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Abstract

A general calculating scheme of polynomials based on deletion-contraction oper-
ations is considered for polycyclic chains of polygons. Some chemically and combi-
natorially interesting polynomials could be embedded into this scheme. Explicit ex-
pressions are obtained for the Tutte and related polynomials. Polycyclic chains con-
tain some classes of chemically relevant structures, in particular, molecular graphs
of unbranched benzenoids hydrocarbons.

1 Introduction

Polynomial graph invariants have found interesting applications in organic chemistry and

biology for characterization molecular graphs and DNA [1, 7, 17, 18, 20, 23, 28, 29].

These applications stimulate intensive studies of new and old well-known polynomial

invariants. One of the famous invariants of this kind is the Tutte polynomial that gives

interesting information about graph structure [3, 5, 14, 15]. In recent papers [13, 16], pro-

perties of the Tutte polynomials have been investigated for chemically relevant polycyclic

graphs. In this paper we consider a general calculation scheme for a deletion-contraction

polynomial invariant for classes of polycyclic graphs. A graph of such classes consists of
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n-gons in the plane connected with each other by an edge. Some of these classes include

molecular graphs of polycyclic chemical compounds, in particular, molecular graphs of

unbranched benzenoid hydrocarbons [8, 30]. The scheme is based on recurrent relations

which are induced by two elementary graph operations: deletion and contraction of an

edge. General explicit formulae for the polynomial will be presented (section 3). Several

well-known polynomials are injected into this scheme with suitable coefficients. Among

them are the Tutte polynomial (section 4), the Negami polynomial (section 5), the Yamada

polynomial (section 6), the chromatic and the flow polynomials (sections 7 and 8).

2 Polycyclic graphs

All graphs considered in this paper are finite, undirected, connected, and may have loops

and multiple edges. If G is a graph, V (G) and E(G) will denote its sets of vertices and

edges, |V (G)| = p and |E(G)| = q. A graph called the chain of n-gons consists of n-gons

connected with each other by edges. Two arbitrary n-gons may have only a common edge,

i.e., they are adjacent. Each n-gon is adjacent to no more than two other n-gons. There

are no three n-gons which share a common edge but several n-gons may have a common

vertex. Two terminal n-gons of a chain are adjacent to exactly one other n-gon.

Let U n
k be the class of all chains with k copies of n-gons, where k ≥ 1, n ≥ 2. Graphs

of U n
k may be defined by recursion. We assume that G ∈ U n

0 consists of a “degenerate”

n-gon which is a single edge on two vertices for every n ≥ 2. A graph G ∈ U n
k , k ≥ 1,

n ≥ 2, is obtained from some H ∈ U n
k−1 by identifying an edge of a new n-gon with an

edge of the terminal n-gons in H. A chain of U n
k may be embedded into the plane such

that all its interior faces will be n-gons. All polycyclic graphs of U n
k for 2 ≤ n ≤ 6 and

1 ≤ k ≤ 4 are presented on Fig. 1. Results of analytical and computer enumerations

of polycyclic chains of various classes have been reported in numerous articles (see, for

example, [2, 4, 6, 9, 20, 21, 27]). The number of all graphs in U n
k grows as nk and may

be presented by the following formula [6]:

|U n
k | = 1

4
(n− 3)k−2 + 1

8
[1− (−1)n]

(
2
k

)
+ 1

8
[1 + (−1)n]

+ 1
4
(n− 3)�

k
2
�−1

(⌊
1
2
(n− 3)

⌋
[1− (−1)k] + 1

2
[1− (−1)n] [1 + (−1)k] + (−1)n + 1

)
.

Class U n
k contains graphs which play an important role in the organic chemistry. For

example, molecular graphs of unbranched catacondensed benzenoid hydrocarbons belong
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to U 6
k [8, 30].

Figure 1: All chains of U n
k with k n-gons for n ≤ 6 and k ≤ 4.

