
On Reformulated Zagreb Indices with

Respect to Acyclic, Unicyclic

and Bicyclic Graphs∗

Shengjin Ji1, Xia Li1, Bofeng Huo2

1 School of Science, Shangdong University of Technology,

Zibo, Shandong 255049, China

2 Department of Mathematics, Qinghai Normal University,
Xining, Qinghai 810008, China

jishengjin2013@163.com, summer08lixia@163.com,

Huobofeng@mail.nankai.edu.cn

(Received June 21, 2014)

Abstract

The authors Miličević et al. introduced the reformulated Zagreb indices [19],

which is a generalization of classical Zagreb indices of chemical graph theory. In

the paper, we characterize the extremal properties of the first reformulated Zagreb

index. We first introduce some graph operations which increase or decrease this

index. Furthermore, we will determine the extremal acyclic and bicyclic graphs with

minimum and maximum of the first Zagreb index by a unified method, respectively.

Recently, Ilić and Zhou [18] characterized the extremal graph of unicyclic graphs

with the first reformulated Zagreb index. We will provide a shorter proof.

1 Introduction

Topological indices are major invariants to characterize some properties of the graph of a

molecule. One of the most important topological indices is the well-known Zagreb indices,
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as a pair of molecular descriptors, introduced in [14, 22]. For a simple graph G, the first

and second Zagreb indices, M1 and M2, respectively, are defined as:

M1(G) =
∑
v∈V

deg(v)2, M2(G) =
∑
uv∈E

deg(u) · deg(v).

Zagreb indices, as a pair of molecular descriptors, first appeared in the topological

formula for the total π-energy of conjugated molecules that has been derived in 1972 [14].

Soon after these indices have been used as branching indices [13]. Later the Zagreb indices

found applications in QSPR and QSAR studies[1, 9, 22]. The latest related results refer

to [6, 10, 11, 25, 28].

Since an edge of graph G corresponds to a vertex of the line graph L(G). Motivated

by the connection, Miličević et al. [19] in 2004 reformulated the Zagreb indices in terms

of edge–degrees instead of vertex–degrees as:

EM1(G) =
∑
e∈E

deg(e)2, EM2(G) =
∑
e∼f

deg(e) · deg(f),

where deg(e) denotes the degree of the edge e in G, which is defined by deg(e) = deg(u)+

deg(v)− 2 with e = uv, and e ∼ f means that the edges e and f are adjacent, i.e., they

share a common end–vertex in G. Recently, the upper and lower bounds on EM1(G)

and EM2(G) were presented in [33, 18, 7]; Su et al. [21] characterize the extremal graph

properties on EM1(G) with respect to given connectivity.

In order to exhibit our results, we introduce some graph-theoretical notations and

terminology. For other undefined ones, see the book [2].

Let Sn, Pn and Cn be the star, path and cycle on n vertices, respectively. Let G =

(V ;E) be a simple undirected graph. For v ∈ V (G) and e ∈ E(G), let NG(v) (or N(v) for

short) be the set of all neighbors of v in G, G− v be a subgraph of G by deleting vertex

v, and G− e be a sub graph of G by deleting edge e. Let G0 be a nontrivial graph and u

be its vertex. If G is obtained by G0 fusing a tree T at u. Then we say that T is a subtree

of G and u is its root. Let u ◦ v denote the fusing two vertices u and v of G.

In this paper we characterize the extremal properties of the first reformulated Zagreb

index. In Section 2 we present some graph operations which increase or decrease EM1. In

Section 3, we determine the extremal acyclic, unicyclic and bicyclic graphs with minimum

and maximum the first Zagreb index, respectively.
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2 Some graph operations

In the section we will introduce some graph operations, which increase or decrease the

first reformulated Zagreb index. In fact, these graph operations play an key role in

determining the extremal graphs of the first reformulated Zagreb index among acyclic,

unicyclic, bicyclic graphs, respectively.

Now we introduce a graph operation which strictly decreases the first reformulated

Zagreb index of a graph.

Operation I. As shown in Fig. 1, Let G be a nontrivial connected graph and v is

a given vertex in G. Let G1 be a graph obtained from G by attaching at v two paths

P : vu1u2 · · · uk of length k and Q : vw1w2 · · ·w� of length �. If G2 = G1 − vw1 + ukw1,

we say that G2 is obtained from G1 by Operation I.

