
Computing Lower Bounds for the Kirchhoff

Index Via Majorization Techniques∗

Gian Paolo Clementea, Alessandra Cornaroa

Department of Mathematics and Econometrics, Catholic University, Milan, Italy

gianpaolo.clemente@unicatt.it, alessandra.cornaro@unicatt.it

(Received July 7, 2014)

Abstract

In this paper, lower bounds for the Kirchhoff index are derived by means of
an algorithm developed with MATLABr software. The procedure localizes the
eigenvalues of the transition matrix adapting for the first time a theoretical method,
proposed in Bianchi and Torriero (2000, see [4]), based on majorization techniques.
Some numerical examples show how sharper bounds can be obtained with respect
to those existing in literature.

1 Introduction

The evaluation of the effective resistance between any pair of vertices of a network and the

computation of the Kirchhoff index have interest in electric circuit and Probability theory

(see [7, 14, 21]). The Kirchhoff index has been also used in Chemistry as an alternative

for discriminating among different molecules with similar shapes and structures (see [19]).

In the literature, several techniques (as graph theory, algebra, electric networks and

so on) have been explored in order to provide general bounds for this index in terms of

invariants of the graph G (see [15, 20, 22]).

In fact, in recent years, there has been an increasing interest in the problem of de-

termining bounds for some relevant topological indicators of graphs. In particular, new

∗We thank Monica Bianchi, Anna Torriero and José Luis Palacios for their valuable comments and
suggestions.

MATCH

Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 73 (2015) 175-193

 ISSN 0340 - 6253

bounds have been obtained in [2] taking into account additional information on the local-

ization of the eigenvalues of some matrices associated to the graph (i.e Laplacian matrix,

Transition matrix, etc.). In this regard, Bianchi et al. [3] have recently proposed a vari-

ety of lower and upper bounds for the Kirchhoff index based on majorization techniques,

whose major advantage is to provide a unified and flexible approach to recover many

bounds in the literature as well as to obtain better ones. For what concerns the localiza-

tion of real eigenvalues, some well–known theoretical inequalities have been provided in

literature (see [18]) which can be used to derive the above mentioned bounds.

Our purpose is instead to compute numerically alternative inequalities involving the

localization of the eigenvalues by adapting for the first time a theoretical methodology

proposed in Bianchi and Torriero [4] based on nonlinear global optimization problems

solved through majorization techniques. By means of these results, we obtain tighter

lower bounds for the Kirchhoff Index for some classes of graphs.

In Section 2 some preliminaries are given. In Section 3 we introduce the Kirchhoff

index presenting lower bounds proposed in [3] for non-bipartite and bipartite graphs;

furthermore, some nonlinear optimization problems, useful for our analysis, are formu-

lated. A computational procedure for determining lower bounds of the Kirchhoff index

and some numerical examples are presented in Section 4. In the appendix, we report both

the procedures used to generated the graphs and to compute lower bounds.

2 Notation and preliminaries

Let ej, j = 1, ...n, be the fundamental vectors of Rn and set:

s0 = 0, sj =

j∑
i=1

ei, j = 1, ..., n,

vn = 0, vj =
n∑

i=j+1

ei, j = 0, ..., (n− 1).

Given two vectors x, y ∈ D = {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn}, the majorization order

x E y means: {〈
x, sk

〉
≤
〈
y, sk

〉
, k = 1, ..., (n− 1)

〈x, sn〉 = 〈y, sn〉

where 〈·, ·〉 is the inner product in Rn.

Given a subset S ⊆ Σa = D∩{x ∈ Rn
+ : 〈x, sn〉 = a}, a vector x∗(S) ∈ S is said to be the

-176-

maximal vector in S with respect to the majorization order if x E x∗(S) for each x ∈ S.

Likewise a vector x∗(S) ∈ S is said to be the minimal vector in S with respect to the

majorization order if x∗(S) E x for each x ∈ S.

In the majorization theory, functions which preserve the majorization order play a

fundamental role. We recall that a symmetric function φ: A→ R, A ⊆ Rn, is said to be

Schur-convex on A if x E y implies φ(x) ≤φ(y). If in addition φ(x) <φ(y) for x E y but

x is not a permutation of y, φ is said to be strictly Schur-convex on A. A function φ is

(strictly) Schur-concave on A if −φ is (strictly) Schur-convex on A.

In particular, given an interval I ⊂ R, and a (strictly) convex function g : I → R,

the function φ(x) =
∑n

i=1 g(xi) is (strictly) Schur-convex on In = I × I × · · · × I︸ ︷︷ ︸
n−times

. The

corresponding result holds if g is (strictly) concave on In.

In what follows we consider strictly Schur-convex functions of the type g(x) =
∑n

i=1 x
p
i ,

where p > 1.

Let us now recall some basic graph notations (for more details see [17]).

Let G = (V,E) be a simple, connected, undirected graph where V = {1, 2, . . . , n} is the

set of vertices and E ⊆ V × V the set of edges, |E| = m.

The degree sequence of G is denoted by π = (d1, d2, .., dn) and it is arranged in non-

increasing order d1 ≥ d2 ≥ · · · ≥ dn, where di is the degree of vertex i.

Let A be the adjacency matrix of G and λ1 (A) ≥ λ2 (A) ≥ ... ≥ λn (A) be the set of its

(real) eigenvalues. Given the diagonal matrix D of vertex degrees, the matrix L = D−A

is known as the Laplacian matrix of G. Let λ1 (L) ≥ λ2(L) ≥ ... ≥ λn(L) = 0 be its

eigenvalues.

The transition matrix is P = D−1A and its real eigenvalues are 1 = λ1(P) > λ2(P) ≥

· · · ≥ λn(P) ≥ −1.

3 The Kirchhoff index

The Kirchhoff index K(G) of a simple connected graph G was first defined by Klein and

Randić in [13] as

K(G) =
∑
i<j

Rij,

where Rij is the effective resistance between vertices i and j, which can be computed

using Ohm’s law.

-177-

This index has been intensively studied in different fields as Chemistry, Complex Net-

works, Electric Networks and others.

