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Abstract

Let G be a simple graph with n vertices, and let λ1(G), λ2(G), . . . , λn(G) be its eigen-
values. The resolvent Estrada index of G is defined as

EEr(G) =
n∑
i=1

(
1− λi(G)

n− 1

)−1
.

In this paper, we show that EEr(G) can be determined directly by the characteristic
polynomial of the graph G. By using this result, we determine the first thirteen trees with
the greatest resolvent Estrada index, and characterize the multipartite graphs having the
maximal resolvent Estrada index.

1 Introduction

Let G = (V,E) be a simple graph of order n with vertex set V (G) and edge set E(G).

A walk W of length k in G is a sequence of vertices v0v1v2 · · · vk, where vi is adjacent to

vi+1 for each i = 0, 1, . . . , k − 1. In particular, if v0 = vk, then W is a closed walk. The

adjacency matrix of G, denoted by A(G), is the n × n matrix (aij) in which aij = 1 if

the vertices vi and vj are adjacent, and aij = 0 otherwise. The characteristic polynomial

of G, denoted by φ(G, λ), is defined to be the characteristic polynomial of its adjacency

matrix, that is, φ(G, λ) = det(λI − A(G)). Observe that A(G) is real and symmetric, so
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all its eigenvalues λ1(G), λ2(G), . . . , λn(G) are real. We assume, without loss of generality,

that λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), and call them the eigenvalues (or spectrum) of G.

In particular, λ1(G) is called the largest eigenvalue (or spectral radius) of G. The basic

properties of graph eigenvalues can be found in the excellent monograph [4].

For k ≥ 0, let Mk(G) denote the kth spectral moment of a graph G, namely,

Mk(G) = tr(A(G)k) =
n∑
i=1

λi(G)k,

where tr(·) is the trace of a matrix. It is known [4] that Mk(G) is equal to the number

of closed walks of length k in G. Thus, the spectral moments become the basis of several

structural invariants for graphs, one of which is defined by Estrada [11] as the Taylor

expansion of the spectral moments of the form

EE(G) =
∞∑
k=0

Mk(G)

k!
, (1)

which has the following closed form in terms of the graph spectrum

EE(G) =
n∑
i=1

eλi(G).

This exponential-based quantity, later called the Estrada index by de la Peña, Gutman

and Rada [6], has found a great deal of applications in various fields. It was initially used

to quantify the degree of folding of protein chains [11]. Later, it was exploited to measure

the centrality of complex (communication, social, metabolic, etc.) networks (in this case

it was also called the subgraph centrality) [12]. In addition, a connection between the

Estrada index and the concept of extended atomic branching was found in [13]. Due

to its extensive applications, the Estrada index has also attracted much attention of

mathematicians in the past few years. Various mathematical properties of the Estrada

index have been investigated, see [16] for a comprehensive survey.

Recently, Estrada and Higham [14] proposed a general formulation for the invariants

of a graph G based on Taylor series expansion of spectral moments

EE(G, c) =
∞∑
k=0

ckMk(G).

This general formulation was applied to complex networks by considering the following

invariant [14]

EEr(G) =
∞∑
k=0

Mk(G)

(n− 1)k
, (2)

-164-



which eventually converges to the trace of the resolvent of the adjacency matrix of a graph

G

EEr(G) = tr

(
I− 1

n− 1
A(G)

)−1
=

n∑
i=1

(
1− λi(G)

n− 1

)−1
, (3)

where I is the unity matrix of appropriate size. This resolvent-based quantity was later

referred to as the resolvent Estrada index by Benzi and Boito [1]. It is worth mentioning

that if G is a non-complete graph, then |λi(G)| < n − 1 for each i ∈ {1, 2, . . . , n} (see,

e.g., [4]), and hence EEr(G) is well-defined.

