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Abstract

The first Zagreb index M1 of a graph G is equal to the sum of squares of the
vertex degrees of G. A segment of a tree is a path-subtree whose terminal vertices
are branching or pendent vertices. In this paper, we characterize the trees which
minimize and maximize the first Zagreb index among all trees with fixed number
of segments, respectively. As a byproduct, we also prove that these trees also share
the minimum and maximum first Zagreb index among all trees with fixed number
of vertices of degree two, respectively.

1 Introduction

In this paper, we only consider the connected and simple graphs. Let G be a graph with

vertex set V (G) and edge set E(G). The degree dG(v) of a vertex v in G is the number

of edges of G incident with v. The maximum vertex degree of G is denote by 4(G). The

first Zagreb index M1 and the second Zagreb index M2 of G are defined as

M1(G) =
∑

u∈V (G)

(dG(u))2, M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

The Zagreb indices M1 and M2 were introduced in [6] and elaborated in [7]. They

reflect the extent of branching of the underlying molecular structure. Chemists are often

interested in the Zagreb indices of certain trees which represent some acyclic molecular

structures. The main properties of M1 and M2 of trees were summarized in [1, 5]. The
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extremal trees that maximize or minimize Zagreb indices within certain classes of trees

received great attention, see [10] for trees with fixed maximum degree, [3, 4, 8] for trees

with given number of pendent vertices, [9] for trees with given degree sequences, [11] for

trees with perfect matchings and [12] for the chemical trees (trees with maximum degrees

at most 4).

A vertex of degree one of a tree is called a pendent vertex. A vertex of a tree T with

degree 3 or greater is called a branching vertex of T . In the sequel, we always use the

symbols V1(T ), V2(T ) and V≥3(T ) to denote the set of pendent vertices, the set of vertices

of degree two and the set of branching vertices in a tree T , respectively. Thus the vertex

set of any tree T can be partitioned into

V (T ) = V1(T ) ∪ V2(T ) ∪ V≥3(T ).

Recently, Goubko and Gutman [3, 4] characterized the trees with the minimum first

Zagreb index among all trees with fixed number of pendent vertices. So, it is natural to

consider the analogous problem for the trees with fixed number of vertices of degree two.

Problem A. Characterize the trees which maximize and minimize the first Zagreb index

among all trees with fixed number of vertices of degree two.

On the other hand, recall that a segment of a tree T [2, p. 219] is a path-subtree S

whose terminal vertices are branching or pendent vertices of T (i.e., every internal vertex v

of S has dT (v) = 2). The number of the segments of a tree T is denoted by sT . Dobrynin,

Entringer and Gutman ( Section 5 of [2]) summarized many applications of this concept

for the calculation of the Wiener index (the sum of the distances between all pairs of

vertices in a graph) of trees . This provokes one to state the following problem.

Problem B. Characterize the trees which maximize and minimize the first Zagreb index

among all trees with fixed number of segments.

The aim of this paper is to give a complete solution of above problems. First, we need

a simple observation.

Given a tree T , let r = |V (T )| − |V2(T )|, then by squeezing out all vertices of degree 2

from T (i.e., replacing each segment of T by an edge), a r−vertex tree will remain, which

we call the squeeze of T and denote by S(T ) (see Figure 1 for an example). Clearly, there

is a bijection between the segments of T and the edges of S(T ). Thus

sT = |E(S(T ))| = |V (S(T ))| − 1 = |V (T )| − |V2(T )| − 1. (1)
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Fig. 1 A tree T and its squeeze S(T )

This observation follows that in an n−vertex tree T , sT is determined by the number

of vertices of degree two of T and vice versa.

As usual, Sn and Pn denote, respectively, the star and path on n vertices. Denote by

STn,k the set of all n−vertex trees with exactly k segments. Note that the path Pn is the

unique element in STn,1, the star Sn is the unique element in STn,n−1 and the set STn,2 is

empty. So in the following we only consider the class STn,k with 3 ≤ k ≤ n− 2.

