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Abstract

The Wiener index of a connected graph is defined as the sum of the distances
between all unordered pairs of its vertices. Let MT,, ; be the set of trees of order n
with exactly k vertices of maximum degree. In this note, we characterize the trees
with the maximal Wiener index in MT,, ;.

1 Introduction

All graphs considered in this paper are simple, connected graphs. Let G be a graph with
vertex set V(G) and edge set E(G). The degree degg(v) of a vertex v in G is the number
of edges of GG incident with v. A vertex of degree one is called a pendent vertex. A vertex
of a tree T" with degree 3 or greater is called a branching vertex of T. Let P, denote
the path with n vertices. The distance of a vertex v, denoted by dg(v), is the sum of
distances between v and all other vertices of G.. The distance between vertices u and v
of G is denoted by dg(u,v). The diameter of G, denoted by diam(G), is the maximum

distance between two vertices of G. The Wiener index of a connected graph G is defined

as
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The Wiener index is the oldest and very important topological index in chemical
graph theory which was first introduced by Wiener [18] and has been extensively studied
by many chemical and mathematical researchers. For its details, the readers may see two
surveys by Dobrynin et al. [2] and Gutman et al. [3] and two recent monographs by
Gutman and Furtula [8, 9].

Chemists are often interested in the Wiener index of certain trees which represent
molecular structures. Since every atom has a certain valency, chemists are also in par-
ticular interested in trees with some degree restrictions and having maximal or minimal
Wiener index. Many researches are devoted to this topics, see [5, 16] for trees with fixed
maximum degree, [6, 7, 11] for trees with all degrees odd, [12] for trees with given number
of branching vertices, [13] for trees with given number of vertices of even degree and [10,
14, 15, 17, 19, 20] for trees with given degree sequence. As for trees with given number
of pendent vertices, Burns and Entringer [1] determined the lower bound of the Wiener
index of an n—vertex tree with exactly & pendent vertices, and the upper bound was
obtained by Shi [14] and Entringer [4] independently. The tree S(n,m) is an n—vertex
tree obtained from m disjoint paths (each has [“=1] or [“-1] vertices) by attaching one
end-vertex of each path to a new vertex. The dumbbell D(n,a,b) consists of the path
P,_4_p together with a independent vertices adjacent to one pendent vertex of P and b
independent vertices adjacent to the other pendent vertex. Then the main results of [1,
4, 14] (see also Section 12 of [2]) can be stated as:

Theorem 1 ([1, 4, 14]). If T is a tree on n vertices with k& pendent vertices, 2 < k <

W(S(n, k) < W(T) <W (D (n EJ , @)) :

the lower bound is attained if and only if 7= S(n, k), and the upper bound is attained
if and only if T = D(n, | 5], [£]).

n — 1, then

Observe that any tree contains at least two minimum degree vertices (i.e., two pendent
vertices) and some maximum degree vertices. It is interesting to obtain results analogous

to Theorem 1 in the opposite direction by considering the maximum degree vertices.
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Let MT,, ;, be the set of trees of order n with exactly k(< n — 2) vertices of maximum
degree. Note that the path P, is the unique element in MT, ,_». So in the following we
only consider the class MT,, , with k& < n—3. Let M(n, k) be the tree shown in Figure 1.

T T

1 2[5

M(n, k)
r=n—2k—2

Fig. 1 The tree M(n,k)

In this paper, we give a partial solution of the above problem by proving the following
result.

Theorem 2. Let T € MT,, ), where 1 <k <n — 3. Then

W(T) < W(M(n, k),

with equality if and only if T'= M (n, k).

Let BT, (resp. ET,, ) be the set of trees of order n with exactly r branching vertices
(resp. r even-degree vertices). In [12] and [13], the present author determined the upper
bound and lower bound of the Wiener index of trees in BT, , and ET, ,, respectively.
Using a argument similar to that of [12] and [13], we give a proof of Theorem 2 in Section
2, while in the following we provide a sequence of results to make the proof more compact.

If a graph G has vertices vy, v, ...,0,, then (degg(vy), dega(v2), ..., dega(vy,)) is called
a degree sequence of G. A tree T is called a caterpillar if the tree obtained from 7' by
removing all pendent vertices is a path. The following is a long known result due to Shi
[14].

Theorem 3 ([14]). Let (di,da, ..., d,) be a degree sequence with i d; =2(n—1), and
Trmaz be the tree with maximal Wiener index among all trees with ‘églls prescribed degree

sequence. Then T},,, is a caterpillar.
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Very recently, Sills and Wang [15] characterized the maximal Wiener index of chemical
trees (trees with maximum degrees at most 4) with prescribed degree sequence by proving
the following result, see also [10].