As far as we know, there are few known results for EEr(G) in the literature, except

some upper and lower bounds obtained in [1, 3]. The aim of the present paper is to

establish more mathematical properties for EEr(G). In the next section, we first discuss

the similarity between EEr(G) and EE(G). Then in Section 3, we would focus on the

properties of EEr(G), which are different from those of EE(G). We show that EEr(G)

can be determined directly by the characteristic polynomial of the graph G. This result

provides us with a tool to compute EEr(G) effectively. By utilizing this tool, we determine

the first thirteen trees with the greatest resolvent Estrada index among all trees with

given number of vertices, and characterize the unique graph having the maximal resolvent

Estrada index among all multipartite graphs with given number of vertices.

2 Similarity between EEr and EE

From (1) and (2), it is evident that both EEr(G) and EE(G) are “increasing monotoni-

cally” with respect to Mk(G). This can be stated formally as follows:

Proposition 1 For two graphs G1 and G2, if Mk(G1) ≥ Mk(G2) holds for all k, then

EEr(G1) ≥ EEr(G2) and EE(G1) ≥ EE(G2). Moreover, if Mk(G1) > Mk(G2) holds for

some k, then EEr(G1) > EEr(G2) and EE(G1) > EE(G2).

For a non-empty graph G, denote by G− e the graph obtained by deleting an edge e

from G. Since Mk(G) is equal to the number of closed walks of length k in G, it follows

that Mk(G) ≥ Mk(G − e) for all k ≥ 0, and M2(G) > M2(G − e). This together with

Proposition 1 would yield the following result immediately.

Proposition 2 Let G be a (non-complete) graph and let e be its arbitrary edge. Then

EEr(G) > EEr(G− e) and EE(G) > EE(G− e).
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Notice that the result for EE(G) in Proposition 2 was reported by Gutman et al.

in [15]. In fact, besides this, a great deal of results (mainly the extremal results) for

EE(G) were also obtained by means of Proposition 1, see [7, 8, 9, 10, 18, 20] for details.

Naturally, all these known results for EE(G), except the case of complete graphs, would

be applicable for EEr(G) as well.

It should be pointed out that although EEr(G) has many properties analogous to

those of EE(G), these two indices are distinct in essence, see [14] for details. We shall

add some further evidence to support this point of view in the next section.

3 Main results

In this section we consider the properties of EEr(G), which are different from those of

EE(G). We start with a simple but very useful property of EEr(G).

Theorem 3 For any non-complete graph G on n vertices,

EEr(G) = (n− 1)
d lnφ(G, λ)

dλ

∣∣∣∣
λ=n−1

= (n− 1)
φ′(G, n− 1)

φ(G, n− 1)
.

Proof. Notice that the characteristic polynomial of G can be written as φ(G, λ) =
n∏
i=1

(λ−

λi(G)), where λ1(G), λ2(G), . . . , λn(G) are the eigenvalues of G. Then,

(n− 1)
d lnφ(G, λ)

dλ
= (n− 1)

φ′(G, λ)

φ(G, λ)
=

n∑
i=1

n− 1

λ− λi
. (4)

By setting λ = n− 1 in (4) and recalling the definition of EEr(G) (see (3)), we have the

desired result, completing the proof. �

Figure 1. The graph G∗.

Remark. Theorem 3 indicates that EEr(G) can be determined directly by the character-

istic polynomial of the graph G. This result provides us with a tool to compute EEr(G)

effectively. As an instructive example, let G∗ be the graph shown in Figure 1. It is easy

to check that φ(G∗, λ) = λ6 − 7λ4 − 4λ3 + 7λ2 + 4λ− 1. Then by Theorem 3, we have

EEr(G
∗) = 5× 6λ5 − 28λ3 − 12λ2 + 14λ+ 4

λ6 − 7λ4 − 4λ3 + 7λ2 + 4λ− 1

∣∣∣∣
λ=5

=
1565

228
.
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3.1. Trees with maximal EEr

In this subsection, by means of Theorem 3, we shall determine the first thirteen trees

with the greatest resolvent Estrada index among all trees with given number of vertices.

Let T be a tree. Note that M2k+1(T ) = 0 for all k ≥ 0, since T is bipartite. Conse-

quently, from (2), we have

EEr(T ) =
∞∑
k=0

M2k(T )

(n− 1)2k
. (5)

Based on (5), and using the same method as in the proof of Theorem 4 in [21], we obtain

the following result.