A tree is said to be starlike of degree k if exactly one of its vertices has degree

greater than two, and this degree is equal to k, k ≥ 3. A non-increasing sequence π =

(d1, d2, ..., dn) is called graphic if there exists an n−vertex graph G such that di = dG(v)

holds for some v ∈ V (G). Given two positive integers n and k with 3 ≤ k ≤ n − 2,

denote by Rn,k the set of all n−vertex starlike trees of degree k, by On,k the set of all

n−vertex trees with the degree sequence (3, ..., 3︸ ︷︷ ︸
k−1
2

, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, ..., 1︸ ︷︷ ︸
k+3
2

) for odd k and by En,k

the set of all n−vertex trees with the degree sequence (4, 3, ..., 3︸ ︷︷ ︸
k−4
2

, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, ..., 1︸ ︷︷ ︸
k+4
2

) for even

k. Clearly, each tree in Rn,k has the degree sequence (k, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, ..., 1︸ ︷︷ ︸
k

). For any tree T in

Rn,k, On,k and En,k, according to (1), sT = n−|V2(T )|− 1 = n− (n− k− 1)− 1 = k, thus

Rn,k ⊆ STn,k, On,k ⊆ STn,k and En,k ⊆ STn,k. In Figure 2, we have drawn two specified

trees T1(n, k) ∈ On,k and T2(n, k) ∈ En,k.
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Fig. 2 Two trees T1(n, k) and T2(n, k)

Now we can state the main result of this paper.

Theorem 1. Let T ∈ STn,k, where 3 ≤ k ≤ n− 2, then

4n+ k2 − 3k − 4 ≥M1(T ) ≥
{

4n+ k − 7 if k is odd
4n+ k − 4 if k is even.

The upper bound is attained if and only if T ∈ Rn,k and the lower bound is attained if

and only if T ∈ On,k for odd k or T ∈ En,k for even k.

Remark 1. According to (1), Theorem 1 also characterizes the trees which maximize and

minimize the first Zagreb index among all trees with fixed number of vertices of degree

two.

The proof of the theorem is given in Section 3, while in Section 2 we provide some

results to make the proof more compact.

2 Preliminaries

The following theorem due to Gutman and Das [5] is an elementary result on the first

Zagreb index of trees.

Theorem 2 ([5]). Let T be a tree on n vertices, then

4n− 6 ≤M1(T ) ≤ n(n− 1).
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The lower bound is attained if and only if T ∼= Pn and the upper bound is attained if and

only if T ∼= Sn.

A tree is called a caterpillar if the removal of all pendent vertices results in a path.

Otherwise, it is called a non-caterpillar.

Lemma 3. Suppose T is an n−vertex non-caterpillar, then there exists an n−vertex

caterpillar T ′ such that T ′ and T have the same degree sequence.

Proof. By construction. Let r = |V2(T )| and k = |V≥3(T )|, then |V1(T )| = |V (T )| −

|V2(T )| − |V≥3(T )| = n − k − r. As T is a non-caterpillar, k ≥ 1. We may assume that

π = (d1, d2, ..., dn) is the degree sequence of T with

d1 ≥ ... ≥ dk ≥ 3 > dk+1 = ... = dk+r = 2 > dk+r+1 = ... = dn = 1.

Since the relation
∑

v∈V (G)

dG(v) = 2|E(G)| (handshaking lemma) holds for any graph

G, we have

(d1 + d2 + ...+ dk) + 2r + (n− k − r) = 2(n− 1). (2)

Let R be the caterpillar (see Figure 3) obtained from a (k + r + 1)−vertex path

P = v1v2...vk+r+1 by attaching ti new vertices of degree one to each vertex vi for 1 ≤ i ≤ k

such that

t1 = d1 − 1, and if k ≥ 2

ti = di − 2 for each i ∈ {2, 3, ..., k}.
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... ...

Fig. 3 The caterpillar R

Therefore,

dR(v1) = d1, dR(v2) = d2, ..., dR(vk) = dk, and dR(vk+1) = ... = dR(vk+r) = 2.

