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Abstract

The general sum–connectivity index of a graph G is a molecular descriptor de-
fined as χα(G) =

∑
uv∈E(G)(d(u) + d(v))α where, d(u) denotes the degree of vertex

u in G and α is a real number. The aim of this paper is to obtain the graph with
the maximum general sum–connectivity index among the connected bicyclic graphs
of order n for α ≥ 1.

1 Introduction

Following standard notations in graph theory [2], let G = (V (G), E(G)) be a simple,

undirected and connected graph with V (G) the set of its vertices and E(G) the set of

its edges. For a vertex u ∈ V (G) let dG(u) denote the degree and NG(u) the set of its

neighbors. Where there is no danger of confusion, we shall give the simplified notation

d(u) for the degree of u. We will use the notations Pr and Cr respectively for a path and

a cycle with r edges. The distance between two vertices u and v of a connected graph,

denoted by d(u, v), is the length of a shortest path between them.

One important molecular descriptor is the Randić index defined in [8] with its gene-

realization proposed in [1]:

Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α .
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The classical Randić index is given by α = −1/2 and it is one of the most used

molecular descriptors in the QSAR and QSPR models. Like these descriptors, the sum–

connectivity index [12] and the general sum–connectivity index introduced by Zu and

Trijnastić in [13] and given by

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α ,

were also proposed. Here χ−1/2 gives the classical sum–connectivity index, which is also

studied and applied in QSAR, QSPR modeling.

Several extremal properties of the general sum–connectivity index have already been

established for general graphs [13], multigraphs [9], trees [7, 9, 12] and unicyclic graphs

[6, 10]. In this paper we want to extend the extremal study of the general sum–connectivity

index to bicyclic graphs (connected graphs with n vertices and n+1 edges). More precisely,

we will find the graph with the largest value of χα(G) among the bicyclic graphs of order

n for α ≥ 1.

2 Some initial transformations

For n ≤ 6 we can easily see which are the connected bicyclic graphs of order n with

maximum general sum–connectivity index for α ≥ 1. If n = 4 we have a unique bicyclic

graph and for n = 5, n = 6 the graphs with the largest value of the general sum–

connectivity index are given in Fig. 1.
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Figure 1: Bicyclic graphs with maximum χα: (a) n = 5; (b) n = 6.

Thus, we will consider in this paper that |V (G)| = n ≥ 7.

Let u and v be two adjacent vertices with d(v) ≥ 2 such that NG(u) ∩ NG(v) = ∅
and the neighbors of the vertex u except v, denoted u1, . . . , ur are pendent vertices. We
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begin with a particular case of the t1-transform [9] through which all the pendent edges

of vertex u become incident edges of vertex v, as below:
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Figure 2: t1-transform for pendent edges

Thus the transformation described above built the graph t1(G) = G−{uu1, . . . , uut}+
{vu1, . . . , vut} obtained by removing uu1, . . . , uut and adding vu1, . . . , vut, t ≥ 1. We need

the following result:

Lemma 1. [9] Let G and G′ = t1(G) be the graphs from Fig. 2. Then, for α ≥ 1, we

have χα(G
′) > χα(G).

Since a bicyclic graph has n+1 edges it can be obtained from a tree to which we add

two other edges and thus forming some cycles. Then every bicyclic graph can be viewed

as a (possibly empty) set of subtrees, each of them attached to one of the graph’s cycles.

Applying the t1-transform for a finite number of times we easily see that we can reduce

any of the above subtrees to a bunch of pendent edges incident to the subtree’s cycle

vertex of attachment.

As above, we define our next general sum–connectivity enhancing ti2-transform, with

the purpose of further reducing our bicyclic graph to an even simpler case.
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Figure 3: ti2-transform
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Let G be a graph as in Fig. 3 and we denote dG(u) − k = i ≥ 2. Suppose that the

vertex u has, besides its k pendent neighbors, at least two (denoted by u′, v1) and at

most four non-pendent neighbors. Then, if i = 3 we denote by v2 the third non-pendent

neighbor of the vertex u and for i = 4 we also have the vertex v3. Thus we define the

transformation ti2(G) = G − {v1y1, . . . , v1yt} + {uy1, . . . , uyt}. We prove that modifying

in this manner the graph, the value of the general sum–connectivity index χα strictly

increases. But first we give a simple result that we will need several times throughout

this paper.

