G(H)$ as in Definition 1. Then

$$
\begin{equation*}
|\lambda I-L(G(H))|=\lambda P_{H}(\lambda) R(\lambda) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
|\lambda I-L(G)|=\lambda(\lambda-1)^{s-1} R(\lambda) \tag{5}
\end{equation*}
$$

where $P_{H}(\lambda)$ is the polynomial in (2) and $R(\lambda)$ is a polynomial of degree $n-s$ such that $R(0) \neq 0$.

Proof. Let v be the root of $K_{1, s}$. Let $d(v)$ be the degree of v as a vertex of G. Observe that $d(v)$ is also the degree of v as a vertex of $G(H)$. Then $d(v)=s+t$ where t is the number of the non-pendent vertices of G adjacent to v. We label the vertices of G and $G(H)$ as follows: the labels $1,2, \ldots, s$ are used for the pendent vertices of $K_{1, s}$, the label $s+1$ is used for v and the labels $s+2, \ldots, n-(t-1), \ldots, n$ are used for the rest of the vertices in which $n-(t-1), \ldots, n$ are the labels for the non-pendent vertices adjacent to v. With this labeling

$$
L(G)=\left[\begin{array}{cc}
A & F \\
F^{T} & B
\end{array}\right]
$$

and

$$
L(G(H))=\left[\begin{array}{cc}
C & F \tag{6}\\
F^{T} & B
\end{array}\right]
$$

where A and C are matrices of order $(s+1) \times(s+1)$ given by

$$
A=\left[\begin{array}{cc}
I_{s} & -\mathbf{e}_{s} \\
-\mathbf{e}_{s}^{T} & s+t
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{cc}
L(H)+I_{s} & -\mathbf{e}_{s} \tag{7}\\
-\mathbf{e}_{s}^{T} & s+t
\end{array}\right] .
$$

The matrices B and F are the same for $L(G)$ and $L(G(H))$. The matrix F of order $(s+1) \times(n-s-1)$ has entries equal to 0 except for the entries

$$
(s+1, n-t+1),(s+1, n-t+2), \ldots,(s+1, n)
$$

all of them equal to -1 . From (6) the characteristic polynomial of $L(G(H))$ is

$$
|\lambda I-L(G(H))|=\left|\begin{array}{cc}
\lambda I-C & -F \\
-F^{T} & \lambda I-B
\end{array}\right|
$$

Subtracting the last column from the $(t-1)$ - precedent columns and then, in the resultant matrix, subtracting the last row from the $(t-1)$ - precedent rows, we obtain

$$
|\lambda I-L(G(H))|=\left|\begin{array}{cc}
\lambda I-C & E \\
E^{T} & \lambda I-D
\end{array}\right|
$$

for some matrix D and a matrix E having entries equal to 0 except for the entry in the last row and last column which is 1 . We use (3) to get

$$
|\lambda I-L(G(H))|=|\lambda I-C||\lambda I-D|-|\lambda I-\underline{C}||\lambda I-\underline{D}| .
$$

From (7), we have

$$
|\lambda I-C|=\left|\begin{array}{cc}
\lambda I_{s}-\left(L(H)+I_{s}\right) & \mathbf{e}_{s} \\
\mathbf{e}_{s}^{T} & \lambda-s-t
\end{array}\right| .
$$

By linearity on the last column, we have

$$
\begin{aligned}
|\lambda I-C| & =\left|\begin{array}{cc}
\lambda I_{s}-\left(L(H)+I_{s}\right) & \mathbf{e}_{s}+0 \\
\mathbf{e}_{s}^{T} & \lambda-s+(-t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\lambda I_{s}-\left(L(H)+I_{s}\right) & \mathbf{e}_{s} \\
\mathbf{e}_{s}^{T} & \lambda-s
\end{array}\right|+\left|\begin{array}{cc}
\lambda I_{s}-\left(L(H)+I_{s}\right) & 0 \\
\mathbf{e}_{s}^{T} & (-t)
\end{array}\right| .
\end{aligned}
$$