An alternative expression of the Kirchhoff index is:

K(G) = n

n−1∑
i=1

1

λi(L)
, (1)

which involves the non-null eigenvalues of the Laplacian L (see [9], [23]).

If G is d-regular, the transition matrix P is given by P = I − 1
d
L and

λn−i+1(P) = 1− λi(L)

d
, i = 1, ..., n.

In this case, we can rewrite (1) in terms of the eigenvalues of the transition matrix P

as follows:

K(G) =
n

d

n∑
i=2

1

1− λi(P)
. (2)

For any connected graph G, the following bounds hold (see Corollary 2 in [15]):(
n

d1

) n∑
i=2

(
1

1− λi(P)

)
≤ K(G) ≤

(
n

dn

) n∑
i=2

(
1

1− λi(P)

)
. (3)

Using a majorization technique that identifies the maximal and minimal vectors of a

variety of subsets of Rn (see [1]), several lower and upper bounds for K(G) have been

derived in [3] through the inequalities (3).

In particular, in what follows, we make use of the lower bounds derived in [3], consider-

ing additional information on the localization of the eigenvalues of the transition matrix P .

We start exploring the case of non-bipartite graphs. If we have an information of the

type

λn (P) ≤ −β < 0, (4)

the bound in terms of β is given by:

K(G) ≥ n

d1

[
1

1 + β
+

(n− 2)2

n− 1− β

]
. (5)

On the other hand, if we assume

λ2 (P) ≥ β > 0, (6)

the bound is given by:

K(G) ≥ n

d1

[
1

1− β
+

(n− 2)2

n− 1 + β

]
. (7)

-178-

In case of bipartite graphs, since λn (P) = −1,, the relation (4) is not significant. Hence

if we set β = 1 in (5), we derive the same bound given in [16], Corollary 3 (for further

details see Section 4.2 later on). Relation (6) is instead equivalent to λn−1 (P) ≤ −β < 0,

by the symmetry of the spectrum. Thus bound (7) can be rewritten as:

K(G) ≥ n

d1

[
β − 3

2 (β − 1)
+

(n− 3)2

n− 3 + β

]
. (8)

In order to obtain the value of β, we make use of nonlinear global optimization prob-

lems solved through majorization techniques studied in [4]. The following Theorems 1

and 2 allow us to compute lower and upper bounds for the eigenvalues of the transition

matrix P and to derive, in particular, the lower bounds (5) and (7) for the Kirchhoff

Index.

Let

νi = 1− λn−i+1(P), i = 1, · · · , (n− 1).

For the vector ν ∈ Rn−1 we have

0 < νn−1 ≤ νn−2 ≤ · · · ≤ ν1 ≤ 2

and
∑n−1

i=1 νi = n since

tr(P) =
n∑
i=1

λi(P) = 0⇒
n∑
i=2

λi(P) = −1.

We now face the set

Sb = {ν ∈ Rn−1
+ :

n−1∑
i=1

νi = n, g(ν) =
n−1∑
i=1

νpi = b}.

where p is an integer greater than 1.

The following fundamental lemma holds (see Lemma 5.1 in [5]):

Lemma 1. Fix b ∈ R and consider the set Sb. Then either b = np

(n−1)p−1 or there exists a

unique integer 1 ≤ h∗ < (n− 1) such that:

np

(h∗ + 1)p−1
< b ≤ np

(h∗)p−1
, (9)

where h∗ =
⌊

p−1

√
np

b

⌋
.

-179-

Proof. Let wh = 1
h
sh, h = 1, ..., (n− 1). We have wh ∈ Σ1 = {ν ∈ Rn−1

+ , 〈ν, sn−1〉 = 1}

and wh+1 Ewh, h = 1, ..., (n− 2).

Furthermore, w1 = e1 and wn−1 =

(
1

n− 1
, ...,

1

n− 1

)
︸ ︷︷ ︸

n−1

are the maximal and the minimal

elements of the set Σ1 with respect to the majorization order. Since g(ν) =
∑n−1

i=1 ν
p
i is

strictly Schur-convex, we obtain:(
1

n− 1

)p−1
<

(
1

n− 2

)p−1
< ... < 1.

Since Sb 6= ∅, there exists ν̂ ∈ Sb. We consider ŵ =

(
1

n

)
ν̂ ∈ Σ1. From g(ν̂) = b and by

homogeneity we have

g(ŵ) =

(
1

n

)p
b =

b

np
. (10)

1. If ŵ = wn−1, then g(ŵ) =

(
1

n− 1

)p−1
and from equation (10) we have

(
1

n− 1

)p−1
=

b

np
. Hence,

np

(n− 1)p−1
= b.

2. If ŵ 6= wn−1 and ŵ 6= w1, from the condition wn−1EŵEw1 we deduce 1
(n−1)p−1 <

b
np ≤ 1. Since g(ŵ) = b

np , there exist a unique integer h∗, where 1 < h∗ < (n − 1),

such that 1
(h∗+1)p−1 <

b
np ≤ 1

(h∗)p−1 and we get the condition (9).

3. If ŵ = w1 = e1 we have that g(ŵ) = 1 and from (10), b = np so that condition (9)

is satisfied for h∗ = 1.

To complete the proof notice that from (9), 1
(h∗+1)p−1 <

b
np ≤ 1

(h∗)p−1 , h∗ ≤ p−1

√
np

b
< h∗+1

and thus h∗ =
⌊

p−1

√
np

b

⌋
.

We can now deduce upper and lower bounds for νh by solving the following optimiza-

tion problems:

max (νh) subject to ν ∈ Sb P (h)

min (νh) subject to ν ∈ Sb P ∗(h)

Theorem 1. The solution of the optimization problem P (h) is (n
n−1) if b = np

(n−1)p−1 .

If b 6= np

(n−1)p−1 , the solution of the optimization problem P (h) is α∗ where

-180-

1. for h > h∗, α∗ is the unique root of the equation

f(α, p) = (h− 1)αp + (n− hα + α)p − b = 0 (11)

in I =
(
0, n

h

]
;

2. for h ≤ h∗, α∗ is the unique root of the equation

f(α, p) = hαp + (n− 1− h)
(n− hα)p

(n− 1− h)p
− b = 0 (12)

in I =
(

n
n−1 ,

n
h

]
.