��
��

�� �� � � �� � � � � �v
w1w� u1 uk

G0 ��
��

� � � � � � �� � � � � �v
u1 ukw1 w�

G0

G G′

−→Operation I

Fig. 1 Two graphs G and G′ in Operation I.

Lemma 2.1. If G′ is obtained from G by Operation I as shown in Fig. 1, then

EM1(G
′) < EM1(G).

Proof. In fact, the degree of v is decreased in Operation I. Meanwhile, the degree of

NG0(v) all keep the same values during the above proceeding. Hence,

EM1(G)− EM1(G
′) > d2G(vw1) + d2G(u1v) + d2G(uk−1uk)

− [d2G′(ukw1) + d2G′(u1v) + d2G′(uk−1uk)]

= 2(2 + dG0(v))
2 + 1− (1 + dG0(v))

2 − 8

= d2G0
(v) + 6dG0(v) > 0.

The result thus holds.

Operation II. As shown in Fig. 2, let uv be an edge of connected graph G with

dG(v) ≥ 2. Suppose that {v, w1, w2, . . . wt} are all the neighbors of vertex u while w1, w2, . . .

wt are pendent vertices. If G
′ = G−{uw1, uw2, · · · uwt}+{vw1, vw2, . . . vwt}, we say that

G′ is obtained from G by Operation II.
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Fig. 2 Graphs G and G′ in Operation II.

We now show that Operation II strictly increases the EM1 of a graph.

Lemma 2.2. If G′ is obtained from G by Operation II as shown in Fig. 2, then

EM1(G) < EM1(G
′).

Proof. Since dG(v) < dG′(v) and d(uv) is not changed during Operation II. So we have

EM1(G
′)− EM1(G) >

t∑
i=1

[d2G′(vwi)− d2G(uwi)] + d2G′(uv)− d2G(uv)

=
t∑

i=1

[d2G′(vwi)− d2G(uwi)] > 0.

Hence, the result holds.

Operation III. As shown in Fig. 3, Let G be nontrivial connected graph G and

u and v be two vertices of G. Let P� = v1(= u)v2 · · · v�(= v) is a nontrivial �- length

path of G connecting vertices u and v. If G′ = G − {v1v2, v2v3, · · · , v�−1v�} + {w(=
u ◦ v)v1, wv2, · · · , wv�}, we say that G′ is obtained from G by Operation III.

��
��

��
��� �� �� � �

u vH1 H2

P�︷ ︸︸ ︷
��
��

��
���

� �
�
��
	
		

� � �v1 v�−1

wH1 H2−→Operation III

G G′

Fig. 3 The graphs G and G′ in Operation III.

Lemma 2.3. If G′ is obtained from G by Operation III as shown in Fig. 2, then

EM1(G
′) > EM1(G).

Proof. As shown in Figure 3, let dH1(u) = x and dH2(v) = y while w be the new vertex

by fusing u and v with dG′(w) = x+ y+ �− 1 with � ≥ 2. If � = 2, Then, by means of the

definition of EM1, EM1(G
′)−EM1(G) > d2G′(v1w)− (x+ y)2 = (x+ y)2 − (x+ y)2 = 0.

We now consider the case � ≥ 3. According to the definition of the first reformulated
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Zagreb index, we have

EM1(G2)− EM1(G1) >
�−1∑
i=1

d2G′(wvi)− ((x+ 1)2 + (y + 1)2 + (�− 3)22)

= (�− 1)(x+ y + �− 2)2 − (x+ 1)2 − (y + 1)2 − 4(�− 3))

> [(x+ y + �− 2)2 − (x+ 1)2] + [(x+ y + �− 2)2 − (y + 1)2]

> 0.

Therefore, the proof is complete.

Operation IV. As shown in Fig. 4, let G0 be a nontrivial subgraph(acyclic) of G

with |G0| = t which is attached at u1 in graph G, x and y be two neighbors of u1 different

from in G0. If G′ = G − (G0 − u1) + u1v2 + v2v3 + · · · + vty, we say that G′ is obtained

from G by Operation IV.

