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Abstract

The Wiener index W is the sum of distances between all pairs of vertices of a connected

graph. Recently Zhang et al. [MATCH Commun. Math. Comput. Chem. 67 (2012) 347]

considered the q-analog of W , motivated by the theory of hypergeometric series. We obtain

explicit formulas for the q-Wiener index of cluster and corona of graphs, of which thorny

and bridge graphs are special cases. Using these formulas, the q-Wiener indices of several

classes of chemical graphs are computed.

1 Introduction

In this paper we are concerned with simple and connected graphs. Let G be such a

graph. Its vertex is denoted by V (G).

The distance between the vertices u and v of G is denoted by dG(u, v) (or d(u, v)

for short). It is defined as the length of a shortest path connecting u and v [3].
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The diameter of the graph G, denoted by dG , is the maximum distance between two

vertices of G.

Let d(G, k) be the number of pairs of vertices of the graph G that are at distance

k. Note that d(G, 0) and d(G, 1) are equal to the number of vertices and edges,

respectively. Then the Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
∑
k≥1

d(G, k) .

For details of the history, mathematical theory, and chemical applications of the

Wiener index see [5, 12, 21, 25].

Let q be a positive real number, q �= 1. Three different variants of the q-Wiener

index were considered so far [26], viz.,

W1(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q

W2(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q q
dG−d(u,v)

W3(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q q
d(u,v) .

Where

[k]q =
1− qk

1− q
= 1 + q + q2 + · · ·+ qk−1 .

Obviously, lim
q→1

[k]q = k, and therefore,

lim
q→1

W1(G, q) = lim
q→1

W2(G, q) = lim
q→1

W3(G, q) = W (G) .

The possible chemical interpretation and applications of the invariants Wi(G, q) are

analyzed in [26]. The three q-Wiener indices are mutually related as:

W2(G, q) = qdG−1W1(G, 1/q) (1)

W3(G, q) = (1 + q)W1(G, q2)−W1(G, q) . (2)

In addition, we have the following relations [26]:

W1(G, q) =
∑
k≥1

[k]q d(G, k)
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W2(G, q) =
∑
k≥1

[k]q q
dG−k d(G, k)

W3(G, q) =
∑
k≥1

[k]q q
k d(G, k) .

Recently [19], formulas are obtained for computing the q-Wiener indices of some

compound trees.

The counting polynomial

H(G, λ) =

dG∑
k=1

d(G, k) λk

was first put forward by Hosoya [16] (see also [13] and the references cited therein).

Hosoya himself called it Wiener polynomial, but eventually the more appropriate

name “Hosoya polynomial” has been accepted [4,13]. The mathematical connections

between the q-Wiener indices and H(G, q) are established in [26], viz.,

W1(G, q) =
1

1− q

[(
n

2

)
−H(G, q)

]

W2(G, q) =
qdG

1− q

[
H(G, 1/q)−

(
n

2

)]

W3(G, q) =
1

1− q

[
H(G, q)−H(G, q2)

]
.

In view of the relations (1) and (2), in what follows we shall report only expressions

for W1(G, q) The corresponding formulas for W2(G, q) and W3(G, q) could then be

established by means of Eqs. (1) and (2), respectively.

Throughout this paper, Cn , Pn , Kn , and Sn denote the cycle, path, complete,

and star graphs on n vertices. Our other notations are standard and taken mainly

from [14].

2 Main results

A rooted graph is a graph in which one vertex is labeled in a special way so as to

be distinguished from the other vertices. This special vertex is called the root of the

graph. Let G be a labeled graph on n vertices. LetH be a sequence of n rooted graphs

H1, H2, . . . , Hn . The rooted product G(H) is the graph obtained by identifying the

root of Hi with the i-th vertex of G, for i = 1, 2, . . . , n [7].
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The cluster G1{G2} of a graph G1 and a rooted graph G2 is the graph obtained

by taking one copy of G1 and |V (G1)| copies of G2, and by identifying the root vertex

of the i-th copy of G2 with the i-th vertex of G1, for i = 1, 2, . . . , |V (G1)|, see Fig.

1. The cluster is a special case of rooted product. In what follows, we denote the

root vertex of G2 by w, and the copy of G2 whose root is identified with the vertex

u ∈ V (G1) by Gu
2 .