Theorem 2. The solution of the optimization problem P ∗(h) is (n
n−1) if b = np

(n−1)p−1 .

If b 6= np

(n−1)p−1 , the solution of the optimization problem P ∗(h) is α∗ where

1. for h = 1, α∗ is the unique root of the equation

f(α, p) = h∗αp + (n− h∗α)p − b = 0 (13)

in I =
(

n
h∗+1

, n
h∗

]
;

2. for 1 < h ≤ (h∗ + 1), α∗ is the unique root of the equation

f(α, p) = (n− h)αp + (h− 1)
(n− (n− h)α)p

(h− 1)p
− b = 0 (14)

in I = (0, n
n−1];

3. for h > (h∗ + 1), α∗ is zero.

Theorems 1 and 2 allow us to numerically compute, respectively, the upper and lower

bounds α∗ of νh.

It is noteworthy to underline that the suitable change of variable stating the relation

between λn−h+1(P) and νh leads to derivations of β in (4) and (6). Indeed from ν1 ≥

(1 + β) > 1 follows λn(P) ≤ −β, while from νn−1 ≤ (1 − β) < 1 follows λ2(P) ≥ β. By

using these bounds we obtain lower bounds of the Kirchhoff Index via formulae (5) and

(7).

-181-

4 Numerical examples

In order to compute the lower bound of the Kirchhoff Index, a computational procedure

through MATLABr software has been implemented.

To this aim, for every p ≥ 2, we can rewrite the function g(ν) =
∑n−1

i=1 ν
p
i as follows:

g(ν) =
n−1∑
i=1

νpi =
n−1∑
i=1

(
p∑

k=0

(
p

k

)
(1)k (−λn−i+1(P))p−k

)
=

=

p∑
k=0

(
p

k

)
(−1)p−k

n−1∑
i=1

(λn−i+1(P))p−k =

=

p∑
k=0

(
p

k

)
(−1)p−k

[
n∑
i=1

(λi(P))p−k − (λ1(P))p−k
]

=

=

p∑
k=0

(
p

k

)
(−1)p−k

[
tr
(
P p−k)− 1

]
=

=

p∑
k=0

(
p

k

)
(−1)p−k tr

(
P p−k) .

(15)

Now we describe the procedure used to compute the upper and lower bounds of νh for

1 ≤ h ≤ (n− 1). For our aim, we consider only the upper bound for νn−1 and the lower

bound of ν1.

It is noteworthy that the following procedure is developed for simple, connected and

non-bipartite graphs.

Step 0 generate1 randomly a simple connected graph G by fixing the number of vertices;

I) Upper Bound for νh (see Theorem 1)

Step 1 repeat the following steps for several values of p (with p ∈ N and p > 1) until

a fixed value p∗ is reached and for each h (with 1 ≤ h ≤ (n− 1));

a) evaluate a equal to the number n of vertices of G and b equal to the

right hand side of (15);

b) if b = ap

(n−1)p−1 , then the bound is equal to (a
n−1) and the procedure

stops; otherwise compute h∗ =
⌊

p−1

√
ap

b

⌋
;

c) compare h∗ to h in order to choose the proper equation (11) or (12);

1The graph is generated by using a procedure in MATLABr that allows to derive a simple and
connected graph. For more details see the Appendix.

-182-

d) evaluate the unique root α∗h,p of equation (11) or (12);

Step 2 choose the minimum upper bound α∗h of νh among all the α∗h,p (2 ≤ p ≤ p∗);

Step 3 pick the value of the upper bound α∗n−1 of νn−1 in order to consider the

particular case h = n− 1;

Step 4 set β equal to 1−α∗n−1 in order to evaluate the lower bound (7) and compare

to other bounds existing in literature.

II) Lower Bound for νh (see Theorem 2)

Step 1 repeat the following steps for several values of p (with p ∈ N and p > 1) until

a fixed value p∗ is reached and for each h (with 1 ≤ h ≤ (n− 1));

a) evaluate a equal to the number n of vertices of G and b equal to the

right hand side of (15);

b) if b = ap

(n−1)p−1 , then the bound is equal to (a
n−1) and the procedure

stops, otherwise compute h∗ =
⌊

p−1

√
ap

b

⌋
;

c1) for h = 1 evaluate the unique root α∗1,p of the equation (13);

c2) for 1 < h ≤ (h∗+1) evaluate instead the unique root α∗h,p of the equation

(14);

c3) for h > (h∗ + 1) set α∗h,p equal to zero;

Step 2 choose the maximum lower bound α∗h of νh among all the α∗h,p (2 ≤ p ≤ p∗,

1 ≤ h ≤ (h∗ + 1));

Step 3 pick the value of the lower bound α∗1 of ν1 in order to consider the particular

case h = 1;

Step 4 set β equal to α∗1 − 1 in order to evaluate the lower bound (5) and compare

to other bounds existing in literature.

For bipartite graphs, only case (I) is significant, and in the step (4) β is used in order

to evaluate the proper bound (8).

4.1 Non-bipartite graphs

We now focus only on non-bipartite graphs.

-183-

Table 1 shows the comparison between the bounds (5) and (7) with the bounds

K(G) ≥ (n− 1)2

d1
(16)

in [15] and

K(G) ≥ n

d1

[
1

1 + σ√
n−1

+
(n− 2)2

n− 1− σ√
n−1

]
(17)

in [3] where σ =

√
tr(P 2)
n
−
(
tr(P)
n

)2
=
√

tr(P 2)
n

.

These formulas represent tight lower bounds for the Kirchhoff Index of n-vertex graph in

terms of n and its maximal degree d1. For further details see the corresponding references.

The bounds have been computed for different number of vertices (from 4 to 1000) and

assuming p∗ = 150. The choice of p∗ should be based on a best compromise between

improvement of the results and computational time. Higher values of p need longer cpu

time but not always provide sharper bounds.

