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Abstract

The Wiener index of a connected graph is defined as the sum of the distances
between all unordered pairs of its vertices. Let MTn,k be the set of trees of order n
with exactly k vertices of maximum degree. In this note, we characterize the trees
with the maximal Wiener index in MTn,k.

1 Introduction

All graphs considered in this paper are simple, connected graphs. Let G be a graph with

vertex set V (G) and edge set E(G). The degree degG(v) of a vertex v in G is the number

of edges of G incident with v. A vertex of degree one is called a pendent vertex. A vertex

of a tree T with degree 3 or greater is called a branching vertex of T . Let Pn denote

the path with n vertices. The distance of a vertex v, denoted by dG(v), is the sum of

distances between v and all other vertices of G. The distance between vertices u and v

of G is denoted by dG(u, v). The diameter of G, denoted by diam(G), is the maximum

distance between two vertices of G. The Wiener index of a connected graph G is defined

as
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W (G) =
∑

{u,v}⊆V (G)

dG(u, v) .

The Wiener index is the oldest and very important topological index in chemical

graph theory which was first introduced by Wiener [18] and has been extensively studied

by many chemical and mathematical researchers. For its details, the readers may see two

surveys by Dobrynin et al. [2] and Gutman et al. [3] and two recent monographs by

Gutman and Furtula [8, 9].

Chemists are often interested in the Wiener index of certain trees which represent

molecular structures. Since every atom has a certain valency, chemists are also in par-

ticular interested in trees with some degree restrictions and having maximal or minimal

Wiener index. Many researches are devoted to this topics, see [5, 16] for trees with fixed

maximum degree, [6, 7, 11] for trees with all degrees odd, [12] for trees with given number

of branching vertices, [13] for trees with given number of vertices of even degree and [10,

14, 15, 17, 19, 20] for trees with given degree sequence. As for trees with given number

of pendent vertices, Burns and Entringer [1] determined the lower bound of the Wiener

index of an n−vertex tree with exactly k pendent vertices, and the upper bound was

obtained by Shi [14] and Entringer [4] independently. The tree S(n,m) is an n−vertex

tree obtained from m disjoint paths (each has �n−1
m


 or 
n−1
m

� vertices) by attaching one

end–vertex of each path to a new vertex. The dumbbell D(n, a, b) consists of the path

Pn−a−b together with a independent vertices adjacent to one pendent vertex of P and b

independent vertices adjacent to the other pendent vertex. Then the main results of [1,

4, 14] (see also Section 12 of [2]) can be stated as:

Theorem 1 ([1, 4, 14]). If T is a tree on n vertices with k pendent vertices, 2 ≤ k ≤
n− 1, then

W (S(n, k)) ≤ W (T ) ≤ W

(
D

(
n,

⌊
k

2

⌋
,

⌈
k

2

⌉))
,

the lower bound is attained if and only if T = S(n, k), and the upper bound is attained

if and only if T = D(n, 
k
2
�, �k

2

).

Observe that any tree contains at least two minimum degree vertices (i.e., two pendent

vertices) and some maximum degree vertices. It is interesting to obtain results analogous

to Theorem 1 in the opposite direction by considering the maximum degree vertices.
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Let MTn,k be the set of trees of order n with exactly k(≤ n− 2) vertices of maximum

degree. Note that the path Pn is the unique element in MTn,n−2. So in the following we

only consider the class MTn,k with k ≤ n−3. Let M(n, k) be the tree shown in Figure 1.

� � � � � �
� � � � � � � �� � � �... .. ..

... ... ...1 2 �k
2

1 2 x 1 2
k

2
�

M(n, k)

x = n− 2k − 2

Fig. 1 The tree M(n, k)

In this paper, we give a partial solution of the above problem by proving the following

result.

Theorem 2. Let T ∈ MTn,k, where 1 ≤ k ≤ n− 3. Then

W (T ) ≤ W (M(n, k)) ,

with equality if and only if T = M(n, k).