Lemma 2. The real function f : [0,∞) → R defined by fα,a(x) = (x+a)α−xα is strictly

increasing for all α > 1, a > 0.

Lemma 3. Let G, G′ = ti2(G) as in Fig. 3 such that uv1 ∈ E(G), t ≥ 1, k ≥ 0,

dG(v1)− t = 2 and d(u′) ≥ d(v′). Then χα(G
′) > χα(G) for all α ≥ 1.

Proof. We can write i = 2 + β + γ, where β = 1 indicates the existence of the vertex v2

(otherwise β = 0) and likewise, γ = 1 indicates the existence of the vertex v3 (otherwise

γ = 0). With the established notations from the above figure, we have:

χα(G
′)−χα(G) = [(d(u′)+k+ t+ i)α− (d(u′)+k+ i)α]+ [(d(v′)+2)α− (d(v′)+ t+2)α]+

k[(t+ k + i+ 1)α − (k + i+ 1)α] + t[(t+ k + i+ 1)α − (t+ 3)α] + β[(d(v2) + t+ k + i)α −
(d(v2) + k+ i)α] + γ[(d(v3) + t+ k+ i)α − (d(v3) + k+ i)α]. Obviously the sum of the last

four square parentheses in this expression is strictly positive. Now for the first two we

need the above lemma and if i ≥ 2, d(u′) ≥ d(v′) then fα,t(d(u
′)+ k+ i) ≥ fα,t(d(v

′)+ 2),

from which we conclude that the ti2-transform strictly increases χα. �

3 Three particular types of bicyclic graphs

With the notations from [3] and ignoring the possible pendent subtrees that may

appear, we have the following three types of bicyclic graphs:
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Figure 4: Types of bicyclic graphs

-764-



Thus, for the connected bicyclic graphs of order n we denote by A(p, q) the set of the

graphs that have two cycles Cp and Cq with a single vertex u in common. For the graphs

in which these cycles are distinct and connected by a path (of length at least one) we

use the notation B(p, q). If Cp and Cq have in common a path Pr (r ≥ 1) we have a

C(p, q)-graph.

In what follows we treat these three cases separately, with the purpose of determining

the graph with maximum χα in each category.

First we examine A(p, q). To this category of graphs we apply the t22-transform to all

cycle edges which are not incident to the vertex u and which have bunches of pendent

edges at both ends. Thus, all remaining bunches of pendent edges to Cp ∪ Cq − {u} will

be situated at distances of at least two one from another.

We now show that moving the remaining bunches of pendent edges in the vertex u,

the index χα continues to strictly increase. Thus we define a new transformation given

by t3(G) = G− {vy1, . . . , vyt}+ {uy1, . . . , uyt}, where v ∈ Cp ∪Cq − {u} is a vertex that

has attached to it the set of the pendent edges {vy1, . . . , vyt}, t ≥ 1. Thus we have:

Lemma 4. Denoting by G′ = t3(G) we have χα(G
′) > χα(G) for all α ≥ 1.

Proof. Let G ∈ A(p, q) be a graph as in Fig. 4 and let {uu1, . . . , uuk} be the (possibly

empty) set of the pendent edges in the vertex {u} = Cp ∩ Cq. The vertex v with its

pendent edges can be adjacent to vertex u or d(u, v) ≥ 2.

Case I: uv ∈ E(G).

Suppose, for simplicity that v ∈ Cp and let NCp(v) = {u, w}. Then, since all remaining

bunches of pendent edges to Cp∪Cq−{u} are situated at distances of at least two one from

another, we have dG(w) = 2 < dG(u). Finally, since dG(u)− k = 4, we can apply the t42-

transform to move in the vertex u the edges pendent to v. We repeat this transformation

whenever possible for the adjacent vertices of u situated on the cycles.