Notice (see Table 1) that both lower bounds (5) and (7) are tighter than bounds (16)

and (17), but as n increases, slighter and slighter differences are observed. For a better

readability, in the lower part of the table we report the absolute value of the difference

between the bound and the Kirchhoff Index and the relative errors, obtained dividing the

absolute value by K(G). Finally, for a better comparison, we provide the ratio between

the errors of bound (17) and bound (5).

n d1 m K(G) bound (5) bound (7) bound (16) bound (17)

4 2 3 10.0 5.51 4.82 4.50 4.52
5 3 6 10.2 5.84 5.42 5.33 5.34
10 6 23 21.5 14.34 13.52 13.50 13.50
20 15 105 37.4 25.12 24.07 24.07 24.07
30 21 223 61.3 41.12 40.05 40.05 40.05
50 30 612 101.5 81.19 80.03 80.03 80.03
100 65 2553 195.8 151.33 150.78 150.78 150.78
200 116 9907 403.7 341.70 341.39 341.39 341.39
300 173 22257 606.4 516.95 516.77 516.77 516.77
500 285 62571 998.8 873.71 873.69 873.69 873.69
1000 548 249224 2,006.2 1,821.18 1,821.17 1,821.17 1,821.17

absolute errors (e) relative errors (r) ratio of abs. errors
n e(5) e(17) r(5) r(17) e(17)/e(5)

4 4.49 5.18 44.95% 51.84% 1.15
5 4.41 4.83 43.05% 47.15% 1.10
10 7.16 7.98 33.29% 37.10% 1.11
20 12.25 13.30 32.79% 35.60% 1.09
30 20.21 21.28 32.95% 34.69% 1.05
50 20.36 21.51 20.05% 21.19% 1.06
100 44.51 45.05 22.73% 23.01% 1.01
200 62.04 62.35 15.37% 15.44% 1.00
300 89.47 89.66 14.75% 14.78% 1.00
500 125.08 125.09 12.52% 12.52% 1.00
1000 185.04 185.05 9.22% 9.22 % 1.00

Table 1: Lower bounds for K(G) and errors

In this regard, Figure 1 shows that both the upper bound of νn−1, used in (7), and the

value of 1 + σ√
n−1 in (17) tend to 1 providing similar lower bounds for K(G). Conversely

-184-

higher values of ν1 lead to an improvement of the results, as bound (5) shows. However,

when the number of vertices is really high (roughly greater than 500), also the lower bound

of ν1 assumes values almost equal to one leading to bounds really similar to equations (7)

and (17).

Figure 1: Lower bound of ν1, Upper bound of νn−1 and 1 + σ√
n−1 used in (17)

It should be noticed that the results of the procedure used to generate the graph are

based on a probability of existence of edges q equal to 0.5 following the Erdös-Rényi model

GER(n, q) (see [6, 8, 10, 11]). In this model, the graph is constructed by connecting nodes

randomly such that edges are included with probability independent from every other

edge. We obtain that the generated graphs have a number of edges not far from the half

of its maximum value as proved in the literature (see for example [12]).

Furthermore, the parameter q can be thought of as a weighting function. As q increases

from 0 to 1, the model becomes more and more likely to include graphs with more edges

and less and less likely to include graphs with fewer edges. In this regard, we assign several

values of q moving from the default value of 0.5. Table 2 shows that bound (5) performs

better than other bounds also when lower values of probability q are considered. For sake

of simplicity we report only the values of bound (17) for comparison, while other bounds

provide worse values in this case too. Moreover, it is confirmed that the density of the

graphs increases as long as greater probabilities are considered. As expected, for dense

graphs, we observe a lower value for the Kirchhoff Index. Finally, we can observe that the

performance of both bounds worsens as q get smaller as relative errors show. However it

could be noticed how for large graphs we have a greater improvement for lower values of

q.

-185-

q = 0.1 q = 0.3

n d1 m K(G) r(5) r(17) e(17)/e(5) d1 m K(G) r(5) r(17) e(17)/e(5)

4 2 3 10.00 44.95% 54.82% 1.22 2 3 10.00 47.68% 51.84% 1.09
5 3 4 18.00 64.56% 70.29% 1.09 3 6 10.25 43.05% 47.15% 1.10
10 3 10 96.17 68.06% 71.88% 1.06 5 14 51.91 64.95% 68.67% 1.06
20 5 27 293.72 73.23% 75.41% 1.03 9 55 89.06 51.30% 54.94% 1.07
30 9 55 454.84 78.21% 79.45% 1.02 13 135 108.23 36.96% 40.22% 1.09
50 10 129 754.25 67.04% 68.17% 1.02 25 377 176.42 44.74% 45.56% 1.02
100 19 515 1,132.79 53.49% 54.46% 1.02 40 1503 342.19 27.98% 28.40% 1.01
200 37 2017 2,168.41 49.88% 50.64% 1.02 79 5956 681.75 26.37% 26.47% 1.00
300 42 4458 3,213.32 33.08% 33.76% 1.02 111 13368 1,019.16 20.93% 20.97% 1.00
500 70 12361 5,228.61 31.62% 31.97% 1.01 184 37435 1,678.17 19.36% 19.36% 1.00
1000 134 49887 10,181.79 26.67% 26.85% 1.01 343 149718 3,348.29 13.10% 13.10% 1.00

q = 0.7 q = 0.9

n d1 m K(G) r(5) r(17) e(17)/e(5) d1 m K(G) r(5) r(17) e(17)/e(5)

4 2 3 10.00 44.95% 51.84% 1.15 3 5 4.00 20.44% 24.15% 1.18
5 3 6 10.25 40.31% 47.15% 1.17 4 9 4.67 13.11% 14.08% 1.07
10 8 33 13.18 20.52% 23.12% 1.13 9 39 10.92 17.13% 17.60% 1.03
20 17 131 29.05 24.99% 26.90% 1.08 19 172 21.20 10.03% 10.37% 1.03
30 23 289 45.43 18.15% 19.51% 1.07 29 397 31.96 9.05% 9.26% 1.02
50 41 831 73.61 19.73% 20.45% 1.04 48 1105 54.57 8.22% 8.34% 1.01
100 84 3515 140.63 16.74% 17.03% 1.02 96 4454 110.27 7.37% 7.42% 1.01
200 156 13944 285.18 10.91% 10.98% 1.01 189 17930 221.09 5.22% 5.23% 1.00
300 234 31281 429.93 11.10% 11.14% 1.00 281 40345 332.63 4.35% 4.35% 1.00
500 384 87410 713.32 9.09% 9.10% 1.00 469 112346 554.34 4.22% 4.23% 1.00
1000 744 349583 1,428.70 6.11% 6.11% 1.00 926 449725 1,109.82 2.89% 2.89% 1.00

Table 2: Relative errors for Lower bounds for K(G) of randomly generated graphs with
several probabilities of existence of edges

We observe then that the proposed procedure improves existing bounds according to

randomly generated graphs, but the improvement appears reduced for very large graphs.