Hence

$$
|\lambda I-C|=\left|\lambda I_{s+1}-L\left(K_{1, s}(G)\right)\right|+(-t)\left|\lambda I_{s}-\left(L(H)+I_{s}\right)\right| .
$$

Applying Lemma 1, we obtain

$$
\begin{aligned}
|\lambda I-C| & =\lambda(\lambda-(s+1)) P_{H}(\lambda)-t(\lambda-1) P_{H}(\lambda) \\
& =P_{H}(\lambda)[\lambda(\lambda-s-1)-t(\lambda-1)]
\end{aligned}
$$

where $P_{H}(\lambda)$ is the polynomial in (2). Moreover

$$
|\lambda I-\underline{C}|=\left|\lambda I_{s}-\left(L(H)+I_{s}\right)\right|=(\lambda-1) P_{H}(\lambda) .
$$

Replacing these identities in the above expression of $|\lambda I-L(G(H))|$ and then factoring, we get

$$
\begin{aligned}
& |\lambda I-L(G(H))| \\
= & P_{H}(\lambda)[(\lambda(\lambda-s-1)-t(\lambda-1))|\lambda I-D|-(\lambda-1)|\lambda I-\underline{D}|] .
\end{aligned}
$$

Let

$$
T(\lambda)=(\lambda(\lambda-s-1)-t(\lambda-1))|\lambda I-D|-(\lambda-1)|\lambda I-\underline{D}| .
$$

Then

$$
\begin{equation*}
|\lambda I-L(G(H))|=P_{H}(\lambda) T(\lambda) . \tag{8}
\end{equation*}
$$

Observe that the polynomial $T(\lambda)$ does not depend on H. If $H=\overline{K_{s}}$, the null graph, then $G(H)=G$ and $P_{\overline{K_{s}}}(\lambda)=(\lambda-1)^{s-1}$. Hence taking $H=\overline{K_{s}}$ in (8), we obtain

$$
\begin{equation*}
|\lambda I-L(G)|=(\lambda-1)^{s-1} T(\lambda) \tag{9}
\end{equation*}
$$

Since G is a connected graph, 0 is a simple eigenvalue of $L(G)$. From (9), it follows that $T(\lambda)=\lambda R(\lambda)$, where $R(\lambda)$ is a polynomial of degree $n-s$ such that $R(0) \neq 0$. Hence $|\lambda I-L(G(H))|=\lambda P_{H}(\lambda) R(\lambda)$ and $|\lambda I-L(G)|=\lambda(\lambda-1)^{s-1} R(\lambda)$, and the proof is complete.

Theorem 5. Let $G(H)$ as in Definition 1.
(i) If $\mu \neq 0$ and $\mu \neq 1$ is a Laplacian eigenvalue of G then μ is a Laplacian eigenvalue of $G(H)$, and
(ii) if μ is a Laplacian eigenvalue of $H, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the corresponding all ones vector, then $1+\mu$ is a Laplacian eigenvalue of $G(H)$.

Proof. (i) Let $\mu \neq 0$ and $\mu \neq 1$ be a Laplacian eigenvalue of G. From (5), we get $R(\mu)=0$. Then, replacing in (4), we have $|\mu I-L(G(H))|=0$.
(ii) Let μ be a Laplacian eigenvalue of $H, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the corresponding all ones vector. Then $1+\mu$ is a zero of the polynomial $P_{H}(\lambda)$ in (2), that is, $P_{H}(1+\mu)=0$. Replacing in (4), we obtain $|(1+\mu) I-L(G(H))|=0$.

Theorem 6. Let $G\left(H_{1}, \ldots, H_{r}\right)$ as in Definition 2.
(i) If $\mu \neq 0$ and $\mu \neq 1$ is a Laplacian eigenvalue of G then μ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$, and
(ii) if μ is a Laplacian eigenvalue of $H_{i}, 1 \leq i \leq r, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the corresponding all ones vector, then $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$.