Case II: d(u, v) > 1.

First observe that, since we already applied the t22-transform whenever possible, both

of v’s cycle neighbors have degree exactly 2 in G. Moreover, from the previous case we

have that all the neighbors of u situated on the cycles Cp and Cq have degree 2 in G also.

Thus, we have:

χα(G
′)− χα(G) = 2[4α − (t+ 4)α] + 4[(k + t+ 6)α − (k + 6)α] + k[(t+ k + 5)α − (k +

5)α] + t[(k + t + 5)α − (t + 3)α]. Applying lemma 2 for the sum of the first two square
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parentheses, we have fα,t(4) < fα,t(k + 6) for every k ≥ 0, t ≥ 1 and the conclusion easily

follows. �
Applying the t3-transform for all the bunches of pendent edges to Cp ∪ Cq − {u} we

obtain the graph G1 from Fig. 5. We observe now that - through all the transformations

used so far - by bringing as many edges as possible in the well chosen vertex u, the general

sum–connectivity index strictly increases. Based on this observation, it appears naturally

to extract edges from the two cycles and attach them to the vertex u. We construct thus

the transformation:
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x2 xk+1

Figure 5: Decreasing of cycles of A(p, q)-graphs

Lemma 5. Denoting by An(p, q, k) the graph G1 from Fig. 5 we have χα(An(p, q, k)) <

χα(An(p− 1, q, k + 1)), for p > 3.

Proof. A simple computation gives us χα(An(p − 1, q, k + 1)) − χα(An(p, q, k)) = 4[(k +

7)α − (k + 6)α] + k[(k + 6)α − (k + 5)α] + (k + 6)α − 4α > 0. �

Theorem 1. If α ≥ 1 then An(3, 3, n − 5) is the unique graph with the largest general

sum–connectivity index among the graphs of order n in A(p, q).

Proof. This result follows from the previous lemmas. If G is not isomorphic to A(3, 3, n−
5), then by one of the transformations described above we can find another bicyclic graph

of order n having a greater general sum–connectivity index. Hence A(3, 3, n−5) maximizes

the general sum–connectivity index in the A(p, q) family of graphs (see Fig. 10(a)). �

We will analyse now the family of graphs denoted by B(p, q) (see Fig. 4). We first

successively apply the t1-transform until we obtain a graph with bunches of pendent edges

attached to the cycles Cp, Cq and to the path Pr. With the notations from Fig. 6(a) we

apply the t22-transform on the paths Cp − {u1}, Cq − {u2} and Pr − {u1, u2}. Thus,

on these paths the remaining bunches of pendent edges will be situated at a distance
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greater or equal to 2. Apart from these there will eventually remain some bunches of

pendent edges in the vertices v1, v2, v3, v4, w1, w2 (see Fig. 6, where w1, w2 may coincide

or disappear altogether if r = 1). Next, we gather all those remaining edges in the vertex

u1 or all in the vertex u2 to strictly increase the index χα. For this purpose, we will apply

a new transformation which will be handled in a certain manner. Let y ∈ V (G) and

{yy1, . . . , yyt} be the set of the pendent edges in vertex y, t ≥ 1 and we define the new

transformation as t5(G) = G− {yy1, . . . , yyt}+ {uiy1, . . . , uiyt}, i ∈ {1, 2}.
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Figure 6: Different cases for shifting the pendent edges for a vertex y ∈ NG(u1)∪NG(u2)
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Figure 7: Shifting the pendent edges for vertex y ∈ V (G), d(y, ui) > 1, i ∈ {1, 2}

Lemma 6. Let G be a B(p, q)-graph as in Fig. 6 or 7. There exists a sequence of t5-

transforms, that strictly increase the value of the general sum–connectivity index after

which all the pendent edges will be incident to the vertex u1 or all will be incident to the

vertex u2.