Furthermore the complexity of the algorithm increases as either the number of vertices

or the value of p∗ increases. In this regard, it could be noteworthy that both the upper

bound of νn−1 and the lower bound of ν1 have been obtained by picking, respectively,

the minimum and the maximum value observed among different p, allowing us to get

the tighter one. Numerical analysis shows that usually the upper bounds of νh with

h = 1, ..., (n − 1) improve monotonically, when p increases, down to a minimum value.

After this threshold, further values of p are not significant for the performed procedure.

In particular, as long as νn−1 is considered, this minimum value is reached for lower values

of p (usually equal to 2), while to achieve the best bound for the first values of νh greater

p are needed.

For what concerns the lower bound of ν1, we observe a monotonic behaviour when p

increases. However, for very high values of p (for example for p > 100), we obtain

negligible improvements.

In Table 3, we report main results derived by generating 1, 000 sampled graphs for

some combinations of n and q. A sufficiently large value of p∗ has been picked in order

to assure an improvement not lower than 10−3 for the lower bound of ν1. We provide

the average and the standard deviation of the cpu time2 needed for graph generation

2Results have been obtained with a Desktop PC (Intel Core 2 Duo Processor E7500, 2.93 GHz and
4GB RAM) and the time has been derived by evaluating in a separate way the lower bound of ν1 and

-186-

and bounds evaluation (derived for 2 ≤ p ≤ p∗). Furthermore, the minimum and the

maximum time value among the samples are included.

Last three columns in the table display the average value, the minimum and the

maximum of the ratios between the errors of bound (17) and bound (5).

n q p∗ average time standard dev. (time) min(time) max(time) average ratio min ratio max ratio

10 0.1 50 0.18 0.05 0.14 0.50 103.84% 101.13% 111.86%
10 0.3 50 0.15 0.01 0.14 0.18 107.25% 101.99% 120.64%
10 0.5 50 0.15 0.01 0.14 0.20 108.86% 101.77% 125.82%
10 0.7 50 0.14 0.01 0.13 0.18 110.94% 101.92% 127.80%
10 0.9 50 0.15 0.01 0.13 0.19 105.54% 100.00% 118.20%
20 0.1 50 0.38 0.14 0.25 1.06 102.19% 100.00% 104.18%
20 0.3 50 0.30 0.09 0.22 0.64 107.57% 100.00% 119.69%
20 0.5 50 0.27 0.10 0.22 1.07 105.39% 100.00% 111.08%
20 0.7 50 0.22 0.07 0.17 0.50 105.82% 100.00% 111.90%
20 0.9 50 0.20 0.05 0.16 0.52 102.40% 100.00% 104.94%
50 0.1 50 0.56 0.58 0.40 5.55 101.66% 100.00% 103.31%
50 0.3 50 0.55 0.28 0.41 2.20 102.39% 100.00% 103.91%
50 0.5 50 0.48 0.19 0.40 1.70 103.99% 100.00% 106.01%
50 0.7 50 0.52 0.17 0.40 1.36 104.28% 100.00% 106.79%
50 0.9 50 0.54 0.30 0.41 3.03 101.40% 100.00% 102.21%
100 0.1 50 1.98 0.56 1.63 4.90 101.77% 100.00% 102.59%
100 0.3 50 1.98 0.48 1.63 4.08 101.33% 100.00% 102.07%
100 0.5 50 1.97 0.58 1.51 5.16 102.10% 100.00% 103.13%
100 0.7 50 1.86 0.47 1.48 3.57 102.16% 100.00% 103.08%
100 0.9 50 1.91 0.49 1.51 3.88 100.67% 100.00% 101.09%
200 0.1 40 9.25 2.30 6.19 16.21 102.08% 100.00% 102.71%
200 0.1 20 2.03 0.82 1.29 5.61 101.99% 100.00% 102.73%
200 0.3 40 11.68 2.93 6.81 20.81 100.43% 100.00% 100.58%
200 0.3 20 3.03 0.85 1.29 7.61 100.33% 100.00% 100.57%
200 0.5 40 13.51 1.24 10.75 16.19 100.69% 100.48% 100.83%
200 0.5 20 2.17 0.63 1.52 3.77 100.58% 100.37% 100.76%
200 0.7 40 10.83 1.26 8.61 14.38 100.68% 100.57% 100.86%
200 0.7 20 2.16 0.59 1.54 3.57 100.60% 100.39% 100.93%
200 0.9 40 10.94 0.74 9.50 12.06 100.22% 100.14% 100.27%
200 0.9 20 2.27 0.63 1.58 3.54 100.11% 100.04% 100.17%
1000 0.1 20 151.57 8.14 146.20 173.80 100.31% 100.27% 100.35%
1000 0.1 2 2.22 0.59 1.80 4.57 100.14% 100.00% 100.18%
1000 0.3 20 151.86 9.52 142.44 171.14 100.03% 100.03% 100.04%
1000 0.3 2 1.90 0.10 1.83 2.36 100.00% 100.00% 100.00%
1000 0.5 20 138.44 0.77 136.88 139.37 100.05% 100.04% 100.07%
1000 0.5 2 2.16 0.25 2.04 3.68 100.01% 100.00% 100.01%
1000 0.7 20 161.66 7.32 151.96 170.51 100.01% 100.00% 100.01%
1000 0.7 2 2.45 0.45 2.05 4.06 100.01% 100.00% 100.01%
1000 0.9 20 149.46 5.14 142.08 157.01 100.01% 100.00% 100.01%
1000 0.9 2 2.25 0.32 2.02 3.45 100.01% 100.00% 100.01%

Table 3: Cpu time and bounds improvements for several G(n, q) generated graphs

It could be noticed how the bounds are calculated in less than one second when the

number of vertices is lower than 100 for all the generated graphs. In these cases, the

average ratio is always greater than 1 and bound (17) never performs better than bound

(5). Time is obviously increasing for larger graphs, but the procedure is longer than one

minute only when the number of vertices is roughly greater than 350-400 and p∗ is at

least equal to 30-40 (for the sake of simplicity only main results are reported in Table 3).