Two connected graphs G and H are said to be 2-isomorphic if G can be transformed

into H by means of the following operation and its inverse: suppose G is obtained from

the disjoint graphs G1 and G2 by identifying the vertices u1 ∈ V (G1) with u2 ∈ V (G2)

and v1 ∈ V (G1) with v2 ∈ V (G2) (see Fig. 2).

Then graph H is obtained from G1 and G2 by identifying u1 with v2 and u2 with

v1. This operation does not change the cycle structure of G and H [35]. An example of

transformations of hexagonal chains is shown in Fig. 3.

It is easy to see that two arbitrary chains of U n
k are 2-isomorphic.
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Figure 2: 2-isomorphic graphs G and H.

Figure 3: Transformations of 2-isomorphic hexagonal chains.

3 Function f defined by deletion-contraction opera-

tions

In this section, we define a function f by a recurrent calculating scheme with formal

coefficients. Our aim is to derive an explicit formula of f for chains of n-gons. As

a result, formulas for certain known polynomials can be obtained by specifying formal

coefficients of the recurrent relations. In this section, we follow an approach developed in

[11].

3.1 General scheme

As elementary operation of connected graphs, we consider the deletion and the contraction

of edges. The resulting graph after deletion and contraction of an edge e will be denoted

by G − e and G/e, respectively. A graph G/e is obtained from G by deleting edge e

and identifying its ends to a single vertex. An edge is called the isthmus if its removal

increases the number of connected components in a graph. A graph function is called a

2-invariant if it assigns to 2-isomorphic graphs the same value.

Let f be a 2-invariant graph function with values from some ring R. We will assume

that a function f satisfies the following conditions:

• if an edge e is not a loop or an isthmus, then

f(G) = Af(G/e) + B f(G− e), (1)
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where the coefficients A and B don’t depend on the choice of e;

• if H ·K is a union of two subgraphs H and K which have only a common vertex, then

f(H ·K) = C f(H) f(K), (2)

where the coefficient C does not depend on the subgraphs H and K;

• if T1 is a tree with a single edge on two vertices, then

f(T1) = D; (3)

• if L1 is a single vertex with only loop, then

f(L1) = E. (4)

Applying the above properties of the function f , we may immediately calculate f for

the simplest classes of graphs:

– if Tq is a connected tree with q edges, then

f(Tq) = C q−1 Dq;

– if Lq is a single vertex with q loops, then

f(Lq) = C q−1 E q;

– if Mq consists of two vertices joining by multiple q edges, then

f(Mq) = B q−1 D + AE
B q−1 − (C E) q−1

B − C E
,

– if Cq is a simple cycle with q edges, then

f(Cq) = A q−1 E + BD
A q−1 − (C D) q−1

A − C D
. (5)

Note that many polynomials satisfied conditions (1) – (4) belong to the so-called Tutte-

Gröthendieck invariants [1, 14].

3.2 Formulas of f for polycyclic chains of U n
k

Since the function f is 2-invariant, we shall denote the value f(G) for an arbitrary graph

G ∈ U n
k by f n

k . Recall that the class U n
0 , n ≥ 2, contains the degenerate n-gons. Then

by (3)

fn
0 = f(T1) = D .
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Furthermore, the class U n
1 , n ≥ 2, contains an n-gon only. By (5),

fn
1 = f(Cn) = An−1 E + BD

An−1 − (C D)n−1

A − C D
. (6)

Let an = An−2 C E + B
An−1 − (C D)n−1

A − C D
and bn = An−2 B Cn−1 Dn−2 E.

The following theorem gives a recurrent formula of the function f for chains of n-gons.

Theorem 1. [11] For a chain with k n-gons, n ≥ 2 and k ≥ 2, we have

fn
k = an f

n
k−1 − bn f

n
k−2 . (7)

Form Theorem 1, the function f can be presented in the following form:

Corollary 1. [11] For a chain with k n-gons, n ≥ 2 and k ≥ 2, we have:

f n
k = c k−1

n fn
1 − d k−1

n fn
0 ,

where

(
c kn
d k
n

)
=

(
an −1
bn 0

)k−1 (
an
bn

)
.

