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Abstract

We characterize extremal trees with minimal first Zagreb index among trees of
order n and the independence number α, solving one of open problems of Das, Xu
and Gutman from [MATCH Commun. Math. Comput. Chem. 70 (2013), 301–314].

1 Introduction

Let G be a simple graph with the vertex set V (G), n = |V (G)|, and the edge set E(G),

m = |E(G)|. The degree dv of a vertex v ∈ V (G) is the number of vertices in G adjacent

to v. A subset S ⊆ V (G) of mutually non-adjacent vertices is said to be an independent set

in G, and the independence number α(G) is the maximum cardinality of an independent

set in G.

The first and the second Zagreb indices, defined as

M1 = M1(G) =
∑

u∈V (G)

d2u,

M2 = M2(G) =
∑

uv∈E(G)

dudv,

are widely studied degree-based topological indices, that were introduced by Gutman and

Trinajstić [1] in 1972. Gutman provides an overview of recent developments among degree-

based topological indices in [2], while further mathematical properties of M1 and M2 are
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surveyed in [3, 4]. Das, Xu and Gutman [5] have recently established upper bounds on

M1 and M2 of trees in terms of the order n and the independence number α. They posed

three open problems, one of which is characterization of extremal trees with minimal (first

or second) Zagreb index among trees of order n and the independence number α. We

solve this problem for the first Zagreb index in Theorem 1 below.

The use of MathChem [6], an open source Python package for calculating topological

indices, has been beneficial in studying the structure of extremal trees with minimal first

Zagreb index among trees of small order n, 4 ≤ n ≤ 20, and the independence number α,

�n/2 ≤ α ≤ n− 1. These extremal trees are available at http://osebje.famnit.upr.

si/~alexander.vasilyev/independent/M1.html. The extremal tree is the path Pn for

α = �n/2, and the star Sn for α = n − 1, while for �n/2 < α < n − 1 extremal trees

consist of coalescence of stars having almost equal orders (i.e., differing by at most one),

with a pair of leaves identified in neighboring stars. Extremal trees are illustrated in Figs.

1 and 2 for two particular choices (n, α) = (10, 6) and (n, α) = (11, 8). Trees in Fig. 1

consist of three stars of order three and a star of order four, while trees in Fig. 2 consist

of two stars of order four and a star of order five. In principle, extremal trees are not

unique and they can be characterized more formally as follows.

Definition 1 The set Tn,α consists of all trees T = (V,E) with n vertices and the inde-

pendence number α such that the degrees of vertices in its maximum independent set S

differ by at most one among each other, and such that the complement S = V \ S is also

an independent set whose vertex degrees differ by at most one among each other.

With respect to Figs. 1 and 2, the set S is formed by black vertices of degree one (leaves

of stars) and degree two (vertices belonging to two stars), while S is formed by centers of

the stars (represented by white vertices). The fact that vertices in S have degrees that

differ by at most one means that the orders of stars differ by at most one.

Figure 1: Three non-isomorphic trees with n = 10, α = 6 and minimum value of M1 = 36.
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Figure 2: Two non-isomorphic trees with n = 11, α = 8 and minimum value of M1 = 48.

The main result of this note is the following

Theorem 1 If T is a tree with n vertices and the independence number α, then

M1(T ) ≥ 2(n− 1)+

⌊
n− 1

α

⌋
(2n− 2− α) +

⌊
n− 1

n− α

⌋
(n− 2 + α)

−
⌊
n− 1

α

⌋2

α−
⌊
n− 1

n− α

⌋2

(n− α)

(1)

with equality if and only if T ∈ Tn,α.

2 Proof of Theorem 1

Let T be a tree with n vertices and the independence number α. Let S be an independent

set containing α vertices of T , and let S = V (T ) \ S be the set of the remaining vertices

of T . Denote by l the number of edges uv ∈ E(T ) such that u ∈ S, v ∈ S, and by k the

number of edges between vertices in S. As there are no edges between vertices of S, and

T has n− 1 edges in total, we have that

k + l = n− 1, (2)∑
u∈S

du = l, (3)∑
v∈S

dv = l + 2k. (4)

Write the first Zagreb index of T as

M1(T ) =
∑
u∈S

d2u +
∑
v∈S

d2v.

Let us, for the moment being, forget that the values du represent the actual degrees of

vertices in S, and treat them just as a sequence of integers satisfying the condition (3).