Lemma 4 Let T1 and T2 be two trees. If T1 has at most two positive eigenvalues and T2

has at least two positive eigenvalues with λ1(T1) > λ1(T2), then M2k(T1) ≥M2k(T2), with

the equality if and only if k = 1. Consequently, EEr(T1) > EEr(T2).

Lemma 5 (see [5]) Let T be a tree, and let θ(T ) be the maximum number of independent

(mutually non-adjacent) edges in T . Then T has exactly θ(T ) positive eigenvalues.

The next lemma is usually used to calculate the characteristic polynomial of a tree,

which can be found in, for instance, [4].

Lemma 6 (see [4]) Let v be a vertex of degree one in a graph G and u the vertex adjacent

to v. Then φ(G, λ) = λφ(G\v, λ)− φ(G\{u, v}, λ).

We are now ready to give the main result of this subsection.

Theorem 7 Among all n-vertex trees, if n ≥ 12, then the first thirteen trees with the

greatest resolvent Estrada index are, respectively,

S1
n, S

2
n, S

3
n, S

4
n, S

5
n, S

6
n, S

7
n, S

8
n, S

9
n, S

10
n , S

11
n , S

12
n and S13

n (see Figure 2).

Proof. It was shown in [17, 2, 19] that among all n-vertex trees, if n ≥ 12 then the first

thirteen trees with the maximal spectral radius are, respectively,

S1
n, S

2
n, S

3
n, S

4
n, S

5
n, S

6
n, S

7
n, S

10
n , S

8
n, S

11
n , S

9
n, S

12
n and S13

n .

Now, suppose that T is any tree on n vertices different from Sin, i ∈ {1, 2, . . . , 13}. Clearly,

λ1(S
13
n ) > λ1(T ). Moreover, observing that θ(S13

n ) = 2 and θ(T ) ≥ 2, by Lemma 5, we
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Figure 2. The trees Sin, i ∈ {1, 2, . . . , 13}.

know that S13
n has exactly two positive eigenvalues, while T has at least two positive

eigenvalues. Consequently, from Lemma 4, we have

EEr(S
13
n ) > EEr(T ).

Next, in order to complete the proof, it suffices to prove that

EEr(S
j
n) > EEr(S

j+1
n ) holds for each j ∈ {1, 2, . . . , 12}. (6)

For convenience, we partition (6) into the following two claims:

Claim 1. EEr(S
1
n) > EEr(S

2
n) > EEr(S

3
n) > EEr(S

4
n) and EEr(S

5
n) > EEr(S

6
n) >

EEr(S
7
n).

Observe first that θ(S1
n) = 1, θ(S2

n) = θ(S3
n) = θ(S5

n) = θ(S6
n) = 2 and θ(S4

n) = θ(S7
n) =

3. On the other hand, we have

λ1(S
1
n) > λ1(S

2
n) > λ1(S

3
n) > λ1(S

4
n) > λ1(S

5
n) > λ1(S

6
n) > λ1(S

7
n).

Thus, Claim 1 follows directly from Lemmas 4 and 5.

Claim 2. EEr(S
4
n) > EEr(S

5
n) andEEr(S

l
n) > EEr(S

l+1
n ) for each l ∈ {7, 8, 9, 10, 11, 12}.

By Lemma 6 and a direct calculation, we get

φ(S4
n, λ) = λn−6[λ6 − (n− 1)λ4 + (2n− 7)λ2 − (n− 5)],

φ(S5
n, λ) = λn−4[λ4 − (n− 1)λ2 + (2n− 7)],

φ(S7
n, λ) = λn−6[λ6 − (n− 1)λ4 + (3n− 13)λ2 − (2n− 12)],
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φ(S8
n, λ) = λn−6[λ6 − (n− 1)λ4 + (3n− 13)λ2 − (n− 5)],

φ(S9
n, λ) = λn−4[λ4 − (n− 1)λ2 + (3n− 13)],

φ(S10
n , λ) = λn−8[λ8 − (n− 1)λ6 + (3n− 12)λ4 − (3n− 17)λ2 + (n− 7)],

φ(S11
n , λ) = λn−6[λ6 − (n− 1)λ4 + (3n− 12)λ2 − (2n− 11)],

φ(S12
n , λ) = λn−6[λ6 − (n− 1)λ4 + (3n− 12)λ2 − (n− 5)],

φ(S13
n , λ) = λn−4[λ4 − (n− 1)λ2 + (4n− 24)].