The following formula can be obtained by standard methods from Theorem 1.

Corollary 2. For a chain with k n-gons of Un
k , n ≥ 2 and k ≥ 2, we have

fn
k =

w1

2

(
an +

√
a2n − 4bn
2

)k

− w2

2

(
an −

√
a2n − 4bn
2

)k

.

where w1 =
2fn

1 − anf
n
0√

a2n − 4bn
+ fn

0 and w2 =
2fn

1 − anf
n
0√

a2n − 4bn
− fn

0 .

3.3 Generating function

Corollaries 1-2 allow the deriving explicit expressions for polynomials of chains. Another

way is using generating functions. Let us fix n ≥ 3. The generating function of a sequence

{fn
k }∞k=0 is a formal power series F (z) =

∞∑
k=0

fn
k z

k.

Theorem 2. The generating function F (z) can be written as

F (z) =
λ+ (μ− αλ)z

1− αz − βz2
,

where α = an, β = −bn, λ = fn
0 and μ = fn

1 .
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Proof. According to Theorem 1, function fn
k can be calculated by the recurrent formula

fn
k = α fn

k−1 + β fn
k−2. (8)

Multiplying both parts of (8) by zk and taking sums for k = 2, 3, . . ., we get

F (z) − fn
1 z − fn

0 = α z (F (z) − fn
0 ) + β z2 F (z).

Using initial conditions fn
0 = λ and fn

1 = μ we get

F (z) − μ z − λ = α z F (z) − α z λ + β z2 F (z),

that implies the result.

Corollary 3. The generating function F (z) can be written as follows:

F (z) =
D + An−2 E (A − C D) z

1−
(
B

An−1 − (C D)n−1

A − C D
+ An−2 C E

)
z +

(
An−2 B Cn−1 Dn−2 E

)
z2

.

Expanding function F (z) in a Taylor series, we can calculate coefficients for the mem-

bers of the series F (z) = fn
0 + fn

1 z + fn
2 z2 + fn

3 z3 + ... .

In the next sections, we present several polynomials that can be obtained from f with

suitable coefficients A, B, C, D, and E (see Table 1).

Table 1: Coefficients of recurrent expressions for polynomials.

Name A B C D E

Tutte polynomial T (G; x, y) 1 1 1 x y

Negami polynomial N(G; t, x, y) x y 1/t t(x+ ty) t(x+ y)

Yamada polynomial h(G; x, y) 1 −1/x 1/x 0 xy − 1

Chromatic polynomial P (G;λ) −1 1 1/λ λ(λ− 1) 0

Flow polynomial F (G;λ) 1 −1 1 0 λ− 1

4 Tutte polynomial

In this section, we apply properties of function f for calculating the Tutte polynomial of

polycyclic chains. An arbitrary chain of U n
k will be denoted by Gn

k .
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4.1 General expressions

The Tutte polynomial T (G; x, y) of a graph G is a 2-invariant function which was intro-

duced as a two variable generalization of the chromatic polynomial [31]. It can be defined

by the following equality:

T (G; x, y) =
∑

Y⊂E(G)

(x− 1)ω(G−Y )−ω(G)(y − 1)β(G−Y ),

where the summation goes over all edge subsets Y of E(G), ω(G) is the number of

connected components in G, and β(G) is the cyclomatic number of a graph G with p

vertices and q edges: β(G) = q(G)− p(G) + ω(G).

The Tutte polynomial is one of the important and useful invariants of a graph. It

allows the extraction information on graph structure, e.g., the number of spanning trees,

the number of connected subgraphs, the number of acyclic orientations, etc. It has found

interesting applications in enumerative combinatorics, knot theory, statistical physics and

computer science [3, 5, 14, 15, 34].

It is well known that the Tutte polynomial T (G; x, y) satisfies the following recursive

relation for a graph G:

T (G; x, y) = T (G/e; x, y) + T (G− e; x, y),

where e is not a loop or an isthmus. Further, if subgraphs H and K have only a common

vertex, then the equality

T (H ·K; x, y) = T (H; x, y)T (K; x, y)

holds. For graphs T1 and L1 the polynomial is equal to T (T1; x, y) = x and T (L1; x, y) = y.