Note that R has t1 + t2 + ...+ tk + 1 pendent vertices, by equation (2), we get

t1 + t2 + ...+ tk + 1

= (d1 − 1) + (d2 − 2) + ...+ (dk − 2) + 1

= (d1 + d2 + ...+ dk)− 2k + 2
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= 2(n− 1)− 2r − (n− k − r)− 2k + 2

= n− k − r.
Hence π also is the degree sequence of R. Now T ′ = R is the desired tree. 2

Lemma 4. Let T be a caterpillar and let P = v0v1...vlvl+1 be a longest path of T .

Assume that there exists a vertex vi (1 ≤ i ≤ l) such that dT (vi) ≥ 5, suppose u and v

(u 6= v0, u 6= vl+1, v 6= v0 and v 6= vl+1) are two pendent vertices adjacent to vi. Let T ′ be

the tree obtained from T by deleting the edges uvi, vvi and joining u and v to vl+1 (see

Figure 4 for an example), then M1(T
′) < M1(T ).
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v0 v1 v2 v3 v4 v5 v1v0 v2 v3 v4 v5

u

v

=⇒

T T ′

Fig. 4 Two caterpillars T and T ′

Proof. We shall consider the difference M1(T )−M1(T
′). Note that vi and vl+1 are the

only vertices whose degrees differ in T and T ′, dT (vi) = dT ′(vi) + 2, dT ′(vl+1) = 3 and

dT (vl+1) = 1. Therefore,

M1(T )−M1(T
′)

= [(dT (vi))
2 + (dT (vl+1))

2]− [(dT ′(vi))
2 + (dT ′(vl+1))

2]

= [(dT ′(vi) + 2)2 + 1]− [(dT ′(vi))
2 + 9]

= 4dT ′(vi)− 4

≥ 8 (since dT ′(vi) = dT (vi)− 2 ≥ 3). 2

Remark 2. For the trees T and T ′ described in Lemma 4, it is easy to see that sT =

sT ′ . So if a caterpillar T ∈ STn,k contains a vertex of degree greater than 4, then by a

transformation introduced in Lemma 4, one can get another caterpillar T ′ ∈ STn,k with

M1(T
′) < M1(T ).

Lemma 5. Let T be a caterpillar and let P = v0v1...vlvl+1 be a longest path of T . Assume

that there exists two vertices vi and vj (1 ≤ i, j ≤ l) such that dT (vi) = dT (vj) = 4,

suppose u (u 6= v0 and u 6= vl+1) is a pendent vertex adjacent to vi and v (v 6= v0 and

v 6= vl+1) is a pendent vertex adjacent to vj. Let T ′′ be the tree obtained from T by

deleting the edges uvi, vvi and joining u and v to vl+1 (see Figure 5 for an example), then

M1(T
′′) < M1(T ).
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Fig. 5 Two caterpillars T and T ′′

Proof. We shall consider the difference M1(T )−M1(T
′′). Note that vi, vj and vl+1 are

the only vertices whose degrees differ in T and T ′′. Therefore,

M1(T )−M1(T
′′)

= [(dT (vi))
2 + (dT (vj))

2 + (dT (vl+1))
2]− [(dT ′′(vi))

2 + (dT ′′(vj))
2 + (dT ′′(vl+1))

2]

= [16 + 16 + 1]− [9 + 9 + 9]

= 6. 2

Remark 3. For the trees T and T ′′ described in Lemma 5, it is easy to see that sT = sT ′′ .

So if a caterpillar T ∈ STn,k contains two vertices of degree 4, then by a transformation

introduced in Lemma 5, one can get another caterpillar T ′′ ∈ STn,k with M1(T
′′) < M1(T ).

s s s s s s
s s s s

... ...
v1 v2 ... vt3

F

Fig. 6 The tree F

Lemma 6. Let T be a caterpillar with 4(T ) ≤ 4. Assume that T has t3 vertices of

degree 3 and t4 vertices (t4 ≤ 1) of degree 4, then sT is odd if t4 = 0 and sT is even if

t4 = 1.