Fig. 1. The cluster G1{G2}.

For given graphs G1 and G2 , their corona product, G1 ◦G2 , is obtained by taking

|V (G1)| copies of G2 and joining each vertex of the i-th copy of G2 with the i-th

vertex of G1 .

2.1 q-Wiener index of the cluster of graphs

In this section we determine the q-Wiener index of the cluster G1{G2}. First we

define for vertex x ∈ V (G),

DG(x, q) =
∑

x �=u∈V (G)

[d(u, x)]q and QG(x) =
∑

x �=u∈V (G)

qd(u,x) .

Theorem 2.1. Let G1 be a graph of order n1 , and let G2 be a graph of order n2 ,

rooted at the vertex w. Then

W1(G1{G2}, q) = n1 W1(G2, q)

+ W1(G1, q)

[
QG2(w) +

1

3
QG2(w)(n2 − 1) +

1

3
Q2

G2
(w) +

1

3
(n2 − 1)2 + n2

]

+ H(G1, q)

[
DG2(w, q) +

2

3
QG2(w)DG2(w, q) +

1

3
(n2 − 1)DG2(w, q)

]
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+ DG2(w, q)
n1(n1 − 1)

2

[
1

3
QG2(w) + 1 +

2

3
(n2 − 1)

]
.

Proof. From the definition of the cluster G1{G2}, the distance between the vertices

of u, v ∈ V (G1{G2}) can be easily obtained bearing in mind that of dG1{G2}(u, v) =

dG2(u, v) if u, v ∈ V (Gx
2), and dG1{G2}(u, v) = dG2(u, w) + dG1(x, y) + dG2(v, w) if

u ∈ V (Gx
2) , v ∈ V (Gy

2) and x �= y. These relations imply

W1(G1{G2}, q) =
∑

{u,v}⊆V (G1{G2})

[dG1{G2}(u, v)]q

= n1

∑
{u,v}⊆V (G2)

[dG2(u, v)]q +
∑

{u,v}⊆V (G1)

[dG1(u, v)]q

+
∑

{u,v}⊆V (G1)

∑
x∈V (Gu

2 )−{w}

∑
y∈V (Gv

2)−{w}

[dG2(x, w) + dG1(u, v) + dG2(y, w)]q

+
∑

u∈V (G1)

∑
v∈V (G1)−{u}

∑
x∈V (Gv

2)−{w}

[dG1(u, v) + dG2(x, w)]q

= n1W1(G2, q) +W1(G1, q) +
1

3
(n2 − 1)2W1(G1, q)

+
1

3
n1 (n1 − 1)DG2(w, q)(n2 − 1) +

1

3
H(G1, q)DG2(w, q)(n2 − 1)

+
1

3
H(G1, q)DG2(w, q)QG2(w) +

1

3
QG2(w)W1(G1, q)(n2 − 1)

+
1

3
H(G1, q)DG2(w, q)QG2(w) +

1

6
n1 (n1 − 1)DG2(w, q)QG2(w)

+
1

3
Q2

G2
(w)W1(G1, q) +W1(G1, q)(n2 − 1) +

1

2
n1 (n1 − 1)DG2(w, q)

+ H(G1, q)DG2(w, q) +W1(G1, q)QG2(w) = n1W1(G2, q)

+ W1(G1, q)

[
QG2(w) +

1

3
QG2(w)(n2 − 1) +

1

3
Q2

G2
(w) +

1

3
(n2 − 1)2 + n2

]

+ H(G1, q)

[
DG2(w, q) +

2

3
QG2(w)DG2(w, q) +

1

3
(n2 − 1)DG2(w, q)

]

+ DG2(w, q)
n1(n1 − 1)

2

[
1

3
QG2(w) + 1 +

2

3
(n2 − 1)

]
which completes the proof. �
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Note that for given graphs G and H , the graph G ◦ H can be considered as the

cluster of G and of K1 +H , where the root of K1 +H is at the single vertex of K1.

So the formula of q-Wiener index of G ◦H can be obtained by setting G1
∼= G and

G2
∼= K1 +H in Theorem 2.1.