Note, that T (G; x, y) coincide with the function f under the coefficients A = 1, B = 1,

C = 1, D = x, and E = y. In this case for other quantities from Theorem 2, we have

an = y +
xn−1 − 1

x− 1
, bn = y xn−2, fn

0 = x, and fn
1 = y + x

xn−1 − 1

x− 1
.

Corollary 4. For a chain with k n-gons Gn
k , the Tutte polynomial satisfies the following

recurrent relation

T (Gn
k ; x, y) =

(
y +

xn−1 − 1

x− 1

)
T (Gn

k−1; x, y)− y xn−2 T (Gn
k−2; x, y).

Corollaries 1 and 2 give two recurrent expressions of the Tutte polynomial.
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Corollary 5. [11] For the Tutte polynomial of a chain with k n-gons Gn
k ,

T (Gn
k ; x, y) = c k−1

n

(
y + x

xn−1 − 1

x− 1

)
− d k−1 x ,

where ⎛⎝ c kn

d k
n

⎞⎠ =

⎛⎝ y +
xn−1 − 1

x− 1
−1

y xn−2 0

⎞⎠k−1⎛⎝ y +
xn−1 − 1

x− 1

y xn−2

⎞⎠ .

Applying Corollary 2, we have

Corollary 6. For the Tutte polynomial of a chain with k n-gons Gn
k ,

T (Gn
k ; x, y) =

w1

2

(
I +

√
Δ

2(x− 1)

)k

− w2

2

(
I −

√
Δ

2(x− 1)

)k

,

where I = xn−1 + y(x− 1)− 1,

w1 =
xI − 2y(x− 1)2√

Δ
+ x and w2 =

xI − 2y(x− 1)2√
Δ

− x,

Δ = x2n−2 − 2yxn + 2(3y − 1)xn−1 − 4yxn−2 + y2x2 − 2y(y + 1)x+ (y + 1)2.

Let T ∗(z) =
∞∑
k=0

T n
k zk be the generating function for T n

k . From Corollary 3, we have

T ∗(z) =
x− y(x− 1) z

1−
(
xn−1 − 1

x− 1
+ y

)
z + xn−2y z2

,

that was obtained in Theorem 3.5 of [13].

4.2 Tutte polynomial for small chains

Now we apply the above formulae for trigonal, tetragonal, pentagonal, and hexagonal

polycyclic chains.

4.2.1 Trigonal chains

By Corollary 6, the Tutte polynomial can be written for a chain G3
k with k triangles as

T (G3
k; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
J −

√
Δ

2

)k

,

where I = x + y + 1, w1 =
xI − 2y(x− 1)√

Δ
+ x and w2 =

xI − 2y(x− 1)√
Δ

− x,

Δ = x2 − 2(y − 1)x+ 1 + 2y + y2.
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The generation function for the Tutte polynomial T 3
k = T (G3

k; x, y) can be presented

in the form

T ∗(z) =
x− y(x− 1) z

1− (x+ 1 + y) z + x y z2
.

4.2.2 Tetragonal chains

For a chain G4
k with k quadrangles, we have

T (G4
k; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

where I = x2 + x+ y + 1, w1 =
xI − 2y(x− 1)√

Δ
+ x and w2 =

xI − 2y(x− 1)√
Δ

− x,

Δ = x4 + 2x3 − (2y − 3)x2 + 2(y + 1)x+ 1 + 2y + y2.

The generation function for the Tutte polynomial of tetragonal chains is

T ∗(z) =
x− y(x− 1) z

1− (x2 + x+ 1 + y) z + x2y z2
.

4.2.3 Pentagonal chains

For a chain G5
k with k pentagons, we have

T (G5
k; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

where I = x3 + x2 + x+ y + 1, w1 =
xI − 2y(x− 1)√

Δ
+ x and w2 =

xI − 2y(x− 1)√
Δ

− x,

Δ = x6 + 2x5 + 3x4 − 2(y − 2)x3 + (2y + 3)x2 + 2(y + 1)x+ 1 + 2y + y2.