It is easy to see that, in such setting, the minimal value of
∑

u∈S d
2
u is attained if du ∈

{
⌊

l
α

⌋
,
⌈

l
α

⌉
} for each u ∈ S. Namely, if there exist u′, u′′ ∈ S such that du′ − du′′ ≥ 2, then

we obtain smaller sum of squares if we replace du′ and du′′ by du′ − 1 and du′′ + 1:

(du′ − 1)2 + (du′′ + 1)2 = d2u′ + d2u′′ − 2(du′ − du′′ − 1) < d2u′ + d2u′′ .
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Replacing in this way the pairs of integers du′ , du′′ that differ by at least two as long as they

exist, we see that the minimal value of
∑

u∈S d
2
u is necessarily attained if all numbers du,

u ∈ S, differ by at most one among each other, and therefore, are equal to either
⌊

l
α

⌋
or

⌈
l
α

⌉
. (This argument for minimizing the first Zagreb index was used several times

earlier—see, for example, [7, 8].)

Analogously, the minimal value of
∑

v∈S d
2
v is attained if dv ∈ {

⌊
l+2k
n−α

⌋
,
⌈
l+2k
n−α

⌉
}.

We can now bound the sum
∑

u∈S d
2
u from below in terms of n, α and l (or, due to (2),

in terms of n, α and k).

If l = αq for q ∈ Z, then all degrees du, u ∈ S, are equal to l
α
= q, so that∑

u∈S
d2u = α · l2

α2
=

l2

α
= α · q2.

Suppose now that l = αq+ r for q ∈ Z and 0 < r < α. Then the minimal value of M1

is attained if du = q or du = q + 1 for each u ∈ S. From (3) we see that then r vertices

have degree q + 1, while α− r vertices have degree q, so that∑
u∈S

d2u ≥ (α− r)q2 + r(q + 1)2 = αq2 + r(2q + 1). (5)

Having in mind that q =
⌊

l
α

⌋
and r = l − α

⌊
l
α

⌋
, we have that

αq2+r(2q+1) = α

⌊
l

α

⌋2

+

(
l − α

⌊
l

α

⌋)(
2

⌊
l

α

⌋
+ 1

)
= (2l−α)

⌊
l

α

⌋
−α

⌊
l

α

⌋2

+ l. (6)

Combining (5) and (6) with (2) we get∑
u∈S

d2u ≥ (2(n− 1− k)− α)

⌊
n− 1− k

α

⌋
− α

⌊
n− 1− k

α

⌋2

+ n− 1− k. (7)

Analogous approach applied to S yields∑
v∈S

d2v ≥ (2(n− 1 + k)− (n− α))

⌊
n− 1 + k

n− α

⌋
− (n− α)

⌊
n− 1 + k

n− α

⌋2

+ n− 1 + k. (8)

By summing inequalities (7) and (8) we obtain

M1(T ) ≥ 2(n− 1)+(2n− 2k − α− 2)

⌊
n− 1− k

α

⌋
− α

⌊
n− 1− k

α

⌋2

+(n+ 2k + α− 2)

⌊
n− 1 + k

n− α

⌋
− (n− α)

⌊
n− 1 + k

n− α

⌋2

.

(9)

Denote the expression on the right hand side of (9) as the function f(k) for fixed n

and α. As the lower bound (1) is equal to f(0), in order to prove Theorem 1 it is enough

to show that the minimum of f(k) for feasible values of k is obtained exactly for k = 0.
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Let us deal with
⌊
n−1−k

α

⌋
first. The conditions that there are no edges between vertices

in the independent set S and that T is connected imply that the number l = n− 1− k of

edges between S and S is at least |S| = α, so that

n− 1− k

α
≥ α

α
= 1.

On the other hand, the independence number of trees, as instances of bipartite graphs,

satisfies α ≥ n
2
, so that

n− 1− k

α
≤ n− 1

n/2
< 2.

Hence,
⌊
n−1−k

α

⌋
= 1 and f(n, α, k) can be written as

f(k) = 4(n− 1)− 2(α+ k)+ (n+2k+α− 2)

⌊
n− 1 + k

n− α

⌋
− (n−α)

⌊
n− 1 + k

n− α

⌋2

. (10)

Next, consider
⌊
n−1+k
n−α

⌋
. Since 0 ≤ k ≤ n− 1− α, we have that

n− 1

n− α
≤ n− 1 + k

n− α
<

n− 1

n− α
+ 1,

so that ⌊
n− 1 + k

n− α

⌋
=

⌊
n− 1

n− α

⌋
for 0 ≤ k ≤ (n− α)

⌊
n− 1

n− α

⌋
− α, (11)

and⌊
n− 1 + k

n− α

⌋
=

⌊
n− 1

n− α

⌋
+ 1 for (n− α)

⌊
n− 1

n− α

⌋
− α + 1 ≤ k ≤ n− α− 1. (12)

Let t =
⌊
n−1+k
n−α

⌋
. The function f then becomes

f(k) = 4(n− 1)− 2α + 2k(t− 1) + (n+ α− 2)t− (n− α)t2. (13)

From k ≥ 0 and α ≥
⌈
n
2

⌉
we have that

n− 1 + k

n− α
≥ n− 1⌊

n
2

⌋ =

{
2, if n is odd,

2− 2
n
, if n is even,

showing that t = 1 is possible if and only if k = 0, n is even, and α = n/2. The only

tree satisfying these conditions is the path P2α, and P2α is the unique element of the set

H2α,α, hence Theorem 1 holds in this case.