According to large graphs, very low values of p (for example p = 2 in Table 3), leads to

very low cpu time (roughly 2 seconds for 1,000 vertices) and to smaller improvements.

However for these graphs, the procedure could be revised for bounds (5) fixing as a prior

a sufficiently large value of p in order to avoid the iterative process and to reduce the

computational time. For example, for the generated graph with 1000 vertices, if we fix

the upper bound of νn−1.

-187-

directly p = p∗ = 20, we derive the lower bound (5) in approximately 30 seconds instead

of 150 seconds obtained by the iterative procedure (see Table 3).

Table 4 shows relative errors and ratios for bounds computed by using G(n,m) Erdös–

Rényi variant where a random graph is picked out of those with n nodes and m edges. A

significant sample (1, 000) of random graphs is here derived and mean, standard deviation

and variability coefficient (CV) of relative errors are detailed. An interesting scenario is

depicted since by increasing the number of edges, we observe lower values of sample mean

and sample variance. Also for G(n,m) variant, bound (5) performs better but ratios tend

to 1 for greater n.

n m average r(5) standard dev. r(5) CV(r(5)) average ratio min ratio max ratio

10 15 0.61 0.08 0.13 105.93% 102.69% 112.07%
10 20 0.50 0.09 0.18 105.33% 102.17% 112.33%
10 40 0.13 0.01 0.05 102.93% 102.47% 103.23%
50 100 0.74 0.04 0.05 100.97% 100.59% 101.61%
50 500 0.32 0.04 0.12 103.05% 101.96% 104.60%
50 1000 0.13 0.02 0.16 100.89% 100.54% 101.18%
100 200 0.78 0.03 0.03 100.61% 100.41% 100.81%
100 1000 0.39 0.04 0.09 101.64% 100.92% 102.29%
100 2000 0.25 0.03 0.12 101.70% 101.02% 102.42%
100 4000 0.11 0.02 0.14 100.42% 100.26% 100.55%
500 1500 0.74 0.03 0.04 100.01% 100.01% 100.01%
500 5000 0.48 0.03 0.06 100.01% 100.01% 100.02%
500 10000 0.36 0.03 0.09 100.01% 100.01% 100.02%
500 50000 0.15 0.02 0.10 100.02% 100.01% 100.02%
500 100000 0.06 0.01 0.11 100.03% 100.02% 100.03%
1000 5000 0.63 0.02 0.04 100.00% 100.00% 100.01%
1000 10000 0.50 0.03 0.06 100.00% 100.00% 100.00%
1000 100000 0.18 0.01 0.08 100.00% 100.00% 100.01%

Table 4: Relative errors and ratios of bounds according to G(n,m) generated graphs

4.2 Bipartite graphs

We bring now our attention to bipartite graphs.

To this aim we compare bound (8) with bound (16) and bound

K(G) ≥ n(2n− 3)

2d1
(18)

in [16], Corollary 3.

Previous bounds have been derived both for path graphs, Pn, and trees, T , as reported

in Table 5. The procedure is not significant for the star graph. In fact, being a particular

case of complete bipartite graph K1,n−1, λ2(P) is equal to zero and then by formula (8)

we get the bound (18).

Non-bipartite graphs display a similar pattern to bipartite graphs since bound (8)

provides an improvement respect to both bounds (16) and (18). Table 5 depicts slighter

differences for larger graphs in this case too. However it could be noticed how the absolute

improvement of bound (8) respect to other bounds is greater than non-bipartite graphs

-188-

for high number of vertices. On the other hand, all the bounds are far from the exact

value of K(G) with increasing relative errors.

Path Graphs Pn

n d1 m K(G) Bound (8) Bound(16) Bound(18) r(8) r(18) e(18)/e(8)

4 2 3 10 5.24 4.50 5.00 47.61% 50.00% 104.77%
5 2 4 20 9.05 8.00 8.75 54.76% 56.25% 103.41%
10 2 9 165 43.01 40.50 42.50 73.93% 74.24% 101.20%
20 2 19 1,330 185.81 180.50 185.00 86.03% 86.09% 100.44%
30 2 29 4,495 428.56 420.50 427.50 90.47% 90.49% 100.25%
50 2 49 20,825 1,214.00 1,200.50 1,212.50 94.17% 94.18% 100.12%
100 2 99 166,650 4,927.46 4,900.50 4,925.00 97.04% 97.04% 100.05%
200 2 199 1.33E+06 19,854.16 19,800.50 19,850.00 98.51% 98.51% 100.02%
300 2 299 4.50E+06 44,780.76 44,700.50 44,775.00 99.00% 99.00% 100.01%
500 2 499 2.08E+07 124,633.80 124,500.50 124,625.00 99.40% 99.40% 100.01%
1000 2 999 1.67E+08 499,266.01 499,000.50 499,250.00 99.70% 99.70% 100.00%

Trees T

n d1 m K(G) Bound(8) Bound(16) Bound(18) r(8) r(18) e(18)/e(8)