Proof. Let F be the caterpillar as shown in Figure 6. When t4 = 0, then S(T ) = F ,

which follows that sT = sF is odd. When t4 = 1, then S(T ) can be obtained from

F by adding a new vertex u and joining u to one vertex vi ∈ {v1, v2, ..., vt3}, and thus

sT = sF + 1 is even. 2
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3 Proof of Theorem 1
Proof. By the definitions of the squeeze of a tree and the first Zagreb index, we have

M1(T ) = M1(S(T )) + 4|V2(T )|.

From (1), |V2(T )| = n− sT − 1 = n− k − 1, hence

M1(T ) = M1(S(T )) + 4(n− k − 1).

Since S(T ) has n− |V2(T )| = k + 1 vertices, by Theorem 2

M1(S(T )) ≤ k2 + k,

with equality if and only if S(T ) = Sk+1.

If S(T ) = Sk+1, then T ∈ Rn,k. So we arrive at

M1(T ) ≤ k2 + k + 4(n− k − 1) = 4n+ k2 − 3k − 4,

with equality if and only if T ∈ Rn,k.

Now we turn to determine the lower bound of M1(T ). Let T ∗ be a tree with the

minimal Zagreb index in STn,k and let π be its degree sequence.

By Lemma 3, we can always find a caterpillar T ∗c ∈ STn,k with π as its degree sequence

(if T ∗ is a caterpillar, we may set T ∗c = T ∗). Consequently,

M1(T
∗) = M1(T

∗
c ).

Claim 1. 4(T ∗c ) ≤ 4.

Suppose, to the contrary, 4(T ∗c ) ≥ 5, then by a transformation described in Lemma

4, we can get a caterpillar T ′ ∈ STn,k with M1(T
′) < M1(T

∗
c ) = M1(T

∗), contradicting to

the minimality of T ∗.

Claim 2. T ∗c has at most one vertex of degree 4.

Suppose, to the contrary, T ∗c has at least two vertices of degree 4, then by a trans-

formation introduced in Lemma 5, we can get a caterpillar T ′′ ∈ STn,k with M1(T
′′) <

M1(T
∗
c ) = M1(T

∗), contradicting to the minimality of T ∗.

Now we can conclude that T ∗c should possess only vertices of degree 1, 2, 3 and at most

one vertex of degree 4. For each i ∈ {1, 2, 3, 4}, let ti denote the number of its vertices of

degree i. To obtain exact value of M1(T
∗
c ), we shall examine two cases.
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Case 1. k is odd.

In this case, according to Lemma 6, t4 = 0. From (1),

t2 = n− k − 1. (3)

Since T ∗c is a caterpillar, it is easy to see that

t1 = t3 + 2. (4)

From handshaking lemma,

t1 + 2t2 + 3t3 = 2n− 2. (5)

Combining (3), (4) and (5), we get

t1 = k+3
2

and t3 = k−1
2

,

which lead to

π = (3, ..., 3︸ ︷︷ ︸
k−1
2

, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, ..., 1︸ ︷︷ ︸
k+3
2

).

Hence T ∗ ∈ On,k, and

M1(T
∗) = 9(k−1

2
) + 4(n− k − 1) + k+3

2
= 4n+ k − 7.

Case 2. k is even.

In this case, according to Lemma 6, t4 = 1. From (1),

t2 = n− k − 1. (6)

Since T ∗c is a caterpillar, it is easily checked that

t1 = t3 + 2t4 + 2 = t3 + 4, (7)

From handshaking lemma,

t1 + 2t2 + 3t3 + 4t4 = t1 + 2t2 + 3t3 + 4 = 2n− 2. (8)

Combining (6), (7) and (8), we obtain

t1 = k+4
2

and t3 = k−4
2

,

which lead to



π = (4, 3, ..., 3︸ ︷︷ ︸
k−4
2

, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, ..., 1︸ ︷︷ ︸
k+4
2

).

Hence T ∗ ∈ En,k, and

M1(T
∗) = 16 + 9(k−4

2
) + 4(n− k − 1) + k+4

2
= 4n+ k − 4,

by which the proof of Theorem 1 is completed. 2
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