Proof. We apply induction on r. The case $r=1$ is given in Theorem 5. Let $r>1$. Suppose that the theorem holds for $G\left(H_{1}, \ldots, H_{r-1}\right)$ and that $G\left(H_{1}, \ldots, H_{r-1}, H_{r}\right)$ is the graph obtained from $G\left(H_{1}, \ldots, H_{r-1}\right)$ and H_{r} by identifying the vertices of H_{r} with the pendent vertices of $K_{1, s_{r}}$. The below Theorem 5 will be applied to $G=G\left(H_{1}, \ldots, H_{r-1}\right)$ with $H=H_{r}$.
(i) Let $\mu \neq 0$ and $\mu \neq 1$ be a Laplacian eigenvalue of G. By the induction hypothesis, μ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r-1}\right)$. From Theorem 5, it follows that μ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$.
(ii) Let μ be a Laplacian eigenvalue of $H_{i}, 1 \leq i \leq r-1, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the corresponding all ones vector. By the induction
hypothesis, $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r-1}\right)$. Using Theorem 5, part (i) when $\mu \neq 0$ or part (ii) when $\mu=0$, we conclude that $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$. Let now μ be a Laplacian eigenvalue of $H_{r}, \mu \neq 0$ or $\mu=0$ with an eigenvector orthogonal to the corresponding all ones vector. Again, we apply Theorem 5 to obtain that $1+\mu$ is a Laplacian eigenvalue of $G\left(H_{1}, \ldots, H_{r}\right)$.

3 Laplacian-energy-like invariant and Kirchhoff index of graphs constructed by adding edges to pendent vertices

The signless Laplacian matrix of G is the $n \times n$ matrix $L^{+}(G)=D(G)+A(G)$. It is known that $L^{+}(G)$ is a positive semi-definite matrix and if G is a bipartite graph then $L^{+}(G)$ and $L(G)$ have the same characteristic polynomial [1]. Let

$$
\begin{gathered}
0=\mu_{n}(G) \leq \mu_{n-1}(G) \leq \cdots \leq \mu_{1}(G) \\
\mu_{n}^{+}(G) \leq \mu_{n-1}^{+}(G) \leq \cdots \leq \mu_{1}^{+}(G)
\end{gathered}
$$

be the eigenvalues of $L(G)$ and $L^{+}(G)$, respectively.
The line graph $\mathcal{L}(G)$ is the graph whose vertex set is in one-to-one correspondence with the set of edges of G where two vertices of $\mathcal{L}(G)$ are adjacent if and only if the corresponding edges in G have a vertex in common [12]. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be the vertex set and edge set of the graph G, respectively. The incidence matrix of G is the $n \times m$ matrix $I(G)$ whose (i, j)-entry is 1 if v_{i} is incident to e_{j} and 0 otherwise. It is known [1] that

$$
\begin{equation*}
I(G) I(G)^{T}=D(G)+A(G)=L^{+}(G) . \tag{10}
\end{equation*}
$$

The notion of the energy of a graph was introduced by Gutman in 1978 as the sum of the absolute values of its adjacency eigenvalues, it is studied in chemistry and used to approximate the total π-electron energy of a molecule [7,9]. In [11], the Laplacian energy of G is introduced as follows

$$
L E(G)=\sum_{j=1}^{n}\left|\mu_{j}(G)-\frac{2 m}{n}\right| .
$$

Similarly, the signless Laplacian energy of G is defined by

$$
L^{+} E(G)=\sum_{j=1}^{n}\left|\mu_{j}^{+}(G)-\frac{2 m}{n}\right| .
$$

In [10] relations between the energy of the line graph of G, the Laplacian energy and signless Laplacian energy of G are established. In [14] the authors define the Laplacian-energy-like invariant $L E L(G)$ of G as

$$
L E L(G)=\sum_{j=1}^{n} \sqrt{\mu_{j}(G)}
$$

In [16] a lower bound for $\operatorname{LEL}(G)$ in terms of the maximum degree is given and also an upper bound and a lower bound for the Laplacian-energy-like invariant of the line graph of a regular graph G are obtained. More recently, in [2], lower and upper bounds for $\operatorname{LEL}(G)$ are obtained, in terms of the order, number of edges, maximum vertex degree, and number of spanning trees, of the graph G.