4 2 3 10 5.24 4.50 5.00 47.61% 50.00% 104.77%
5 2 4 20 9.05 8.00 8.75 54.76% 56.25% 103.41%
10 3 9 150 28.66 27.00 28.33 80.89% 81.11% 101.16%
20 4 19 783 92.88 90.25 92.50 88.14% 88.19% 100.41%
30 5 29 1,890 171.40 168.20 171.00 90.93% 90.95% 100.24%
50 7 49 5,885 346.83 343.00 346.43 94.11% 94.11% 100.12%
100 7 99 33,798 1,407.82 1,400.14 1,407.14 95.83% 95.84% 100.05%
200 7 199 1.63E+05 5,672.59 5,657.29 5,671.43 96.51% 96.51% 100.02%
300 8 299 3.62E+05 11,195.16 11,175.13 11,193.75 96.91% 96.91% 100.01%
500 12 499 1.14E+06 20,772.28 20,750.08 20,770.83 98.18% 98.18% 100.01%
1000 12 999 5.36E+06 83,210.97 83,166.75 83,208.33 98.45% 98.45% 100.00%

Table 5: Lower Bounds and errors for K(G) for path graphs and trees

Finally, Table 6 reports mean and standard deviation of cpu time and ratios according

to 1,000 samples of trees for each combination. In this case, we have a lower cpu time for

the generation of the graphs leading to observe a lower overall cpu time than non-bipartite

graphs.

n p∗ average time standard dev. (time) min(time) max(time) average ratio min ratio max ratio

10 50 0.19 0.01 0.18 0.26 101.12% 100.97% 101.20%
20 50 0.38 0.23 0.21 1.35 100.48% 100.42% 100.53%
50 50 0.60 0.31 0.39 2.86 100.17% 100.12% 100.22%
100 50 2.35 1.32 1.44 12.30 100.14% 100.00% 100.53%
200 40 6.83 2.17 5.56 18.41 100.07% 100.00% 100.12%
200 20 1.99 0.72 1.36 5.19 100.02% 100.00% 100.07%
1000 20 142.94 14.38 133.73 201.35 100.01% 100.00% 100.05%
1000 2 2.26 0.39 1.73 3.71 100.01% 100.00% 100.05%

Table 6: Cpu time and bounds improvements for several trees

5 Conclusions

In this paper we provide an algorithm to compute lower bounds for the Kirchhoff index

taking into account additional information on the localization of the eigenvalues of the

transition matrix of the graph. To this aim upper and lower bounds of the eigenvalues are

derived by means of the solution of a class of suitable nonlinear optimization problems

based on majorization techniques. Some numerical examples show how sharper bounds

can be obtained with respect to those existing in literature. In particular, the compari-

son has been done randomly generating both bipartite and non-bipartite graphs with a

-189-

different number of vertices. We point out that best results of non-bipartite graphs have

been obtained considering the additional information given by the upper bound on the

last eigenvalue of the transition matrix. For what concerns bipartite graphs, only the ad-

ditional information on the lower bound of the second eigenvalue of the transition matrix

provides significant results leading to a tighter bound.

Appendix A. MATLABr code

The following function generates randomly a graph mainly based on Matgraph package3.

The type of the graph is requested as an input. Either G(n, p) or G(n,m) ER variants are

used to generate simple non-bipartite graphs. Path and Tree, through the Prüfer4 code,

can be derived too. Finally, the code assures that the graph is connected. The function

gives back as output the adjacency matrix A of the generated graph. In the numerical

application presented in Section 4 we consider all the graphs here presented.

function [A]=GenerateRandGraph (type , vert , q ,m)

g = graph
done=f a l s e
while ∼ done
switch type

case 1
%ER G(n , p)
random(g , vert , q)

case 2
%ER Tree (n)
random tree (g , ve r t)

case 3
%Path (n)
path (g , ve r t)

case 4
%ER G(n ,m)
A=zeros (vert , ve r t) ;
while sum(sum(A))/2 < m

i=randint (1 , 1 , [1 , ve r t]) ; j=rand int (1 , 1 , [1 , ve r t]) ;
i f i==j | A(i , j)>0; cont inue ; end % avoid s e l f−l oops or doub le edges
A(i , j)=A(i , j)+1; A(j , i)=A(i , j) ;

end
f a s t s e t ma t r i x (g , l o g i c a l (A)) ;

end
done=i s connec t ed (g) ;
end
A=matrix (g) ;
f r e e (g)

The following function evaluates the lower bounds through formulae (5) and (7) for

simple and connected graphs by using the procedure previously described for a defined

number of vertices. In a similar way, the lower bound through formula (8) is obtained

3See Matgraph package by E. R. Scheinerman for functions’ details
4The Prüfer sequence of a labeled tree is a unique sequence associated to the tree. The sequence for

a tree on n vertices has length n− 2 and it can be generated by a simple iterative algorithm. It is a way
to map bijectively trees on n vertices into n− 2 long sequences of integers drawn from n.

-190-

for bipartite graphs. As an input, the type of graph and the maximum value of p to be

computed (i.e. p∗) is also required. Some characteristics of the graph (number of vertices,

maximum degree d1 and number of edges), the value of K(G) and a comparison with the

bounds (16), (17) or 18 are provided as main outputs.

function [out]=LBKirchhoffIndex (type , vert , pstar , q ,m)
t ic

A=GenerateRandGraph (type , vert , q ,m) ;
D=diag (sum(A, 2) , 0) ;
deg=max(diag (D)) ;
P=inv (D)∗A;
L=D−A;

a=ver t ;
n=a ;
b=zeros (1 , p s ta r) ;
lb nu=zeros (vert −1, pstar −1);
ub nu=zeros (vert −1, pstar −1);
for p=2: ps ta r

for k=0:p
b(p)=b(p)+ f a c t o r i a l (p)/ (f a c t o r i a l (k)∗ f a c t o r i a l (p−k))∗(−1)ˆ(p−k)∗ (trace (Pˆ(p−k))−1) ;
end

i f b(p)==(aˆp) / ((n−1)ˆ(p−1))
lb nu (: , p−1)=(a /(n−1)) .∗ ones (vert −1 ,1) ;
ub nu (: , p−1)=(a /(n−1)) .∗ ones (vert −1 ,1) ;

else
i f b(p)>0

hs ta r=f loor (nthroot (aˆp/b(p) , p−1)) ;
i f hstar<(n−1)