Theorem 4 ([15]). Let (dy,...,dy,dgs1,...,d,) be a degree sequence with idl =
dn—1)and 4 > dy > . > dg > deys = . = dy = 1. Let Tyas be the tree
with maximal Wiener index among all trees with this prescribed degree sequence. If

(dy,day ey dig)=(Asy ooy Agy Q15 evy Qg1 ey A1y ooy @1) With a5 > as—y > ... > a3 > 2, then
— — S~——

ms Ms—1 my

Trmae can be formed by attaching pendent edges to a path P = vjvs...v5, such that

(dega(v1), .oy dega (V)= (s, ooy Qs Q1 covy Qg1 eey ALy ey Ay ey Qs 1y wevy Qg1 Qg oony Q).
I Lo m et 7S
where |l; — ;| <1land l; +r; =m; fori=2,...s.
Lemma 5. Let T be a caterpillar with the longest path P = yoy1...y1¢+1. Assume that
there exists a vertex y; (1 <4 <) such that degr(y;) > 3, suppose u is a pendent vertex
(u # yo and u # Y1) adjacent to y; and 7" is the tree obtained from 7" by deleting the
edges y;u and joining u to yo, then W(T") > W (T).
Proof. Let T, be the tree obtained from T" by deleting the vertices u and let T}, be the
tree obtained from 7" by deleting the vertices u. Note that W(T") = W(T)) + dr (u),
W(T) =W(T,) + dr(u) and T,, = T),.
It is easily verified that W(T") — W(T') = dy(u) — dp(u) > 0. O

u diameter-growing transformation
AV S [, ]
e . 5 o ® S
Yo Yr Y2 Y3 Ys Ys wo Yo Yr Y2 Y3 Ys Ys
T T

Fig. 2 The diameter-growing transformation of a caterpillar 7" relative to the vertex ys.

It is easy to see that if a caterpillar T" contains a vertex y; of degree greater than 2, then
by the operation stated in Lemma 5, one can get another caterpillar 77 with W(T") >
W(T) and diam(T") = diam(T) + 1, see Figure 2 for an example. For the convenience
of the subsequent discussion, such a transfer operation will be called a diameter-growing

transformation of T relative to the vertex y;.
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2 Proof of Theorem 2

Proof. Let T be a tree with the maximal Wiener index in MT,, . Suppose (dy,ds, ..., d,)
is the degree sequence of T*. Let Ty be the set of trees of order n with this degree
sequence. Clearly T, C MT, x, so T* also is a tree with the maximal Wiener index in
T4. By Theorem 3, 7% is a caterpillar. Let P = yoy1...yiyi+1 be the longest path of 7%
and let A be the maximum degree of vertices of T*. The condition k£ < n — 3 implying
that A > 3.

We can further claim that A = 3.

Suppose, to the contrary, A > 4. Since T™* is a caterpillar, any vertex of degree greater
than 2 belongs to {y1,ya, ..., y;}. Then for each y; € {y1,ya, ..., yi} such that degr-(y;) > 3,

we carry out diameter-growing transformation relative to y;, repeatedly r; times, where

ri =degr(y;) — 2 if 3<degr-(y;) <A -1,
and
ri =degr+ (y;) — 3 if degr(y;) = A .
Finally, we will get another caterpillar 7" possessing only k vertices of degree 3 and n —k
vertices of degree 1 and 2. Thus 7" € MT,, ;. According to Lemma 5, W (T") > W(T™),
but this contradicts the choice of T™.

Consequently, 7" is a chemical tree with exactly k vertices of degree 3. Suppose that
t1 and t5 are the numbers of the vertices of degree 1 and degree 2 of T* respectively. Note
that T is a caterpillar, thus ¢; = k+2. The relation Y. degy-(v) = 2|E(T*)| = 2n—2
gives that t; + 2t; + 3k = 2n — 2, and hence to = n vf;(le 2. So the degree sequence of

T* is (3, 32,21 1).
S~ Y~

E o n-2k-2  k+2
Since 7™ is the tree with the maximal Wiener index among all trees with this pre-

scribed degree sequence and 7™ is a chemical tree, from Theorem 4, we arrive at

T = M(n,k),

by which the proof of Theorem 2 is completed. O
Theorem 2 only determines the trees with the maximal Wiener index in MT, ;. To
better understand the behavior of the maximum degree vertices influencing the Wiener

index, it might be worthwhile to consider the following problem.
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Problem. Characterize the tree(s) with the minimal Wiener index in MT,, 4.
Dendrimers are highly regular trees that model various chemical molecules (see Section
2 of [2] for its details). The regular dendrimer tree T} 4 is defined as follows. For any
d > 3, Tyq is the one-vertex graph and 7' 4 is the star with d + 1 vertices. Then for
k=2,3,...,and d > 3, the tree T} 4 is obtained by attaching d — 1 new vertices of degree

one to each vertex of degree one of Tj,_1 4. The tree T}, 4 has order (see Section 2 of [2])

d k
n(Tia) =1+ 7= [(d=1)" = 1] .

In view of the construction of Tj 4, the tree T} 4 has exactly n(Tj_14) vertices of

maximum degree d, hence Ty g € MT (1, ) n(Ti_,.0)-

AT

Ty  W=117 M(10,4) W =121

Fig. 3 All trees in MTy04 and their Wiener indices.

In Figure 3, we list all trees in the class MT;g4 together with their Wiener indices,
the regular dendrimer 75 3 is tree with the minimal Wiener index in MTo 4. So, it is also
interesting to consider the above problem for the special class M,z ;) n(7,_, ,) for every

kand d > 3.
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