Corollary 2.2. Let G and H be two graphs with n1 and n2 vertices and m1 and m2

edges respectively, then

W1(G ◦H, q) = n1 [m2 + n2 + (1 + q)m2]

+ W1(G1, q)

[
1 + n2(1 + q) +

1

3
n2
2 (q

2 + q + 1)

]
+ H(G1, q)

[
n2 +

1

3
n2
2 (2q + 1)

]
+ n2

[
1

6
n1 (n1 − 1)n2 (q + 2) +

n1(n1 − 1)

2

]
where m2 is the number of edges of the complement of K1 +H .

Let G be a labeled graph on n vertices and let p1, p2, . . . , pn be non-negative

integers. The thorny graph G∗(p1, p2, . . . , pn) of the graph G is obtained from G by

attaching pi pendent vertices to the i-th vertex of G, i = 1, 2, . . . , n. The concept

of thorny graphs was introduced in [9] and eventually found a variety of chemical

applications [2, 15, 22–24], mainly related with Wiener–type indices.

The thorny graph G∗(p1, p2, . . . , pn) can be viewed as the rooted product of G by

the sequence of star graphs {Sp1+1, Sp2+1, . . . , Spn+1}, where the root vertex of Spi+1

is the vertex of degree pi , i = 1, . . . , n.

Theorem 2.3. The q-Wiener index of the thorny graph G∗(p1, p2, . . . , pn) is given

by:

W1(G
∗(p1, p2, . . . , pn), q) =

n∑
i=1

W1(Spi+1, q) +W1(G, q)

+

n∑
i,j=1
i<j

pi pj [dG(wi, wj) + 2]q +

n∑
i=1

pi [DG(wi, q) +QG(wi)] .

Proof. By the definition of the thorny graph G∗(p1, p2, . . . , pn), we have:

W1(G
∗(p1, p2, . . . , pn), q) =

∑
{u,v}⊆V (G∗(p1,p2,...,pn))

[dG∗(p1,p2,...,pn)(u, v)]q
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=
n∑

i=1

∑
{u,v}⊆V (Spi+1)

[dSpi+1(u, v)]q +
∑

{u,v}⊆V (G)

[dG(u, v)]q

+

n∑
i,j=1
i<j

∑
{u,v}⊆V (G)

∑
x∈V (Su

pi+1)−{wi}

∑
y∈V (Sv

pi+1)−{wj}

[dG(u, v) + 2]q

+
n∑

i=1

∑
u∈V (G)

∑
v∈V (G)−{u}

∑
x∈V (Sv

pi+1)−{wi}

[dG(u, v) + 1]q

=

n∑
i=1

W1(Spi+1, q) +W1(G, q) +

n∑
i,j=1
i<j

pi pj [dG(wi, wj) + 2]q

+
n∑

i=1

pi [DG(wi, q) +QG(wi)]

which completes the proof. �

3 Examples and corollaries

In this section we apply Theorem 2.1, Corollary 2.2, and Theorem 2.3 to the q-Wiener

index of some interesting classes of graphs.

For a given graph G, its t-thorny graph Θt(G) is obtained by attaching t pendent

vertices to each vertex of G. This graph can be represented as the cluster of G and

the star graph on t+ 1 vertices St+1, where the root of St+1 is on its vertex of degree

t.

Corollary 2.4. By Theorem 2.1 and Proposition 2. in [26], the q-Wiener index

t-thorny graph of a given graph G with n vertices is computed as:

W1(Θt(G), q) =
nt

2
[t(1 + q) + (1− q)] +W1(G, q)

[
1 + t(1 + q) +

t2

3
(q2+q+1)

]

+ H(G, q)

[
t+

t2

3
(2q + 1)

]
+ t

n1(n1 − 1)

2

[
1

3
t (q + 2) + 1

]
.

From the above formula and Proposition 2 in [26], the q-Wiener index of the

t-thorny graph of Pn and Cn can easily be computed.
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Example 2.5.

W1(Θt(Pn), q) =
nt

2
[t(1 + q) + (1− q)]

+
1

2

n−1∑
k=1

(
k(k + 1)qn−k−1

) [
1 + t(1 + q) +

t2

3
(q2 + q + 1)

]

+

n−1∑
i=1

(i qn−i)

[
t +

t2

3
(2q + 1)

]
+ t

n1(n1 − 1)

2

[
1

3
t(q + 2) + 1

]
.