%Compute Upper Bounds o f nu
for h=1: vert−1

i f hstar<h
func=@(a l f a) (h−1)∗(a l f a ˆp)+(a−h∗ a l f a+a l f a)ˆp−b(p) ;
ub nu (h , p−1)=fzero (func , [+10ˆ(−20) , a/h]) ;

else
func=@(a l f a)h∗(a l f a ˆp)+(n−1−h)∗ ((a−h∗ a l f a)ˆp) / ((n−1−h)ˆp)−b(p) ;
ub nu (h , p−1)=fzero (func , [a /(n−1)+10ˆ(−20) ,a/h]) ;

end
%Compute Lower Bounds o f nu
i f h==1

func=@(a l f a) hs ta r ∗(a l f a ˆp)+(a−hstar ∗ a l f a)ˆp−b(p) ;
lb nu (h , p−1)=fzero (func , [a /(hs ta r +1) ,a/ hs ta r]) ;

else i f (h<=hstar+1)
func=@(a l f a) (n−h)∗ (a l f a ˆp)+(h−1)∗((a−(n−h)∗ a l f a)ˆp) / ((h−1)ˆp)−b(p) ;
lb nu (h , p−1)=fzero (func , [10ˆ(−20) , a /(n−1)]) ;

end
end

end
end

end
end

end

lambda=sort (round(eig (L) .∗10ˆ10) . / (10ˆ10) , ’ descend ’) ;
KG=sum(1 . / lambda (1 :end−1) ,1) .∗ (ve r t) ;

switch type
case {1 ,4}

LBEq5=ver t /deg ∗(1/max(lb nu (1 , :))+(vert −2)ˆ2/(vert−max(lb nu (1 , :)))) ;
LBEq7=ver t /deg ∗(1/min(ub nu (end , :))+ (vert −2)ˆ2/(vert−min(ub nu (end , :)))) ;
sigma=sqrt (trace (Pˆ2)/ vert−(trace (P)/ ve r t) . ˆ 2) ;
LBEq17=ver t /deg ∗(1/(1+ sigma/sqrt (vert −1))+(vert −2)ˆ2/(vert−1−sigma/sqrt (vert −1))) ;
LBEq16=(vert −1)ˆ2/deg ;
out=[ve r t deg sum(sum(triu (A, 0)) , 2) KG LBEq5 LBEq7 LBEq16 LBEq17] ;

case {2 ,3}
LBEq16=(vert −1)ˆ2/deg ;

-191-

LBEq8=ver t /deg∗(1/2+1/min(ub nu (end , :))+ (vert −3)ˆ2/(vert−2−min(ub nu (end , :)))) ;
LBEq18=ver t ∗(2∗ vert −3)/(2∗deg) ;
out=[ve r t deg sum(sum(triu (A, 0)) , 2) KG LBEq8 LBEq16 LBEq18] ;

end
toc

end

For further details about the MATLABr code, please feel free to contact any of the

authors.

References

[1] M. Bianchi, A. Cornaro, A. Torriero, Majorization under constraints and bounds of

the second Zagreb index, Math. Ineq. Appl. 16 (2013) 329–347.

[2] M. Bianchi, A. Cornaro, A. Torriero, A majorization method for localizing graph

topological indices, Discr. Appl. Math. 161 (2013) 2731–2739.

[3] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Bounds for the Kirkhhoff index

via majorization techniques, J. Math. Chem. 51 (2013) 569–587.

[4] M. Bianchi, A. Torriero, Some localization theorems using a majorization technique,

J. Inequ. Appl. 5 (2000) 433–446.

[5] M. Bianchi, A. Torriero, A Majorization Approach for Solving Nonlinear Optimiza-

tion Problems , in Convessità e calcolo parallelo, Libreria Universitaria Editrice,

Verona, 1997.

[6] B. Bollobás, Random Graphs , Cambridge Univ. Press, London, 2001.

[7] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum,

Discr. Appl. Math. 155 (2007) 654–661.

[8] F. R. K. Chung, L. Lu, V. Vu, The spectra of random graphs with given expected

degrees, Proc. Nat. Acad. Sci. 100 (2003) 6313–6318.

[9] I. Gutman, B. Mohar, The quasi–Wiener and the Kirchhoff indices coincide, J. Chem.

Inf. Comput. Sci. 36 (1996) 982–985.

[10] P. Erdös, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung.

Acad. Sci. 5 (1960) 17–61.

[11] P. Erdös, A. Rényi, On Random Graphs I, Publ. Math. 6 (1959) 290–297.

[12] E. Estrada, The Structure of Complex Networks: Theory and Applications , Oxford

Univ. Press, New York, 2011.

-192-

[13] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.

[14] I. Lukovits, S. Nikolić, N. Trinajstić, Resistance distance in regular graphs, Int. J.

Quantum Chem. 71 (1999) 217–225.

[15] J. L. Palacios, J. M. Renom, Broder and Karlin’s formula for hitting times and the

Kirchhoff index, Int. J. Quantum Chem. 111 (2011) 35–39.

[16] J. L. Palacios, J. M. Renom, Bounds for the Kirchhoff index of regular graphs via

the spectra of their random walks, Int. J. Quantum Chem. 110 (2010) 1637–1641.

[17] R. J. Wilson, Introduction to Graph Theory , Addison–Wesley, Reading, 1996.

[18] G. P. Wolkowicz, G. P. H. Styan, Bounds for eigenvalues using trace, Lin. Algebra

Appl. 29 (1980) 471–506.

[19] W. Xiao, I. Gutman, Resistance distance and Laplacian spectrum, Theor. Chem.

Acc. 110 (2003) 284–289.

[20] Y. Yang, H. Zhang, D. Klein, New Nordhaus–Gaddum–type results for the Kirchhoff

index, J. Math. Chem. 49 (2011) 1–12.

[21] H. P. Zhang, Y. J. Yang, Resistance distance and Kirchhoff index in circulant graphs,

Int. J. Quantum Chem. 107 (2007) 330–339.

[22] B. Zhou, N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455 (2008)

120–123.

[23] H. Y. Zhu , D. J. Klein, I. Lukovits, Extensions of the Wiener number, J. Chem. Inf.

Comput. Sci. 36 (1996) 420–428.

-193-