For all other cases t ≥ 2 holds. We can note then from (13) that f becomes the linear

function in k, with constant positive coefficient 2(t − 1), when k belongs to one of the

two intervals given in (11) and (12). The minimum of f on these intervals is, therefore,

attained at the respective minimal values of k, i.e., at

k = 0 and k = k′ = (n− α)

⌊
n− 1

n− α

⌋
− α + 1,
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while the minimum of f on the union of these intervals is obtained at either 0 or k′. The

difference of the values of f at 0 and k′ is equal to

f(k′)− f(0) = 2(n− α)

⌊
n− 1

n− α

⌋2

− 2(n− 1)

⌊
n− 1

n− α

⌋
+ 2(α− 1). (14)

The roots of the quadratic function 2(n−α)x2−2(n−1)x+2(α−1) are equal to 1 and α−1
n−α

.

Since the case 2α = n has been dealt with already (see the preceding paragraph), we have

that 2α ≥ n + 1, so that α−1
n−α

≥ 1 is the larger of two roots. Further, let q and r be the

quotient and the remainder of the division of n− 1 by n− α:

n− 1 = q(n− α) + r, q ∈ Z, 0 ≤ r < n− α.

From the condition r < n− α we obtain that

n− r − 1 < α− 1 ⇒ q(n− α) > α− 1 ⇒
⌊
n− 1

n− α

⌋
= q >

α− 1

n− α
,

so that the value of the quadratic function on the right hand side of (14) is strictly positive,

as its argument
⌊
n−1
n−α

⌋
is strictly larger than the larger of its two roots. Hence f(k′) > f(0)

and the minimum of the function f(k) for all feasible k is attained exactly at k = 0. This

proves inequality (1) in Theorem 1.

Equality holds in (1) if and only if k = 0, i.e., S is also an independent set of T , vertices

in S have degrees that differ by at most one, and vertices in S have degrees that differ by

at most one among each other. Hence, equality holds in (1) if and only if T ∈ Tn,α. �

3 Further remarks

Theorem 1 extends more-or-less directly to unicyclic graphs. In particular, let Un,α denote

the set consisting of all unicyclic graphs G with n vertices and the independence number α,

such that the degrees of vertices in its maximum independent set S differ by at most one

among each other, and such that the complement S = V \ S is also an independent set

whose vertex degrees differ by at most one among each other. The graphs in Un,α consist

of coalescence of stars, whose orders differ by at most one, with pairs of leaves identified

in neighboring stars (see Fig. 3 for an example of U10,7).

Note that the basic ingredients of the proof of Theorem 1 were the facts k+ l = n− 1

and α ≥ n
2
, which, in the case of unicyclic graphs, become k + l = n and α ≥

⌊
n
2

⌋
.

Following closely the proof of Theorem 1, and taking care of the special case α = n−1
2
,

one can prove the following
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Figure 3: Four non-isomorphic unicyclic graphs with n = 10, α = 7 and minimum value of M1 = 50.

Theorem 2 If G is a unicyclic graph with n vertices and the independence number α,

then

M1(G) ≥ 4n− 2α + (n+ α)

⌊
n

n− α

⌋
− (n− α)

⌊
n

n− α

⌋2

,

with equality if and only if G ∈ Un,α when α ≥ n
2
and G ∼= C2α+1 when α = n−1

2
.

As a matter of fact, this result could further be extended to bicyclic and graphs with

more cycles, provided that α ≥ n
2
. However, an increasing number of graphs having α < n

2

has to be treated separately then, making this task more and more laborious.

On the other hand, it appears that the problem of characterization of extremal trees

with minimal second Zagreb index among trees of order n and the independence number α

cannot be solved as easily as it was the case with the first Zagreb index. The main obstacle

is that we can no longer rely on the arguments of Das [7] and Gutman [8] to conclude

that the degrees of vertices in S have to differ by at most one, simply because the second

Zagreb index is no longer a sum of terms over the set of vertices, but over the set of

edges. Although by inspecting the extremal trees with minimal second Zagreb index of

small order n, 4 ≤ n ≤ 20, and the independence number α, �n/2 ≤ α ≤ n − 1, which

are available at http://osebje.famnit.upr.si/~alexander.vasilyev/independent/

M2.html, one can conclude that the extremal trees are once again coalescence of stars,

these stars no longer have to be of almost equal orders. This is exemplified by the case

n = 19, α = 15, in which case one of the extremal trees represents a coalescence of three

stars of order six and one star of order four (see Fig. 4). Hence characterization of trees

with minimal second Zagreb index remains an open problem.
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Figure 4: Three non-isomorphic trees with n = 19, α = 15 and minimum value of M2 = 108.
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