If n is an even number, then

W1(Θt(Cn), q) =
nt

2
[t(1 + q) + (1− q)]

+

⎛⎝n

n
2
−1∑

k=1

[k]q +
n

2
(1 + q + · · ·+ q

n
2
−1)

⎞⎠[
1 + t(1 + q) +

t2

3
(q2 + q + 1)

]

+

⎛⎝n

n
2
−1∑

k=1

qk +
n

2
q

n
2

⎞⎠[
t+

t2

3
(2q + 1)

]
+ t

n1(n1 − 1)

2

[
1

3
t(q + 2) + 1

]
.

If n is an odd number, then

W1(Θt(Cn), q) =
nt

2
[t(1 + q) + (1− q)]

+

⎛⎝n

n−1
2∑

k=1

[k]q

⎞⎠[
1 + t(1 + q) +

t2

3
(q2 + q + 1)

]

+

⎛⎝n

n−1
2∑

k=1

qk

⎞⎠[
t +

t2

3
(2q + 1)

]
+ t

n1(n1 − 1)

2

[
1

3
t(q + 2) + 1

]
.

Our next example is about the bridge graph constructed on a given graph G. Let

G be a graph rooted at vertex w and let n be a positive integer. The bridge graph

Bd(G,w) is the graph obtained by taking d copies of G and by connecting the vertex

w of the i-th copy of G to the vertex w of the i + 1-th copy of G by an edge for

i = 1, 2, . . . , d−1, as shown in Fig. 2. The bridge graph Bd(G,w) can be represented

as the cluster of d vertex path Pd and the graph G.
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Fig. 2. The bridge graph Bd(G,w)

Corollary 2.6. Let G be a graph rooted at vertex w, then

W1(Bd(G,w), q) = dW1(G, q)

+
1

2

d−1∑
k=1

(
k(k + 1)qd−k−1

) [
QG(w) +

1

3
QG(w)(|V (G)| − 1)

]

+
1

2

d−1∑
k=1

(
k(k + 1)qd−k−1

) [1
3
Q2

G(w) +
1

3
(|V (G)| − 1)2 + |V (G)|

]

+

d−1∑
k=1

(k qd−k)

[
DG(w, q) +

2

3
QG(w)DG(w, q) +

1

3
(|V (G)| − 1)DG(w, q)

]

+ DG(w, q)
d(d− 1)

2

[
1

3
QG(w) + 1 +

2

3
(|V (G)| − 1)

]
.

Consider now the square comb lattice Cq(N) with open ends, possessing N = n2

vertices (see Fig. 3). This graph can be represented as the cluster Pn{Pn}, where the

root of Pn is on its pendent vertex.

1

1

2

2

3

3

n-1

n-1

n

n

Fig. 3. The the square comb lattice Cq(N).

-815-



Example 2.7. Using Corollary 2.6 and Proposition 2. in [26], the q-Wiener index of

the square comb lattice Cq(N) with N = n2 vertices is given by:

W1(Cq(N), q) =
1

6

n−1∑
k=1

k(k + 1)qn−k−1

⎡⎣n2+4n+1+

(
n−1∑
k=1

qk

)2

+ (n + 2)

n−1∑
k=1

qk

⎤⎦
+

1

3

n−1∑
k=1

k qn−k

n−1∑
k=1

[k]q

[
2

n−1∑
k=1

qk + n+ 2

]

+
n(n− 1)

6

n−1∑
k=1

[k]q

[
2n+ 1 +

n−1∑
k=1

qk

]
.

Using Corollary 2.6, we can get the following results for the bridge graph con-

structed on the cycle Cm, see Fig. 4 for the case m = 6. Note that because of the

symmetry of the graph Cm, any vertex of this graph can be assumed as its root vertex.

1 2 n-1 n

Fig. 4. The bridge graph constructed on the cycle C6 .

Example 2.8. Let n and m be positive integers, m ≥ 3

A = 2

m
2
−1∑

k=1

qk + q
m
2 , B = 2

m
2
−1∑

k=1

[k]q + [
m

2
]q

A′ = 2

m−1
2∑

k=1

qk , B′ = 2

m−1
2∑

k=1

[k]q

If m is even, then

W1(Pn{Cm}, q)

=
1

2

n−1∑
k=1

k(k + 1)qn−k−1

[
A+

1

3
A(m− 1) +

1

3
A2 +

1

3
(m− 1)2 +m

]
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+
n−1∑
k=1

k qn−k

[
B +

2

3
AB +

1

3
(m− 1)B

]

+
n(n− 1)

2
B

[
1

3
A+

2

3
m+

1

3

]
+ nm

m
2
−1∑

k=1

[k]q +
mn

2
(1 + · · ·+ q

m
2
−1) .