To obtain Tutte polynomial for pentagonal chains, one can use the generation function

T ∗(z) =
x− y(x− 1) z

1− (x3 + x2 + x+ 1 + y) z + x3y z2
.

4.2.4 Hexagonal chains

This class of polycyclic chains include molecular graphs of unbranched benzenoid hydro-

carbons [8]. For the Tutte polynomial of a chain G6
k with k hexagons,

T (G6
k; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

(9)

where I = x4+x3+x2+x+1+y, w1 =
xI − 2y(x− 1)√

Δ
+x and w2 =

xI − 2y(x− 1)√
Δ

−x,
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Δ = x8 +2x7 +3x6 +4x5 +(2y− 5)x4 +2(y+2)x3 +(2y+3)x2 +2(y+2)x+1+2y+ y2.

Formula (9) has been recently reported in [16].

The generation function for the Tutte polynomial for hexagonal chains of this class is

T ∗(z) =
x− y(x− 1) z

1− (x4 + x3 + x2 + x+ 1 + y) z + x4y z2
.

5 Negami polynomial

The Negami polynomial N(G; t, x, y) for a graph G was introduced in [22]. It tells us many

information about graph structure like the Tutte polynomial. The Negami polynomial was

applied for constructing polynomials for spatial graphs, i.e., graphs knottedly embedding

into three-dimensional space [12, 33, 36].

5.1 General expressions

Negami polynomial N(G; t, x, y) for a graph G can be written as

N(G; t, x, y) =
∑

Y⊂E(G)

tw(G−Y ) xq(G−Y ) yq(Y ).

where ω(G) is the number of connected components of G and p(G), q(G) are the numbers

of vertices and edges in G, respectively. This polynomial satisfies the following recurrent

relation:

N(G; t, x, y) = xN(G/e; t, x, y) + y N(G− e; t, x, y),

where e is an arbitrary edge of a graph G.

For graphs H ·K, T1 and L1, we have N(H ·K; t, x, y) =
1

t
N(H; t, x, y)N(K; t, x, y),

N(T1; t, x, y) = t(x+ ty) and N(L1; t, x, y) = t(x+ y).

The polynomial N(G; t, x, y) expands generally into

N(G; t, x, y) =

q∑
i=0

p∑
j=1

mij t
j xq−i yi,

where mij is equal to the number of subsets Y of i edges in E(G) such that G − Y has

precisely j connected components.

The Negami polynomial is a 2-invariant of graphs. Hence, the properties of function

f and Negami polynomial are the same under the coefficients: A = x, B = y, C = 1/t,

D = t(x + ty), E = t(x + y). For other quantities from Theorem 2, we have an =
1

t

(
(x+ ty)n−1 − xn−1

)
+(x+y)xn−2, bn = xn−2y (x+ ty)n−2(x+y), fn

0 = t (x+ ty), and

fn
1 = (x+ ty)n + (t− 1) xn.
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Corollary 7. [10] For a chain with k n-gons Gn
k , the Negami polynomial satisfies the

following recurrent relation

N(Gn
k ; t, x, y) =

(
(x+ y) xn−2 +

(x+ ty)n−1 − xn−1

t

)
N(Gn

k−1; t, x, y)

− y(x+ y)xn−2 (x+ ty)n−2 N(Gn
k−2; t, x, y).

Corollary 8. [10] For a chain with k n-gons Gn
k , the Negami polynomial satisfies the

following recurrent relation

N(Gn
k ; t, x, y) = c k−1

n fn
1 − d k−1

n fn
0 ,

where (
c kn

d k
n

)
=

(
an −1

bn 0

)k−1 (
an

bn

)
.