����� � � ��


��

��




			 						
u1

u2

ut

x y

�
�


��� � � ��


��

��




G0			 			u1x y
��� � � ��� �



��
��




� � �			 			x u1 u2 ut y

G1 G G′

−→Operation IV

Fig. 4 Graphs G, G′, G1 in Operation IV.

Lemma 2.4. Let G and G′ be two graphs as shown in Fig. 4. Then we have

EM1(G) > EM1(G
′)

Proof. In terms of Operation II, as shown in Fig. 4, there is a graph G1 such that

EM1(G) ≥ EM1(G1). In order to show the conclusion, we now just to verify the following

Inequality:

EM1(G1) > EM1(G
′). (1)

By means of the definition of EM1, we have

EM1(G1)− EM1(G
′) = d2G1

(ut−1ut) + d2G1
(u1u2) + d2G1

(xu1) + d2G1
(yu1)

− [d2G′(ut−1ut) + d2G′(u1u2) + d2G′(xu1) + d2G′(yut)]

= 10 + (x+ 1)2 + (y + 1)2 − 8− x2 − y2 > 0.

Therefore, the Ineq. (1)holds. Then we finish the proof.

We now introduce some terminology which will be used in the following graph oper-

ation. Let G be a nontrivial connected graph and two given vertices u and v in G. If

G − u ∼= G − v. Then we say that u and v are equivalent. That is, if u and v are a pair

of equivalent vertices in G, then |N(u)| = |N(v)| and their neighborhoods have the same

degree sequence.
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Operation V. Let G0 be a nontrivial connected graph and u and v are a pair of

equivalent vertices in G0 with dG0(u) = dG0(v) = x. Let G be the graph obtained by

attaching Sk+1 and S�+1 at the vertices u and v of G0 with k ≥ �, respectively. If G′ is

the graph obtained by delating the � pendent vertices at v in G and connecting them to

u of G, respectively, see Fig. 5. We say that G′ is obtained from G by Operation V.

��
���

�
��
��

��



��
��

			
			

u

v

u1

uk
v1

v�

G0 ��
��� ���������

�






						u

u1

uk
v1
v�G0

G G′

−→Operation V

Fig. 5 Operation V.

Lemma 2.5. If G′ is obtained from G by Operation V as shown in Figure. 5. Then

EM1(G) < EM1(G
′).

Proof. Note that dG0(u) = dG0(v) = x > 0 and k ≥ � ≥ 1. By the definition of EM1, we

have

EM1(G
′)− EM1(G) >

k∑
i=1

d2G′(uui)−
k∑

i=1

d2G(uui) +
�∑

i=1

d2G′(uvi)−
�∑

i=1

d2G(vvi)

= �

k∑
i=1

(dG′(uui) + dG(uui)) + k
�∑

i=1

(dG′(uvi) + dG(vvi))

≥ �+ k > 0.

So the result follows.

As the above shown, both Operation I and Operation IV strictly decrease the EM1

of a graph; while all of Operation II, Operation III and Operation V strictly increase the

EM1 of a graph.

3 Main results

In the section, we will characterize the extremal graph with respect to EM1 among acyclic,

unicyclic, bicyclic graphs by a unified method.

For convenience, we first define some notations which will be using in the sequel.

Denote by Bn the set of all connected bicyclic graphs with order n. We define three

special classes of graphs. Let P k,�,m
n be the graph obtained by connecting two cycles Ck

and Cm with a path P� with k + � + m − 2 = n, Cn(p, q) be the graph just contains
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two cycles Ck and C� having a common vertex with p + q − 1 = n, and Cn(r, �, t) be the

graph obtained by fusing two triples of pendent vertices of three paths P�, Pr and Pt to

two vertices with � + r + t − 4 = n.(without loss of generality, we set 2 ≤ � ≤ r ≤ t.)

If a bicyclic graph G contains one of the three graphs Cs(p, q) P k,�,m
s and Cs(r, �, t) as

its subgraph. Then we call it as a brace of G. By the way, we set B1
n, B2

n and B3
n be

the set of all bicyclic graphs which include Cs(p, q), P
k,�,m
s and Cs(r, �, t) as their brace,

respectively. So the set Bn can be partitioned into three subsets B1
n, B2

n and B3
n. In

addition, we replace the sign “if and only if” by “iff” for short.