Proof. We construct the sequence in the following order:

Step 1. Let us consider y ∈ NG(ui), i ∈ {1, 2}. In this case we move all the pendent

edges from y to its adjacent vertex ui.
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Since we first already applied the t22-transform whenever possible, for every x in

NG(y) − {u1, u2, y1, . . . , yt} we have d(x) = 2. We will first treat the case when y is

a cycle vertex.

Case 1.1. Let y be in NG(ui) ∩ (Cp ∪Cq). With the notations from Fig. 6(a), y is one

of the vertices v1, v2, v3, v4. For these vertices all conditions in lemma 3 are fulfilled, so we

can apply the t32-transform to bring all the pendent edges from v1 and v2 in u1 and from

v3 and v4 in u2.

Case 1.2. Let y be in NG(ui) ∩ Pr. With the notations in the figure, y is one of the

vertices w1, w2.

Let k be the number of pendent edges attached to u1, i. e., k = d(u1)− 3.

(a) Suppose r = 1.

If k > 0 we will move to u1 all the pendent edges attached to u2, otherwise we keep

these pendent edges in the vertex u2.

From case I we have d(vi) = 2, for every 1 ≤ i ≤ 4. So:

χα(G
′)−χα(G) = 2[(k+ t+5)α − (k+5)α] + 2[5α − (t+5)α] + t[(k+ t+4)α − (t+4)α] +

k[(k + t + 4)α − (k + 4)α]. Here the last two parentheses are clearly positive and for the

first two we apply lemma 2.

(b) If r = 2 it follows that y = w1 = w2 (Fig. 6(b)).

We observe that we cannot use t32 in this case. Thus we compare directly the values of

χα for G and G′ = t5(G). If d(u1) ≥ d(u2) we attach the pendent edges from y to u1. We

denote by c the number of pendent vertices adjacent to u2 and using the notations from

Fig. 6(b) we have:

χα(G
′) − χα(G) = 2[(k + t + 5)α − (k + 5)α] + [(c + 5)α − (t + c + 5)α] + t[(k + t +

4)α − (t+3)α] + k[(k+ t+4)α − (k+4)α]. Since d(u1) ≥ d(u2) (k+3 ≥ c+3), then from

lemma 2 we have fα,t(c+ 5) ≤ fα,t(k + 5), hence χα strictly increases.

For d(u1) < d(u2) we move the pendent edges from y to vertex u2 (the computations

are the same as above).

(c) For r ≥ 3, first note that since we already applied the t22-transform whenever possible,

the neighbor of y on Pr−{u1, u2} has degree exactly 2. Thus we can apply the t32-transform

to bring the pendent edges from y = w1 to u1 and from y = w2 to u2.

Step 2. Suppose the distance d(y, ui) > 1, i ∈ {1, 2}, where y is a vertex situated on

Cp, Cq or Pr.
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Observe that, after applying all the transformations from step 1, every non-pendent

neighbor of y has degree exactly 2.

Case 2.1. y �= u2 (Fig. 7).

Supposing that k > 0, we will move all the pendent edges from y to u1. In the case

of a null value of k we move all in the vertex u2, with similar computations (even if the

vertex u2 also has no pendent edges attached to it, i.e, d(u2) = 3).

Let us denote d(w1) = c and it is easy to observe that if r = 1, then w1 = u2 and

c = d(u2), else we have c = 2. Thus:

χα(G
′)−χα(G) = 2[(k+ t+5)α − (k+5)α] + 2[4α − (t+4)α] + t[(k+ t+4)α − (t+3)α] +

k[(k+ t+ 4)α − (k+ 4)α] + (k+ t+ c+ 3)α − (k+ c+ 3)α. Using lemma 2 the conclusion

easily follows.

Case 2.2. y = u2.

We apply whenever possible the t5-transform from the previous step, thus, if k = 0,

all the pendent edges are already attached to the vertex u2, then we are done. Otherwise,

we have some pendent edges attached to the vertex u1, as to the vertex u2. In this case,

we collect all the pendent edges to the vertex u1 by moving the pendent edges from u2.