Corollary 9. For the Negami polynomial of a chain with k n-gons Gn
k ,

N(Gn
k ; t, x, y) =

w1

2

(
I +

√
Δ

2t(x+ ty)

)k

− w2

2

(
I −

√
Δ

2t(x+ ty)

)k

,

where I = (t− 1)xn + t2xn−2y(x+ y) + (x+ ty)n,

w1 =
t(x+ ty)(I − 2t2xn−2y(x+ y))√

Δ
+ t(x+ ty),

w2 =
t(x+ ty)(I − 2t2xn−2y(x+ y))√

Δ
− t(x+ ty),

Δ = (x+ ty)2n + 2xn−2(tx+ ty − x)(x+ ty)n+1 − 4 t2xn−2y(x+ y)(x+ ty)n

+ x2n−4
[
2 t2(t− 1)x2y(x+ y) + t4y2(x+ y)2 + (t− 1)2x4

]
.

Let N∗(z) =
∞∑
k=0

Nn
k zk be the generating function for the Negami polynomial. Then

N∗(z) =
t(x+ ty)− t2xn−2y(x+ y)z

1− (x+ ty)n−1 + xn−2(tx+ ty − x)

t
z +

[
xn−2y(x+ y)(x+ ty)n−2

]
z2
.

5.2 Negami polynomial for small chains

Now we apply the above formulas for polycyclic chains of Un
k , n ≤ 6.
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5.2.1 Trigonal chains

By Corollary 9, the Negami polynomial can be written for trigonal chains with k triangles

as

N(G 3
k ; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

,

where I = x2 + 3xy + ty2, Δ = x4 + 2x3y − (2t− 5)x2y2 + 2txy3 + t2y4,

w1 =
t(x+ ty)I − 2t2xy(x+ y)√

Δ
+ t(x+ ty),

w2 =
t(x+ ty)I − 2t2xy(x+ y)√

Δ
− t(x+ ty).

To obtain Negami polynomials, one can apply the generation function

N∗(z) =
(x+ ty)− t2xy(x+ y)z

1− (x2 + 3xy + ty2)z + xy(x+ y)(x+ ty)z2
.

5.2.2 Tetragonal chains

For graphs G 4
k , we have

N(G 4
k ; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

where I = x3 + 4yx2 + 3ty2x+ t2y3,

Δ = x6 + 4x5y − 2(t− 6)x4y2 − 2t(t− 8)x3y3 + 13t2x2y4 + 6t3xy5 + t4y6,

w1 =
t(x+ ty)I − 2t2x2y(x+ y)√

Δ
+ t(x+ ty),

w2 =
t(x+ ty)I − 2t2x2y(x+ y)√

Δ
− t(x+ ty)

To obtain Negami polynomials, one can apply the generation function.

N∗(z) =
(x+ ty)− t2x2y(x+ y)z

1− (x3 + 4x2y + 3txy2 + t2y3)z + x2y(x+ y)(x+ ty)2z2
.

5.2.3 Pentagonal chains

For chains G 5
k with k 5-gons, we have

N(G 5
k ; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

where I = x4 + 5x3y + 6tx2y2 + 4t2xy3 + t3y4,

Δ = x8+6x7y+21x6y2−4t(t−12)x5y3−2t2(t−32)x4y4+54t3x3y5+28t4x2y6+8t5xy7+t6y8,
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w1 =
t(x+ ty)I − 2t2x3y(x+ y)√

Δ
+ t(x+ ty),

w2 =
t(x+ ty)I − 2t2x3y(x+ y)√

Δ
− t(x+ ty).

To obtain Negami polynomials, one can apply the generation function.

N∗(z) =
(x+ ty)− t2x3y(x+ y)z

1− (x4 + 5x3y + 6tx2y2 + 4t2xy3 + t3y4)z + x3y(x+ y)(x+ ty)3z2
.