Let BTn,r (resp. ETn,r) be the set of trees of order n with exactly r branching vertices

(resp. r even-degree vertices). In [12] and [13], the present author determined the upper

bound and lower bound of the Wiener index of trees in BTn,r and ETn,r, respectively.

Using a argument similar to that of [12] and [13], we give a proof of Theorem 2 in Section

2, while in the following we provide a sequence of results to make the proof more compact.

If a graph G has vertices v1, v2, ...,vn, then (degG(v1), degG(v2), ..., degG(vn)) is called

a degree sequence of G. A tree T is called a caterpillar if the tree obtained from T by

removing all pendent vertices is a path. The following is a long known result due to Shi

[14].

Theorem 3 ([14]). Let (d1, d2, ..., dn) be a degree sequence with
n∑

i=1

di = 2(n− 1), and

Tmax be the tree with maximal Wiener index among all trees with this prescribed degree

sequence. Then Tmax is a caterpillar.
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Very recently, Sills and Wang [15] characterized the maximal Wiener index of chemical

trees (trees with maximum degrees at most 4) with prescribed degree sequence by proving

the following result, see also [10].

Theorem 4 ([15]). Let (d1, ..., dk, dk+1, ..., dn) be a degree sequence with
n∑

i=1

di =

2(n − 1) and 4 ≥ d1 ≥ ... ≥ dk > dk+1 = ... = dn = 1. Let Tmax be the tree

with maximal Wiener index among all trees with this prescribed degree sequence. If

(d1, d2, ..., dk)=(as, ..., as︸ ︷︷ ︸
ms

, as−1, ..., as−1︸ ︷︷ ︸
ms−1

, ..., a1, ..., a1︸ ︷︷ ︸
m1

) with as > as−1 > ... > a1 ≥ 2, then

Tmax can be formed by attaching pendent edges to a path P = v1v2...vk such that

(degG(v1), ..., degG(vk))=(as, ..., as︸ ︷︷ ︸
ls

, as−1, ..., as−1︸ ︷︷ ︸
ls−1

, ..., a1, ..., a1︸ ︷︷ ︸
m1

, ..., as−1, ..., as−1︸ ︷︷ ︸
rs−1

, as, ..., as︸ ︷︷ ︸
rs

).

where |li − ri| ≤ 1 and li + ri = mi for i = 2, ..., s.

Lemma 5. Let T be a caterpillar with the longest path P = y0y1...ylyl+1. Assume that

there exists a vertex yi (1 ≤ i ≤ l) such that degT (yi) ≥ 3, suppose u is a pendent vertex

(u �= y0 and u �= yl+1) adjacent to yi and T ′ is the tree obtained from T by deleting the

edges yiu and joining u to y0, then W (T ′) > W (T ).

Proof. Let Tu be the tree obtained from T by deleting the vertices u and let T ′
u be the

tree obtained from T ′ by deleting the vertices u. Note that W (T ′) = W (T ′
u) + dT ′(u),

W (T ) = W (Tu) + dT (u) and Tu = T ′
u.

It is easily verified that W (T ′)−W (T ) = dT ′(u)− dT (u) > 0. �

� � �
�

�
� � � � � �

�
� � � � � �	

		

�
��

u

y0 y1 y2 y3 y4 y5 y0u y1 y2 y3 y4 y5

diameter-growing transformation

=⇒

T T ′

Fig. 2 The diameter-growing transformation of a caterpillar T relative to the vertex y2.

It is easy to see that if a caterpillar T contains a vertex yi of degree greater than 2, then

by the operation stated in Lemma 5, one can get another caterpillar T ′ with W (T ′) >

W (T ) and diam(T ′) = diam(T ) + 1, see Figure 2 for an example. For the convenience

of the subsequent discussion, such a transfer operation will be called a diameter-growing

transformation of T relative to the vertex yi.
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2 Proof of Theorem 2

Proof. Let T ∗ be a tree with the maximal Wiener index inMTn,k. Suppose (d1, d2, ..., dn)

is the degree sequence of T ∗. Let Td be the set of trees of order n with this degree

sequence. Clearly Td ⊆ MTn,k, so T ∗ also is a tree with the maximal Wiener index in

Td. By Theorem 3, T ∗ is a caterpillar. Let P = y0y1...ylyl+1 be the longest path of T ∗

and let � be the maximum degree of vertices of T ∗. The condition k ≤ n − 3 implying

that � ≥ 3.