If m is odd, then

W1(Pn{Cm}, q)

=
1

2

n−1∑
k=1

k(k + 1)qn−k−1

[
A′ +

1

3
A′(m− 1) +

1

3
A′2 +

1

3
(m− 1)2 +m

]

+

n−1∑
k=1

k qn−k

[
B′ +

2

3
A′B′ +

1

3
(m− 1)B′

]
+

n(n− 1)

2
B′

[
1

3
A′ +

2

3
m+

1

3

]

+ nm

m−1
2∑

k=1

[k]q .

For a given graph G, the graph K2 ◦ G is called the bottleneck graph of G. By

Corollary 2.2, we have:

Example 2.9. Let G be a graph with n vertices and m edges, then

W1(K2 ◦G, q) = n(3 + q) + n2 (2 + 2q + q2)− 2qm+ 1 .

In particular, the q-Wiener index of the bottleneck graph of Pn is equal to

W1(K2 ◦ Pn, q) = n2 (2 + 2q + q2) + n(3 − q) + 2q + 1 .

A caterpillar or caterpillar tree is a tree in which all the vertices are within distance

1 of a central path. If we delete all pendent vertices of a caterpillar tree, then we

obtain a path. Thus, caterpillars are thorny graphs whose parent graph is a path, see

Fig. 5.

1 2 3 4 5

Fig. 5. A caterpillar tree obtained by attaching pendent vertices to P5 .
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Example 2.10. Using Theorem 2.3, the q-Wiener index of caterpillar tree

P ∗
n(p1, . . . , pn) is given by:

W1(P
∗
n(p1, p2, . . . , pn), q) =

n∑
i=1

[(
pi + 1

2

)
+

(
pi

2

)
q

]
+W1(Pn, q)

+

n∑
i,j=1
i<j

pi pj [dPn
(wi, wj) + 2]q +

n∑
i=1

pi [DPn
(wi, q) +QPn

(wi)] .

Caterpillar trees are used in chemical graph theory to represent the structure

of benzenoid hydrocarbon molecules [6, 8, 17, 18]. In addition, the caterpillar tree

P ∗
n(3, 2, 2, . . . , 2, 3) is the plerogram–type [10,11]molecular graph of the normal alkane

with n carbon atoms.

Example 2.11. Using Example 2.10, the q-Wiener index of the caterpillar tree

P ∗
n(p, 2, 2, . . . , 2, p) is given by:

W1(P
∗
n(p, 2, 2, . . . , 2, p), q) = 2

[(
p+ 1

2

)
+

(
p

2

)
q

]
+ (3 + q)(n− 2)

+
1

2

n−1∑
k=1

k(k + 1)qn−k−1 +
n∑

i,j=1
i<j

pi pj [dPn
(wi, wj) + 2]q

+

n∑
i=1

pi [DPn
(wi, q) +QPn

(wi)] .

In particular, for p = 3, we arrive at:

Example 2.12. The q-Wiener indices of the plerograms of ethane, propane, and

butane are

W1(P
∗
2 (3, 3), q) = 9q2 + 21q + 28

W1(P
∗
3 (3, 2, 3), q) = 9q3 + 27q2 + 45q + 55

W1(P
∗
4 (3, 2, 2, 3), q) = 9q4 + 21q3 + 44q2 + 64q + 91 .

Let T1, . . . , Tm, m ≥ 2, be trees with disjoint vertex sets of orders n1, . . . , nm,

respectively. Let wi ∈ V (Ti), i = 1, 2, . . . , m. Any tree T on more than two vertices

can be viewed as being obtained by joining a new vertex u to each of the vertices
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w1, w2, . . . , wm. In following, we state a theorem from [19], that makes it possible to

recursively calculate the q-Wiener index of any tree.