The Kirchhoff index of a connected graph G of order n is

$$
K f(G)=n \sum_{j=1}^{n-1} \frac{1}{\mu_{j}(G)}
$$

In [3] the authors compare the $K f(G)$ and $L E L(G)$, among other results, they arrive at a complete comparison of $K f(G)$ and $L E L(G)$ for trees, unicyclic graphs, and bicyclic graphs.

In [13], the authors introduce the concept of the incidence energy $I E(G)$ of G as the sum of the singular values σ_{i} of the incidence matrix $I(G)$. It is well known that the singular values of a matrix M are the nonnegative square root of $M M^{T}$. From this fact and (10), it follows that

$$
\operatorname{IE}(G)=\sum_{j=1}^{n} \sqrt{\mu_{j}^{+}(G)}
$$

Clearly, for bipartite graphs, $L E L(G)=I E(G)$.
Let $G\left(H_{1}, \ldots, H_{r}\right)$ as in Definition 2. We search for a relationship between $\operatorname{LEL}(G)$ and $L E L\left(G\left(H_{1}, \ldots, H_{r}\right)\right)$.

Theorem 7. Let $G(H)$ as in Definition 1. Let

$$
\mu_{1}(H) \geq \mu_{2}(H) \geq \cdots \geq \mu_{s-1}(H) \geq \mu_{s}(H)=0
$$

be the Laplacian eigenvalues of H. Then

$$
\begin{equation*}
L E L(G(H))-L E L(G)=\sum_{j=1}^{s} \sqrt{1+\mu_{j}(H)}-s \tag{11}
\end{equation*}
$$

Proof. From Theorem 4, we have

$$
\begin{equation*}
|\lambda I-L(G(H))|=\lambda P_{H}(\lambda) R(\lambda) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|\lambda I-L(G)|=\lambda(\lambda-1)^{s-1} R(\lambda) \tag{13}
\end{equation*}
$$

where $P_{H}(\lambda)$ is the polynomial in (2) and $R(\lambda)$ is a polynomial of degree $n-s$ such that $R(0) \neq 0$. Hence, from (12) and (13),

$$
\begin{equation*}
L E L(G(H))=\sum_{j=1}^{s-1} \sqrt{1+\mu_{j}(H)}+\sum_{\mu: R(\mu)=0} \sqrt{\mu} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
L E L(G)=(s-1)+\sum_{\mu: R(\mu)=0} \sqrt{\mu} \tag{15}
\end{equation*}
$$

Sustracting (15) from (14), we obtain

$$
L E L(G(H))-L E L(G)=\sum_{j=1}^{s} \sqrt{1+\mu_{j}(H)}-s
$$

The proof is complete.
Let $G\left(H_{1}, \ldots, H_{r}\right)$ as in Definition 2. We know that $G\left(H_{1}\right)$ is the graph obtained from G and H_{1} by identifying the vertices of H_{1} with the pendent vertices of $K_{1, s_{1}}$. Moreover, for $i=2, \ldots, r, G\left(H_{1}, \ldots, H_{i}\right)$ is the graph obtained from $G\left(H_{1}, \ldots, H_{i-1}\right)$ and H_{i} by identifying the vertices of H_{i} with the pendent vertices of $K_{1, s_{i}}$.