We can further claim that � = 3.

Suppose, to the contrary, � ≥ 4. Since T ∗ is a caterpillar, any vertex of degree greater

than 2 belongs to {y1, y2, ..., yl}. Then for each yi ∈ {y1, y2, ..., yl} such that degT ∗(yi) ≥ 3,

we carry out diameter-growing transformation relative to yi, repeatedly ri times, where

ri = degT ∗(yi)− 2 if 3 ≤ degT ∗(yi) ≤ �− 1 ,

and

ri = degT ∗(yi)− 3 if degT ∗(yi) = � .

Finally, we will get another caterpillar T ′ possessing only k vertices of degree 3 and n−k

vertices of degree 1 and 2. Thus T ′ ∈ MTn,k. According to Lemma 5, W (T ′) > W (T ∗),

but this contradicts the choice of T ∗.

Consequently, T ∗ is a chemical tree with exactly k vertices of degree 3. Suppose that

t1 and t2 are the numbers of the vertices of degree 1 and degree 2 of T ∗ respectively. Note

that T ∗ is a caterpillar, thus t1 = k+2. The relation
∑

v∈V (T ∗)
degT ∗(v) = 2|E(T ∗)| = 2n−2

gives that t1 + 2t2 + 3k = 2n− 2, and hence t2 = n− 2k − 2. So the degree sequence of

T ∗ is (3, ..., 3︸ ︷︷ ︸
k

, 2, ..., 2︸ ︷︷ ︸
n−2k−2

, 1, ..., 1︸ ︷︷ ︸
k+2

).

Since T ∗ is the tree with the maximal Wiener index among all trees with this pre-

scribed degree sequence and T ∗ is a chemical tree, from Theorem 4, we arrive at

T ∗ = M(n, k) ,

by which the proof of Theorem 2 is completed. �

Theorem 2 only determines the trees with the maximal Wiener index in MTn,k. To

better understand the behavior of the maximum degree vertices influencing the Wiener

index, it might be worthwhile to consider the following problem.
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Problem. Characterize the tree(s) with the minimal Wiener index in MTn,k.

Dendrimers are highly regular trees that model various chemical molecules (see Section

2 of [2] for its details). The regular dendrimer tree Tk,d is defined as follows. For any

d ≥ 3, T0,d is the one-vertex graph and T1,d is the star with d + 1 vertices. Then for

k = 2, 3, ..., and d ≥ 3, the tree Tk,d is obtained by attaching d− 1 new vertices of degree

one to each vertex of degree one of Tk−1,d. The tree Tk,d has order (see Section 2 of [2])

n(Tk,d) = 1 +
d

d− 2
[(d− 1)k − 1] .

In view of the construction of Tk,d, the tree Tk,d has exactly n(Tk−1,d) vertices of

maximum degree d, hence Tk,d ∈ MTn(Tk,d),n(Tk−1,d).

�
�

� � � � � �

� �

� � � � � �
� �

� �

�
��
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�
�
�
��
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T2,3 W = 117 M(10, 4) W = 121

Fig. 3 All trees in MT10,4 and their Wiener indices.

In Figure 3, we list all trees in the class MT10,4 together with their Wiener indices,

the regular dendrimer T2,3 is tree with the minimal Wiener index in MT10,4. So, it is also

interesting to consider the above problem for the special class MTn(Tk,d),n(Tk−1,d) for every

k and d ≥ 3.

References

[1] K. Burns, R. C. Entringer, A graph–theoretic view of the United States postal

service, in: Y. Alavi, A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and

Algorithms , Proc. Seventh Int. Conf. Theor. Appl. Graphs, Wiley, New York, 1995,

pp. 323–334.

[2] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and appli-

cations, Acta Appl. Math. 66 (2001) 211–249.

-788-
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