Maximum General Sum-Connectivity Index for Trees with Given Independence Number ${ }^{1}$

Ioan Tomescu ${ }^{a}$, Muhammad Kamran Jamil ${ }^{b}$
${ }^{a}$ Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania.
e-mail: ioan@fmi.unibuc.ro
${ }^{b}$ Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan. e-mail: m.kamran.sms@gmail.com

(Received January 28, 2014)

Abstract

Das, Xu and Gutman [MATCH Commun. Math. Comput. Chem. 70(2013) 301-314] proved that in the class of trees of order n and independence number s, the spur $S_{n, s}$ maximizes both first and second Zagreb indices and this graph is unique with these properties. In this paper, we show that in the same class of trees $T, S_{n, s}$ is the unique graph maximizing zeroth-order general Randić index ${ }^{0} R_{\alpha}(T)$ for $\alpha>1$ and general sum-connectivity index $\chi_{\alpha}(T)$ for $\alpha \geq 1$. This property does not hold for general Randić index $R_{\alpha}(T)$ if $\alpha \geq 2$.

1 Introduction

Let G be a simple graph having vertex set $V(G)$ and edge set $E(G)$. For a vertex $u \in V(G), d(u)$ denotes the degree of u and $N(u)$ the set of vertices adjacent with u. The maximum vertex degree of G is denoted by $\Delta(G)$. The distance between vertices u and v of a connected graph, denoted by $d(u, v)$, is the length of a shortest path between them. The diameter of G is the maximum distance between vertices of G. If $x \in V(G)$, $G-x$ denotes the subgraph of G obtained by deleting x and its incident edges. A similar

[^0]notation is $G-x y$, where $x y \in E(G)$. Given a graph G, a subset S of $V(G)$ is said to be an independent set of G if every two vertices of S are not adjacent. The maximum number of vertices in an independent set of G is called the independence number of G and is denoted by $\alpha(G) . K_{1, n-1}$ and P_{n} will denote, respectively, the star and the path on n vertices. Since a tree on n vertices is a bipartite graph, at least one partite set, which is an independent set, has at least $n / 2$ vertices, which implies that for any tree T we have $\alpha(T) \geq\lceil n / 2\rceil$ and this bound is reached for paths. Also, $\alpha(T) \leq n-1$ and the equality holds only for the star graph. For every $n \geq 2$ and $n / 2 \leq s \leq n-1$ the spur $S_{n, s}$ [2] is a tree consisting of $2 s-n+1$ edges and $n-s-1$ paths of length 2 having a common endvertex; in other words, it is obtained from a star $K_{1, s}$ by attaching a pendant edge to $n-s-1$ pendant vertices of $K_{1, s}$. We have $\alpha\left(S_{n, s}\right)=s$. A bistar of order n, denoted by $B S(p, q)$, consists of two vertex disjoint stars, $K_{1, p}$ and $K_{1, q}$, where $p+q=n-2$, and a new edge joining the centers of these stars.

For other notations in graph theory, we refer [16].
The Randić index $R(G)$, proposed by Randić [12] in 1975, one of the most used molecular descriptors in structure-property and structure-activity relationship studies [5, $6,9,10,11,13,14,15]$, was defined as

$$
R(G)=\sum_{u v \in E(G)}(d(u) d(v))^{-1 / 2}
$$

The general Randić connectivity index (or general product-connectivity index) of G, denoted by R_{α}, was defined by Bollobás and Erdös [1] as

$$
R_{\alpha}=R_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha}
$$

where α is a real number. Then $R_{-1 / 2}$ is the classical Randić connectivity index and for $\alpha=1$ it is also known as second Zagreb index and denoted by $M_{2}(G)$.

This concept was extended to the general sum-connectivity index $\chi_{\alpha}(G)$ in [18], which is defined by

$$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha}
$$

where α is a real number. The sum-connectivity index $\chi_{-1 / 2}(G)$ was proposed in [17].
The zeroth-order general Randić index, denoted by ${ }^{0} R_{\alpha}(G)$ was defined in [8] and [9] as

$$
{ }^{0} R_{\alpha}(G)=\sum_{u \in V(G)} d(u)^{\alpha},
$$

where α is a real number. For $\alpha=2$ this index is also known as first Zagreb index and denoted by $M_{1}(G)$. Notice that $\chi_{1}(G)={ }^{0} R_{2}(G)=M_{2}(G)$.

Thus, the general Randić connectivity index generalizes both the ordinary Randić connectivity index and the second Zagreb index, while the general sum-connectivity index generalizes both the ordinary sum-connectivity index and the first Zagreb index [18].

Several extremal properties of the sum-connectivity and general sum-connectivity indices for trees, unicyclic graphs and general graphs were given in $[3,4,17,18]$.