Theorem 8. Let $G\left(H_{1}, \ldots, H_{r}\right)$ as in Definition 2. For $1 \leq i \leq r$, let

$$
\mu_{1}\left(H_{i}\right) \geq \mu_{2}\left(H_{i}\right) \geq \cdots \geq \mu_{s_{i}-1}\left(H_{i}\right) \geq \mu_{s_{i}}\left(H_{i}\right)=0
$$

be the Laplacian eigenvalues of the graphs H_{i}. Then

$$
\begin{equation*}
\operatorname{LEL} L\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-\operatorname{LEL}(G)=\sum_{i=1}^{r} \sum_{j=1}^{s_{i}} \sqrt{1+\mu_{j}\left(H_{i}\right)}-\sum_{i=1}^{r} s_{i} \tag{16}
\end{equation*}
$$

Proof. By a repeated application of (11), we obtain

$$
\begin{gathered}
\operatorname{LEL}\left(G\left(H_{1}\right)\right)-L E L(G)=\sum_{j=1}^{s_{1}} \sqrt{1+\mu_{j}\left(H_{1}\right)}-s_{1} \\
\operatorname{LEL}\left(G\left(H_{1}, H_{2}\right)\right)-\operatorname{LEL}\left(G\left(H_{1}\right)\right)=\sum_{j=1}^{s_{2}} \sqrt{1+\mu_{j}\left(H_{2}\right)}-s_{2} \\
\operatorname{LEL}\left(G\left(H_{1}, H_{2}, H_{3}\right)\right)-\operatorname{LEL}\left(G\left(H_{1}, H_{2}\right)\right)=\sum_{j=1}^{s_{3}} \sqrt{1+\mu_{j}\left(H_{3}\right)}-s_{3} \\
\vdots \\
\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r-1}\right)\right)-\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r-2}\right)\right)=\sum_{j=1}^{s_{r-1}} \sqrt{1+\mu_{j}\left(H_{r-1}\right)}-s_{r-1} \\
\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r-1}\right)\right)=\sum_{j=1}^{s_{r}} \sqrt{1+\mu_{j}\left(H_{r}\right)}-s_{r} .
\end{gathered}
$$

Adding these equalities, (16) is obtained.
Now we derive a relationship between $K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)$ and $K f(G)$.
Theorem 9. Let $G(H)$ as in Definition 1. Let

$$
\mu_{1}(H) \geq \mu_{2}(H) \geq \cdots \geq \mu_{s-1}(H) \geq \mu_{s}(H)=0
$$

be the Laplacian eigenvalues of H. Then

$$
\begin{equation*}
K f(G(H))-K f(G)=n \sum_{j=1}^{s} \frac{1}{1+\mu_{j}(H)}-n s \tag{17}
\end{equation*}
$$

Proof. We start by observing that $R(\lambda)$ is a polynomial of degree $n-s$, such that $R(0) \neq 0$. From (12) and (13),

$$
\begin{equation*}
K f(G(H))=n \sum_{i=1}^{s-1} \frac{1}{1+\mu_{i}(H)}+n \sum_{\mu: R(\mu)=0} \frac{1}{\mu} . \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
K f(G)=n(s-1)+n \sum_{\mu: R(\mu)=0} \frac{1}{\mu} . \tag{19}
\end{equation*}
$$

Subtracting (19) from (18), (17) is obtained.

Theorem 10. Let $G\left(H_{1}, \ldots, H_{r}\right)$ as in Definition 2. For $1 \leq i \leq r$, let

$$
\mu_{1}\left(H_{i}\right) \geq \mu_{2}\left(H_{i}\right) \geq \cdots \geq \mu_{s_{i}-1}\left(H_{i}\right) \geq \mu_{s_{i}}\left(H_{i}\right)=0
$$

be the Laplacian eigenvalues of the graphs H_{i}. Then

$$
\begin{equation*}
K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-K f(G)=n\left(\sum_{i=1}^{r} \sum_{j=1}^{s_{i}} \frac{1}{1+\mu_{j}\left(H_{i}\right)}-\sum_{i=1}^{r} s_{i}\right) . \tag{20}
\end{equation*}
$$