Since n ≥ 12, it follows directly from Theorem 3 that EEr(S
4
n) > EEr(S

5
n), EEr(S

7
n) >

EEr(S
8
n) > EEr(S

9
n) and EEr(S

11
n ) > EEr(S

12
n ).

We finally show that EEr(S
9
n) > EEr(S

10
n ), EEr(S

10
n ) > EEr(S

11
n ) and EEr(S

12
n ) >

EEr(S
13
n ). Again by Theorem 3, we have,

EEr(S
9
n)− EEr(S10

n ) =
4n(n− 2)(n− 1)2n−12

φ(S9
n, n− 1)φ(S10

n , n− 1)
× h1(n)

EEr(S
10
n )− EEr(S11

n ) =
2n(n− 2)(n− 1)2n−14

φ(S10
n , n− 1)φ(S11

n , n− 1)
× h2(n)

EEr(S
12
n )− EEr(S13

n ) =
2(n− 1)2n−10

φ(S12
n , n− 1)φ(S13

n , n− 1)
× h3(n)

where

h1(n) = n6 − 11n5 + 65n4 − 187n3 + 273n2 − 168n− 33,

h2(n) = 3n7 − 38n6 + 174n5 − 392n4 + 450n3 − 179n2 − 66n− 6,

h3(n) = 2n7 − 37n6 + 194n5 − 499n4 + 734n3 − 631n2 + 258n+ 59.

For each i ∈ {9, 10, 11, 12, 13}, φ(Sin, n− 1) > 0 always holds since

λ1(S
i
n) < λ1(S

1
n) =

√
n− 1 < n− 1.

Moreover, it is easy to verify that,

• if n ≥ 12, then h1(n) = n5(n− 11) + n3(65n− 187) + n(273n− 168− 33
n

) > 0;

• if n ≥ 13, then h2(n) = n6(3n− 38) + n4(174n− 392) + n2(450n− 179− 66
n
− 6

n2 ) > 0;

• if n ≥ 18, then h3(n) = n6(2n− 37) +n4(194n− 499) +n2(734n− 631) + 258n+ 59 > 0.
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We can further check directly that h2(12) > 0 and h3(n) > 0 for 12 ≤ n ≤ 18. Conse-

quently, Claim 2 follows.

This completes the proof. �

Remark. It is worth mentioning that among all n-vertex trees, if n ≥ 12, then the first

six trees with the greatest Estrada index are S1
n, S

2
n, S

3
n, S

4
n, S

5
n and S6

n, respectively [8, 21],

which coincide the first six trees with the greatest resolvent Estrada index. However, from

the numerical results shown in Table 1 (computed by using software Matlab, up to four

decimal places), we find that for 23 ≤ n ≤ 30 and n = 40, 50,

EE(S7
n) > EE(S10

n ) > EE(S8
n) > EE(S11

n ) > EE(S9
n) > EE(S12

n ) > EE(S13
n ),

which provides an example to reveal the difference between these two indices.

On the other hand, as mentioned in [21], it would be of interest to determine the first

thirteen trees with the greatest Estrada index.

Table 1. The values of EE(Sln), l ∈ {7, 8, 9, 10, 11, 12, 13}.
n EE(S7

n) EE(S8
n) EE(S9

n) EE(S10
n ) EE(S11

n ) EE(S12
n ) EE(S13

n )