We get:

χα(G
′)−χα(G) = 3[(k+ t+5)α − (k+5)α] + 3[5α − (t+5)α] + t[(k+ t+4)α − (t+4)α] +

k[(k + t+ 4)α − (k + 4)α]. Using lemma 2 this case is also resolved. �

Now we modify the obtained graph by deleting edges from the two cycles and from

the path joining them and reattaching them to the vertex u1, by the transformations t6

and t′6, as below:
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Figure 8: Transformations for B(p, q)-graphs that strictly increase χα
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Lemma 7. Let us denote by Bn(p, q, r, k) the graph G in Fig. 8. Then the transformations

t6 and t′6 strictly increase the general sum–connectivity index for α ≥ 1:

(a) χα(Bn(p, q, r, k)) < χα(Bn(p, q, r − 1, k + 1)) for r > 2;

(b) χα(Bn(p, q, r, k)) < χα(Bn(p− 1, q, r, k + 1)) for p > 3.

Proof. We can see that

χα(Bn(p, q, r− 1, k+1))−χα(Bn(p, q, r, k)) = (k+5)α − 4α + k[(k+5)α − (k+4)α] +

3[(k + 6)α − (k + 5)α] > 0 for all α ≥ 1, k ≥ 0.

Since χα(Bn(p, q, r− 1, k+1)) = χα(Bn(p− 1, q, r, k+1)) = χα(Bn(p, q− 1, r, k+1)),

then (b) is also true. �

From the above proof we easily see that the t′6-transform can be used to shrink the

Cp cycle as well as the Cq cycle. Keeping in mind the requirements of this lemma, we

can repeat the above transformations successively to obtain graphs with greater χα until

r = 2, p = 3 and q = 3, which gives us the graph Bn(3, 3, 2, n− 7).

Theorem 2. Bn(3, 3, 1, n− 6) from Fig. 10(b) is the graph of order n that maximizes the

general sum–connectivity index for α ≥ 1 in the set B(p, q).

Proof. Using the above remark, all that remains is to compare the general sum–connectivity

values for Bn(3, 3, 2, n− 7) and Bn(3, 3, 1, n− 6). Thus:

χα(Bn(3, 3, 1, n− 6))− χα(Bn(3, 3, 2, n− 7)) = 2(n− 1)α + nα + (n− 6)(n− 2)α − 5α −
3(n−2)α− (n−7)(n−3)α = 2[(n−1)α− (n−2)α]+(n−7)[(n−2)α− (n−3)α]+nα−5α,

which is surely positive for α ≥ 1, n ≥ 7. �

We continue now by finding the maximal graph in the category C(p, q). We observe

that the procedure of increasing the index χα through transformations used for the B(p, q)

family of graphs, that bring as many edges as possible in a well selected vertex, can be

also applied in this case. Thus we have:

Lemma 8. Let G be a graph such as in Fig. 9. There exists a sequence of t5-transforms,

that strictly increases the value of the general sum–connectivity index after which all the

pendent edges will be incident to the vertex u1 or all will be incident to the vertex u2.
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Proof. The proof is identical to the case of the B(p, q)-graphs. We only need to use the

cycles Cp and Cq excluding the common path Pr. Thus, if in the proof of lemma 6 we use

the paths Cp − Pr and Cq − Pr instead of Cp and Cq, then we get the conclusion. �

�

�

�

�

�
�

��� �

� �u2

Cp CqPr

w1

w2

u1

�
�

�

�
�
� � � ��

�
�

x1

� � �
x2 xk

Figure 9: Graph in C(p, q)

From here we will further proceed as in the case of the B(p, q) family by removing edges

from the cycles and reattaching them to the vertex u1. Denoting by Cn(p, q, r, k) the graph

in Fig. 9, we define the transformations t7, t
′
7, t

′′
7 by t7(Cn(p, q, r, k)) = Cn(p−1, q, r, k+1),

t′7(Cn(p, q, r, k)) = Cn(p, q − 1, r, k + 1), t′′7(Cn(p, q, r, k)) = Cn(p − 1, q − 1, r − 1, k + 1).