5.2.4 Hexagonal chains

For chains G 6
k with k 6-gons, we have

N(G 6
k ; x, y) =

w1

2

(
I +

√
Δ

2

)k

− w2

2

(
I −

√
Δ

2

)k

where I = x5 + 6x4y + 10tx3y2 + 10t2x2y3 + 5t3xy4 + t4y5,

Δ = x10 + 8x9y + 4(t+ 8)x8y2 − 4t(t− 28)x7y3 − 2t2(3t− 98)x6y4 − 2t3(t− 122)x5y5

+ 208t4x4y6 + 120t5x3y7 + 45t6x2y8 + 10t7xy9 + t8y10,

w1 =
t(x+ ty)I − 2t2x4y(x+ y)√

Δ
+ t(x+ ty),

w2 =
t(x+ ty)I − 2t2x4y(x+ y)√

Δ
− t(x+ ty).

To obtain Negami polynomials, one can apply the generation function.

N∗(z) =
(x+ ty)− t2x4y(x+ y)z

1− (x5 + 6x4y + 10tx2y2(x+ ty) + 5t3xy4 + t4y5)z + x4y(x+ y)(x+ ty)4z2
.

In conclusion, we give relations between the Tutte and the Negami polynomials [22, 24].

If graph G has p vertices, q edges and ω connected components, then

T (G; x, y) = (x− 1)−ω (y − 1)−p N(G; (x− 1)(y − 1), 1, y − 1),

N(G; t, x, y) = (tyx−1)ω (xy−1)p yq T (G; 1 + tyx−1, 1 + xy−1).

6 Yamada polynomial

Yamada polynomial h(G; x, y) of a graph G have been introduced in [36] for constructing a

polynomial of graphs knottedly embedded in the three-dimensional space. It is a Laurent

polynomial and can be presented as

h(G; x, y) =
∑

Y⊂E(G)

(−x)−|Y |xω(G−Y )yβ(G−Y ),
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where the summation goes over all edge subsets Y of E(G), ω(G) is the number of

connected components in G, and β(G) is the cyclomatic number of a graph, β(G) =

q(G)− p(G) + ω(G).

This polynomial h(G; x, y) satisfies the recursive expression

h(G; x, y) = h(G/e; x, y) − 1

x
h(G− e; x, y).

and has the following properties: h(G ·H; x, y) = 1
x
h(G; x, y) · h(H; x, y), h(T1; x, y) = 0,

and h(L1; x, y) = xy − 1. Therefore, properties of f and h(G; x, y) coincide under the

coefficients: A = 1, B = −1/x, C = 1/x, D = 0, and E = xy − 1. For other quantities

from Theorem 2, we have an = y − 2/x, bn = 0, c k−1
n = a k−1

n , d k−1
n = 0, fn

0 = 0 and

fn
1 = xy − 1.

Corollary 10. For a chain with k n-gons Gn
k , the Yamada polynomial satisfies the fol-

lowing recurrent relation

h(Gn
k ; x, y) =

(
y − 2

x

)
h(Gn

k−1; x, y).

The Yamada polynomial characterizes polycyclic chains irrespective of the size of its

rings. It follows from the fact that h(Gn
k ; x, y) does not distinguish between homeomorphic

graphs.

Corollary 11. Let a chain Gk consists of k polygons, i.e., Gk ∈ ∪n≥3 U
n
k . Then

h(Gk; x, y) =

(
y − 2

x

)k−1

(xy − 1).

Denote hk = h(Gk; x, y) and let h∗(z) =
∞∑
k=0

hk z
k be the generating function. Then

h∗(z) =
(xy − 1) z

1−
(
y − 2

x

)
z

.

One can see that the Yamada polynomial is the same for all n ≥ 3, i.e., for all

homeomorphic chains.

For a graph G with p vertices, the Yamada polynomial can be expressed through the

Negami polynomial. Namely, h(G; x, y) = y−p N(G; xy, y,−x−1).
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7 The chromatic polynomial

The chromatic polynomial P (G; x) is a one-variable polynomial such that, for all integer

positive values of x, P (G; x) is equal to the number of proper colorings of G with x colors

[25, 26, 31, 32]. A recursive formula for P (G; x) is as follow:

P (G; x) = −P (G/e; x) + P (G− e; x),

where e is not a loop. For graphs H ·K, T1, L1, we have P (H ·K; x) = 1
x
P (H; x)P (K; x),

P (T1; x) = x(x−1) and P (L1; x) = 0. Therefore, the properties of f and P (G; x) coincide

under the coefficients: A = −1, B = 1, C = 1/x, D = x(x− 1), and E = 0. Besides, we

can write an =
1

x

(
(x− 1)n−1 − (−1)n−1

)
, bn = 0, c k−1

n = a k−1
n , d k−1

n = 0, fn
0 = x (x− 1)

and fn
1 = x (x− 1) an.