12 31.2169 31.1628 31.0872 31.0112 30.9475 30.8827 30.8071

13 35.4127 35.3463 35.2577 35.2065 35.1305 35.0530 34.6715

14 39.9842 39.9049 39.8028 39.7775 39.6885 39.5978 38.8827

15 44.9630 44.8701 44.7540 44.7557 44.6532 44.5487 43.4702

16 50.3825 50.2755 50.1446 50.1747 50.0580 49.9390 48.4656

17 56.2785 56.1566 56.0104 56.0701 55.9385 55.8045 53.9025

18 62.6888 62.5525 62.3891 62.4798 62.3328 62.1830 59.8166

19 69.6538 69.5002 69.3211 69.4441 69.2809 69.1146 66.2458

20 77.2161 77.0457 76.8490 77.0058 76.8257 76.6422 73.2305

21 85.4211 85.2330 85.0181 85.2102 85.0124 84.8110 80.8133

22 94.3169 94.1104 93.8764 94.1054 93.8891 93.6689 89.0396

23 103.9545 103.7287 103.4747 103.7422 103.5067 103.2669 97.9577

24 114.3876 114.1418 113.8670 114.1747 113.9191 113.6588 107.6182

25 125.6735 125.4067 125.1102 125.4599 125.1833 124.9013 118.0756

26 137.8726 137.5838 137.2647 137.6581 137.3597 137.0558 129.3866

27 151.0486 150.7370 150.3943 150.8334 150.5121 150.1850 141.6117

28 165.2690 164.9336 164.5663 165.0530 164.7079 164.3566 154.8149

29 180.6052 180.2449 179.8520 180.3884 180.0184 179.6419 169.0636

30 197.1323 196.7462 196.3265 196.9147 196.5188 196.1160 184.4291

40 447.7003 446.9875 446.2316 447.4731 446.7504 446.0162 418.2975

50 937.8813 936.6824 935.4279 937.6415 936.4326 935.2062 878.4090
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3.2. Multipartite graphs with maximal EEr

In this subsection we characterize the unique graph having the maximal resolvent

Estrada index among all multipartite graphs with given number of vertices.

Denote by Kn1,n2,...,nr the complete r-partite graph of order n whose vertex set consists

of r parts V1, V2, . . . , Vr with |Vi| = ni, i ∈ {1, 2, . . . , r}, where 2 ≤ r < n and n1 + n2 +

· · · + nr = n. We assume, without loss of generality, that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr. In

particular, if ni − nj ≤ 1 for 1 ≤ j < i ≤ r, then it is known as the Turán graph Tr(n).

Theorem 8 For any complete r-partite graph Kn1,n2,...,nr of order n,

EEr(Kn1,n2,...,nr) = n− r +

∑r
k=1

(n−1)nk

(n−1+nk)2

1−
∑r

k=1
nk

n−1+nk

+
r∑

k=1

n− 1

n− 1 + nk
, (7)

and

EEr(K1,...,1,n−r+1) ≤ EEr(Kn1,n2,...,nr) ≤ EEr(Tr(n)),

with the left equality if and only if Kn1,n2,...,nr
∼= K1,...,1,n−r+1 and the right if and only if

Kn1,n2,...,nr
∼= Tr(n).

Proof. It is known [4] that

φ(Kn1,n2,...,nr , λ) = λn−r

(
1−

r∑
k=1

nk
λ+ nk

)
r∏

k=1

(λ+ nk).

By Theorem 3 and a direct calculation, (7) follows immediately.

For the second part, we claim that if ni − nj ≥ 2 for 1 ≤ j < i ≤ r, then

EEr(Kn1,...,nj ,...,ni,...,nr) < EEr(Kn1,...,nj+1,...,ni−1,...,nr). (8)

Set f1(ni, nj) = ni

(n−1+ni)2
+

nj

(n−1+nj)2
, f 1(ni, nj) =

∑
k 6=i,j

nk

(n−1+nk)2
,

f2(ni, nj) = ni

n−1+ni
+

nj

n−1+nj
, f 2(ni, nj) =

∑
k 6=i,j

nk

n−1+nk
, and

f3(ni, nj) = 1
n−1+ni

+ 1
n−1+nj

.

Noting that ni − nj ≥ 2, we have

f2(ni − 1, nj + 1) > f2(ni, nj).
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Moreover, since λ1(Kn1,n2,...,nr) < λ1(Kn) = n − 1, then φ(Kn1,n2,...,nr , n − 1) > 0, and

hence,

0 < 1− f2(ni, nj)− f 2(ni, nj) = 1−
r∑

k=1

nk
n− 1 + nk

< 1.