Lemma 2.13. Let T be a tree on n ≥ 3 vertices, whose structure is specified above,

then

W1(T, q) =
m∑
i=1

W1(Ti, q) + q

m∑
i=1

dTi
(wi, 1) + q2

m∑
i=1

(n− 1− ni) dTi
(wi, 1)

+ (n− 1)− (1− q)q2
∑

1≤i<j≤m

dTi
(wi, 1)dTj

(wj , 1)

+
1 + q

2

[
(n− 1)2 −

m∑
i=1

n2
i

]
where dTi

(wi, 1) =
∑

u∈V (Ti)

[d(u, wi)]q .

The ordinary Bethe tree Bd,k is a rooted tree of k levels whose root vertex has

degree d, the vertices from levels 2 to k − 1 have degree d + 1, and the vertices at

level k have degree 1, see Fig. 6. Using Lemma 2.13, we get the following relation for

the q-Wiener index of Bd,k.

Fig. 6. The ordinary Bethe tree B2,4 .

Corollary 2.14. The q-Wiener index of the ordinary Bethe tree Bd,k is given by

W1(Bd,j , q) = dW1(Bd,j−1, q) + qd

[
j−3∑
m=0

(
j−2∑

i=m+1

qm di

)]

+ q2 (dj − d)

[
j−3∑
m=0

(
j−2∑

i=m+1

qm di

)]
+

j−1∑
i=1

di

− (1− q)q2
(
d

2

)[
j−3∑
m=0

(
j−2∑

i=m+1

qm di

)]2
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+
1 + q

2

⎡⎣( j−1∑
i=1

di

)2

− d

(
j−2∑
m=0

dm

)2
⎤⎦

where 3 ≤ j ≤ k and

W1(Bd,3, q) =
d4

2

(
q3 + q2 + q + 1

)
+ d3

(
1 + q +

(1− q)q2

2

)
+ d2 (1− q2) +

d

2
(1− q) .

Denote by C(d, k, n) the unicyclic graph obtained by attaching the root vertex of

Bd,k to the vertices of the n-vertex cycle Cn, see Fig. 7. For more information about

this graph, see [1]. It is easy to see that C(d, k, n) is the cluster of Cn and Bd,k. So

by Theorem 2.1 and Corollary 2.14, we get the q-Wiener index of C(d, k, n).

Fig. 7. The unicyclic graph C(2, 4, 3).

Example 2.15. Let

A =
k−2∑
m=1

(dq)m , B =
k−2∑
m=0

(
k−1∑

i=m+1

qm di

)
, C =

k−1∑
m=1

dm .

Then the q-Wiener index of the unicyclic graph C(d, k, n) is given by

W1(C(d, k, n), q) = nW1(Bd,k, q)

+

⎛⎝n

n
2
−1∑

m=1

[m]q +
n

2

(
1 + q + · · ·+ q

n
2
−1
)⎞⎠[

A +
1

3
AC +

1

3
A2 +

1

3
C2 + C + 1

]
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+

⎛⎝n

n
2
−1∑

m=1

qm +
n

2
q

n
2

⎞⎠[
B +

2

3
AB +

1

3
CB

]
+B

n(n− 1)

2

[
1

3
A+ 1 +

2

3
C

]
.

Denote by P (d, k, n) the tree obtained by attaching the root vertex of Bd,k to

the vertices of Pn, see Fig. 8. For more information about this classes of trees,

see [20]. It is easy to see that P (d, k, n) can be considered as the bridge graph

B(Bd,k, Bd,k, . . . , Bd,k;w,w, . . . , w), where w denotes the root vertex of Bd,k. So by

Corollaries 2.6 and 2.14, we get the q-Wiener index of P (d, k, n).

Fig. 8. The tree P (2, 4, 3).

Example 2.16. The q-Wiener index of the tree P (d, k, n) is given by:

W1(P (d, k, n), q) = nW1(Bd,k, q) +
1

2

(
n−1∑
m=1

m(m+ 1) qn−m−1

)[
A +

1

3
AC

]

+
1

2

(
n−1∑
m=1

m(m+ 1) qn−m−1

)[
1

3
A2 +

1

3
C2 + C + 1

]

+

(
n−1∑
m=1

mqn−m

)[
B +

2

3
AB +

1

3
CB

]
+B

n(n− 1)

2

[
1

3
A+ 1 +

2

3
C

]
.
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