As a result we obtain the simple formulae which also follow from other properties of

the polynomial [32].

Corollary 12. For a chain with k n-gons Gn
k , the chromatic polynomial satisfies the

following recurrent relation

P (Gn
k ; x) =

1

x

[
(x− 1)n−1 − (−1)n−1

]
P (Gn

k−1; x)

Corollary 13. The chromatic polynomial may be presented in the form

P (Gn
k ; x) = x (x− 1)

(
(x− 1)n−1 − (−1)n−1

x

)k

.

Denote P n
k = P (Gn

k ; x) and let P ∗(z) =
∞∑
k=0

P n
k zk be the generating function. Then

P ∗(z) =
x2(x− 1)

x+ [(−1)n−1 − (x− 1)n−1] z
.

The chromatic polynomial can be regarded as specialization of the Tutte and the

Negami polynomials. For a graph G with p vertices, q edges and ω connected components,

P (G; x) = (−1)p−ω xω T (G; 1− x, 0),

P (G; x) = N(G; x,−1, 1).
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8 The flow polynomial

For the flow polynomial F (G; x), the recursive formula is written as [19, 32]:

F (G; x) = F (G/e; x)− F (G− e; x).

where e is not a loop. Further, for graphs H ·K, T1 and L1, the equations F (H ·K; x) =

F (H; x)F (K; x), F (T1; x) = 0, and F (L1; x) = x− 1 hold. Then the properties of f and

F (G; x) are the same under the coefficients: A = 1, B = −1, C = 1, D = 0, E = x − 1.

For other quantities from Theorem 2, an = x− 2, bn = 0, c k−1
n = a k−1

n , d k−1
n = 0, fn

0 = 0

and fn
1 = x − 1. Hence, the flow polynomial satisfies the following recurrent relation for

chains with k n-gons:

F (Gn
k ; x) = (x− 2)F (Gn

k−1; x).

This immediately implies

F (Gn
k ; x) = (x− 1) (x− 2)k−1.

One can see that the flow polynomial is the same for all n ≥ 3, i.e., for all homeomor-

phic chains. Ii follows also from the fact that F (Gn
k ; x) is the specific case of the Yamada

polynomial at x = 1 and y = x.

Denote Fk = F (Gk; x), Gk ∈ ∪n≥3 U
n
k , and let F ∗(z) =

∞∑
k=0

Fk z
k be the generating

function. Then

F ∗(z) =
(x− 1) z

1− (x− 2) z
.

The flow polynomial can be calculated through the Tutte and the Negami polynomials

for a graph G with p vertices, q edges and ω connected components:

F (G; x) = (−1)q−p+ω T (G; 0, 1− x),

F (G; x) = x−p N(G; x, x,−1).

9 Conclusion

We have considered a general calculation scheme for the polynomial graph invariant f

based on edge deletion and contraction in a graph. For chains of polygons, recurrent and

explicit formulae of the invariant have been presented.
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Networks , Birkhäuser, New York, 2011, pp. 257–292.

[16] G. H. Fath–Tabar, Z. Gholan–Rezaei, A. R. Ashrafi, On the Tutte polynomial of

benzenoid chains, Iran. J. Math. Chem. 3 (2012) 113–119.

[17] H. Hosoya, On some counting polynomials in chemistry, Discr. Appl. Math. 19 (1988)

239–257.
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[29] N. Trinajstić, D. J. Klein, M. Randić, On some solved and unsolved problems of

chemical graph theory, Int. J. Quantum Chem. 20 (1986) 699–742.
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