Proof. By a repeated application of (17), we obtain

$$
\begin{gathered}
K f\left(G\left(H_{1}\right)\right)-K f(G)=n \sum_{j=1}^{s_{1}} \frac{1}{1+\mu_{j}\left(H_{1}\right)}-n s_{1} \\
K f\left(G\left(H_{1}, H_{2}\right)\right)-K f\left(G\left(H_{1}\right)\right)=n \sum_{j=1}^{s_{2}} \frac{1}{1+\mu_{j}\left(H_{2}\right)}-n s_{2} \\
K f\left(G\left(H_{1}, H_{2}, H_{3}\right)\right)-K f\left(G\left(H_{1}, H_{2}\right)\right)=n \sum_{j=1}^{s_{3}} \frac{1}{1+\mu_{j}\left(H_{3}\right)}-n s_{3} \\
\vdots \\
K f\left(G\left(H_{1}, \ldots, H_{r-1}\right)\right)-K f\left(G\left(H_{1}, \ldots, H_{r-2}\right)\right)=n \sum_{j=1}^{s_{r-1}} \frac{1}{1+\mu_{j}\left(H_{r-1}\right)}-n s_{r-1} \\
K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-K f\left(G\left(H_{1}, \ldots, H_{r-1}\right)\right)=n \sum_{j=1}^{s_{r}} \frac{1}{1+\mu_{j}\left(H_{r}\right)}-n s_{r} .
\end{gathered}
$$

Adding these equalities, (20) is obtained.
Therefore, the differences $\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(G)$ and $K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-$ $K f(G)$ do not depend on the edges between non-pendent vertices of G. That is, if $\widetilde{G}=G+e$ is obtained from G by adding an edge e between two non-pendent vertices of G then

$$
\operatorname{LEL}\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(G)=L E L\left(\widetilde{G}\left(H_{1}, \ldots, H_{r}\right)\right)-L E L(\widetilde{G})
$$

and

$$
K f\left(G\left(H_{1}, \ldots, H_{r}\right)\right)-K f(G)=K f\left(\widetilde{G}\left(H_{1}, \ldots, H_{r}\right)\right)-K f(\widetilde{G})
$$

Acknowledgement. This work has been supported by the Project Fondecyt Regular 1130135, Chile

References

[1] D. Cvetković, P. Rowlinson, S. K. Simić, Signless Laplacian of finite graphs, Lin. Algebra Appl. 423 (2007) 155-171.
[2] K. C. Das, I. Gutman, A. S. Çevik, On the Laplacian-energy-like invariant, Lin. Algebra Appl. 442 (2014) 58-68.
[3] K. C. Das, K. Xu, I. Gutman, Comparison between Kirchhoff index and the Laplacian-energy-like invariant, Lin. Algebra Appl. 436 (2012) 3661-3671.
[4] I. Faria, Permanental roots and the star degree of a graph, Lin. Algebra Appl. 64 (1985), 255-265.
[5] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (1973) 298-305.
[6] J. M. Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Lin. Algebra Appl. 413 (2006) 59-71.
[7] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196-211.
[8] I. Gutman, D. Kiani, M. Mirzkhah, B. Zhou, On incidence energy of a graph, Lin. Algebra Appl. 431 (2009) 1223-1233.
[9] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[10] I. Gutman, M. Robbiano, D. M. Cardoso, E. A. Martins, L. Medina, O. Rojo, Energy of line graphs, Lin. Algebra Appl. 433 (2010) 1312-1323.
[11] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29-37.
[12] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[13] M. R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009) 561-572.
[14] J. Liu, B. Liu, A Laplacian-energy like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008) 397-419.
[15] J. Y Shao, J. M. Guo, H, Y. Shan, The ordering of trees and connected graphs by algebraic connectivity, Lin. Algebra Appl. 428 (2008) 1421-1438.
[16] W. Wang, Y. Luo, On Laplacian-energy-like invariant of a graph, Lin. Algebra Appl. 437 (2012) 713-721.
[17] B. X. Zhu, The Laplacian-energy like of graphs, Appl. Math. Lett. 24 (2011) 1604-1607.