Thus, it follows from (7) that(
EEr(Kn1,...,nj+1,...,ni−1,...,nr)− EEr(Kn1,...,nj ,...,ni,...,nr)

)
/(n− 1)

=
f1(ni−1,nj+1)+f1(ni,nj)

1−f2(ni−1,nj+1)−f2(ni,nj)
− f1(ni,nj)+f1(ni,nj)

1−f2(ni,nj)−f2(ni,nj)
+ f3(ni − 1, nj + 1)− f3(ni, nj)

>
f1(ni−1,nj+1)+f1(ni,nj)

1−f2(ni,nj)−f2(ni,nj)
− f1(ni,nj)+f1(ni,nj)

1−f2(ni,nj)−f2(ni,nj)
+ f3(ni − 1, nj + 1)− f3(ni, nj)

> f1(ni − 1, nj + 1)− f1(ni, nj) + f3(ni − 1, nj + 1)− f3(ni, nj)

=
(ni−nj−1)g(n−1)

(n−2+ni)2(n+nj)2(n−1+ni)2(n−1+nj)2
,

where g(x) = 2x5 + 2(ni + nj)x
4 − 2(2ninj + ni − nj − 1)x3

−4(ni + nj)(2ninj + ni − nj − 1)x2

−[(ni − nj)3 + 2ninj(5ninj + 5ni − 5nj − 4) + (2ninj − 1)(n2
i + n2

j)]x

−2ninj(ni + nj)(ni − 1)(nj + 1).

In order to prove Inequality (8), it suffices to prove g(n− 1) > 0. We first show that g(x)

is strictly increasing when x ≥ ni + nj. To this end, we consider the fourth derivative of

g(x):

g(4)(x) = 240x+ 48(ni + nj) > 0, x ≥ ni + nj,

which implies that g(3)(x) is strictly increasing when x ≥ ni + nj. Therefore,

g(3)(x) ≥ g(3)(ni + nj) = 12(14n2
i + 14n2

j + 26ninj − ni + nj + 1) > 0, x ≥ ni + nj,

again implying g′′(x) is strictly increasing when x ≥ ni + nj. Repeating this procedure

one can finally get that g(x) is strictly increasing when x ≥ ni + nj. As a result, noting

that n− 1 ≥ ni + nj and ni − nj ≥ 2, we have

g(n− 1) ≥ g(ni + nj) = (ni + nj)
[
(ni − nj)3(4(ni − nj)− 7)

+18ninj(ni − nj)(ni − nj − 2) + 7n2
i + 7n2

j + 22ninj
]
> 0.

Thus, our claim follows and from which, Theorem 8 follows immediately. �

By Proposition 2, we know that if a multipartite graph G has the maximal resol-

vent Estrada index, then G must be a complete multipartite graph. This together with
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Theorem 8 yields the following result directly.

Theorem 9 Among all r-partite graphs with n vertices (2 ≤ r < n), the Turán graph

Tr(n) is the unique graph having the maximal resolvent Estrada index.

The chromatic number χ(G) of a graph G is the minimum number of colors used to

assign a color to each of its vertices such that any two adjacent vertices have different

colors. This implies that the vertex set V (G) of G can be partitioned into χ(G) vertex

subsets each of which has the same color and therefore, is an independent set, that is, G

is a χ(G)-partite graph. Thus, by Theorem 9, we have the following immediate corollary.

Corollary 10 Among all n-vertex graphs with chromatic number χ (2 ≤ χ < n), the

Turán graph Tχ(n) is the unique graph possessing the maximal resolvent Estrada index.

Remark. We would like to point out that among all n-vertex graphs with chromatic

number χ (2 ≤ χ < n), the extremal graphs possessing the maximal Estrada index have

not been determined yet.
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[12] E. Estrada, J. A. Rodŕıguez–Velázquez, Subgraph centrality in complex networks,

Phys. Rev. E 71 (2005) 056103-1-9.
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