� �
� � ���

���


 ��
�� 

����

��



�
�

			
			

�� � ��
� �� �� �
�� ���� ��

	
	




�
�
��

			 	 	 	 � �
� � ���

 ��

�� 

����
��			 �

� � �����
�
���
����
��			

G∗ G∗∗ S2
n S1

n

Fig. 6 Some graphs using in the later proof.

We next introduce the extremal graphs with respect to EM1 on acyclic graphs. If G

is an acyclic connected graph with order n, by using Lemma 2.1 and Lemma 2.2, it is

easy to deduce the following result.

Theorem 3.1. Let G be a acyclic connected graph with order n. Then

EM1(Pn) ≤ EM1(G) ≤ EM1(Sn) ,

while the lower bound is attached iff G ∼= Pn and the upper bound is attached iff G ∼= Sn.

Ilić and Zhou [18] obtained the next conclusion. Here we provide a shorter proof by

utilizing some graph operations.

Theorem 3.2. Let G be a unicyclic graph with n vertices. Then

EM1(Cn) ≤ EM1(G) ≤ EM1(S
1
n) ,

while the lower bound is attached iff G ∼= Cn and the upper bound is attached iff G ∼= S1
n.

Proof. Since G is a unicyclic graph with n vertices. G contains a uniquely cycle C�. By

Lemma 2.3, we can obtain the graph G′ in which the length of the cycle is three and its

EM1 is increased strictly. Furthermore, by using Lemma 2.5, we can get the uniquely

maximum graph S1
n with respect to EM1.(see, Fig. 6.) Meanwhile, by Lemma 2.1 and

Lemma 2.4, we deduce that the minimum graph is Cn.
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Theorem 3.3. Let G be a bicyclic graph with n vertices. Then

4n+ 34 ≤ EM1(G) ≤ n3 − 5n2 + 16n+ 4 ,

where the lower bound is attached iff G ∈ {P k,�,m
n : � ≥ 3} ∪ {Cn(r, �, t) : � ≥ 3} and the

upper bound is attached iff G ∼= S2
n.

Proof. We now first show the upper bound. If G ∼= S2
n, then EM1(G) = n3−5n2+16n+4

by simple calculation. Hence, we next verify that EM1(G) < EM1(S
2
n) with G �∼= S2

n.

Case 1. G contains K4 − e as its brace.

If G contains K4 − e as its brace, by using Lemma 2.2 and Lemma 2.5, we can obtain

a new graph (bicyclic) G∗ whose EM1 is more than that of G, see Fig. 6. It is easy to

check that EM1(G
∗) ≤ n3 − 5n2 + 16n+ 4, equality holds iff G ∼= S2

n.

Case 2. K4 − e is not the brace of G.

Although G does not include the subgraph K4 − e. By Lemma 2.3, maybe there are

a bicyclic graph whose EM1 is more than that of G has the brace K4 − e. So we need to

discuss the following two subcases.

Subcase 2.1. Cs(3, 2,m) is the brace of G.

In view of Lemma 2.3, subcase 2.1 is converted to Case 1.

Subcase 2.2. Cs(3, 2,m) is not the brace of G.

By Lemma 2.2, Lemma 2.3 and Lemma 2.5, we get a new graph (bicyclic) G∗∗ whose

EM1 is more than that of G, see Figure 6. It is not difficult to verify that EM1(G
∗∗) <

n3 − 5n2 + 16n+ 4.

Furthermore, we continue to show the lower bound of bicyclic graphs with respect to

EM1. Using Lemma 2.1, Lemma 2.2 and Lemma 2.4, we deduce that the extremal graph

of the minimum EM1 in bicyclic graphs must be the element which belongs to the set

{Cn(p, q), P
k,�,m
n , Cn(r, �, t)}.

By simply calculation, we have that EM1(Cn(p, q)) = 4n + 52; EM1(P
k,�,m
n ) = 4n +

36 if � = 2, EM1(P
k,�,m
n ) = 4n + 34, otherwise; EM1(Cn(r, �, t)) = 4n + 36 if � = 2,

EM1(Cn(r, �, t)) = 4n+ 34, otherwise.

So we verify the lower bound, and equality holds iff G ∈ {P k,�,m
n , Cn(r, �, t), � ≥ 3}.

Therefore, we complete the proof.
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