Noting that by the transformations t7 and t′7 we remove edges from the paths Cp − Pr,

Cq −Pr (not from the entire cycle) and by t′′7-transform we remove only an edge from the

path Pr (so, implicitly, p an q decrease by one unit).

Lemma 9. For α ≥ 1 we have:

(a) χα(Cn(p, q, r, k)) < χα(Cn(p− 1, q, r, k + 1)) for p− r > 2;

(b) χα(Cn(p, q, r, k)) < χα(Cn(p− 1, q − 1, r − 1, k + 1)) for r > 2.

Proof. These inequalities are proved in the same way as in Lemma 7. �

With these preparations we have the following result:

Theorem 3. The graph of order n that maximizes the general sum connectivity index for

α ≥ 1 in the family C(p, q) is Cn(3, 3, 1, n− 4) (Fig. 10(c)).

Proof. By the previous lemma, we strictly increase the value of χα by repeated use of the

transformations t7, t
′
7 and t′′7, that gives us the graph Cn(4, 4, 2, n − 5). Since lemma 9
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cannot be applied for r = 2, we have to show that in this case the t′′7-transform also

strictly increases χα. For this we see that χα(Cn(3, 3, 1, n− 4))− χα(Cn(4, 4, 2, n− 5)) =

2[(n+ 1)α − nα] + (n− 5)[nα − (n− 1)α] + (n+ 2)α − 5α, which is obviously positive for

α ≥ 1. �

4 Maximum value of χα for bicyclic graphs (α ≥ 1)

We have obtained so far, for each of the families A(p, q), B(p, q) and C(p, q), the graph

which maximizes the general sum–connectivity index χα for α ≥ 1 (see Fig. 10).
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Figure 10: (a) An(3, 3, n− 5); (b) Bn(3, 3, 1, n− 6); (b) Cn(3, 3, 1, n− 4).

We shall now find which is the graph with the greatest χα index in the category of

bicyclic graphs. Thus we have the following:

Theorem 4. Cn(3, 3, 1, n−4) is the unique graph with the largest general sum–connectivity

index for α ≥ 1 among all the connected bicyclic graphs of order n ≥ 4.

Proof. Using the three theorems above all that remains is to compare the graphs from

Fig. 10. Thus:

χα(A(3, 3, n− 5)) = 2 · 4α + 4(n+ 1)α + (n− 5)nα;

χα(B(3, 3, 1, n− 6)) = 2 · 4α + 2 · 5α + 2(n− 1)α + nα + (n− 6)(n− 2)α;

χα(C(3, 3, 1, n− 4)) = 2 · 5α + 2(n+ 1)α + (n+ 2)α + (n− 4)nα.

Now we have that:

χα(C(3, 3, 1, n−4))−χα(B(3, 3, 1, n−6)) = 2(n+1)α+(n+2)α+(n−4)nα−2 ·4α−2(n−
1)α−nα−(n−6)(n−2)α = 2[(n+1)α−(n−1)α]+(n−6)[nα−(n−2)α]+(n+2)α+nα−2·4α.
Since α ≥ 1 and n ≥ 7, the expression above is strictly positive.

χα(C(3, 3, 1, n − 4)) − χα(A(3, 3, n − 5)) = 2[5α − 4α] + (n + 2)α + nα − 2(n + 1)α. The

square parenthesis is obviously positive and for the last three terms of the sum we shall
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consider the function f : [0,∞) → R defined by fα(n) = nα. Since f is convex for α ≥ 1

then by Jensen’s inequality we deduce the positivity of the last part of the sum. �

Remark 1. We note that in the category of connected bicyclic graphs, the graph that

maximizes the general sum–connectivity index for α ≥ 1 is the same that maximizes the

Zagreb indices [3], the Merrifield–Simmons index [5] and minimizes the Hosoya index [4].

Moreover it is one of the two graphs that maximizes the Harary index [11].
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