Das, Xu and Gutman [2] proved that in the class of trees of order n and independence number s, the spur $S_{n, s}$ maximizes both first and second Zagreb indices and this graph is unique with these properties. In this paper, we further study the extremal properties of this graph, showing that $S_{n, s}$ is the unique graph maximizing zeroth-order general Randić index ${ }^{0} R_{\alpha}(T)$ for $\alpha>1$ and general sum-connectivity index $\chi_{\alpha}(T)$ for $\alpha \geq 1$ in the set of trees of order n and independence number s. This property is not still valid for general Randić index $R_{\alpha}(T)$ if $\alpha \geq 2$.

2 Main results

The zeroth-order general Randić index and general sum-connectivity index of $S_{n, s}$ are readily calculated:

$$
\begin{gathered}
{ }^{0} R_{\alpha}\left(S_{n, s}\right)=s^{\alpha}+s\left(1-2^{\alpha}\right)+2^{\alpha}(n-1) \\
\chi_{\alpha}\left(S_{n, s}\right)=(2 s-n+1)(s+1)^{\alpha}+(n-s-1)\left((s+2)^{\alpha}+3^{\alpha}\right)
\end{gathered}
$$

The path P_{n} has independence number equal to $\lceil n / 2\rceil$.
Lemma 2.1. Let $n \geq 5$ and $\alpha>1$. The following inequalities hold:

$$
\begin{gather*}
{ }^{0} R_{\alpha}\left(S_{n,\lceil n / 2\rceil}\right)>{ }^{0} R_{\alpha}\left(P_{n}\right) \tag{1}\\
\chi_{\alpha}\left(S_{n,\lceil n / 2\rceil}\right)>\chi_{\alpha}\left(P_{n}\right) . \tag{2}
\end{gather*}
$$

Proof. We get ${ }^{0} R_{\alpha}\left(P_{n}\right)=(n-2) 2^{\alpha}+2$ and $\chi_{\alpha}\left(P_{n}\right)=(n-3) 4^{\alpha}+2 \cdot 3^{\alpha}$. If n is even, $n=2 k$, (1) can be written as

$$
\begin{equation*}
k^{\alpha}-2^{\alpha} k+k+2^{\alpha}-2>0 \tag{3}
\end{equation*}
$$

where $k \geq 3$ and $\alpha>1$. Consider the function $\varphi(x)=x^{\alpha}-2^{\alpha} x+x$, where $x \geq 3$. We get $\varphi^{\prime}(x)=\alpha x^{\alpha-1}-2^{\alpha}+1 \geq \alpha 3^{\alpha-1}-2^{\alpha}+1$. By letting $\psi(y)=y 3^{y-1}-2^{y}+1$,
where $y>1$, we have $\psi^{\prime}(y)=3^{y-1}(1+y \ln 3)-\ln 2 \cdot 2^{y}$. Since $\left(\frac{3}{2}\right)^{y}>1.5$ we deduce $\psi^{\prime}(y)>2^{y}\left(\frac{1+y \ln 3}{2}-\ln 2\right)>2^{y}\left(\frac{1+\ln 3}{2}-\ln 2\right)=2^{y-1} \ln \frac{3 e}{4}>0$. Because $\psi(1)=0$ we have $\psi(y)>0$, thus $\varphi(x)$ is strictly increasing for $x \geq 3$ and $\alpha>1$. It follows that it is sufficient to prove (3) for $k=3$. For $k=3$ (3) becomes

$$
\begin{equation*}
3^{\alpha}-2 \cdot 2^{\alpha}+1>0 \tag{4}
\end{equation*}
$$

where $\alpha>1$. (4) can be deduced by Jensen inequality written for the function x^{α}, which is strictly convex for $\alpha>1$.

If $n=2 k+1$, where $k \geq 2$, we have $\alpha\left(P_{2 k+1}\right)=k+1$ and (1) becomes (3) in which $k \geq 3$ has been replaced by $k+1 \geq 3$, which is true.

In order to prove (2) consider first the case n even, $n=2 k$. In this case (2) is

$$
\begin{equation*}
(k+1)^{\alpha}+(k-1)\left((k+2)^{\alpha}+3^{\alpha}\right)-(2 k-3) 4^{\alpha}-2 \cdot 3^{\alpha}>0, \tag{5}
\end{equation*}
$$

where $k \geq 3$ and $\alpha>1$. For $k=3$ (5) becomes $2 \cdot 5^{\alpha}-2 \cdot 4^{\alpha}>0$, which is true. Consider the function $\xi(x)=(x+1)^{\alpha}+(x-1)\left((x+2)^{\alpha}+3^{\alpha}\right)-2 \cdot 4^{\alpha} x$, where $x \geq 3$. We get $\xi^{\prime}(x)=\alpha(x+1)^{\alpha-1}+(x+2)^{\alpha}+3^{\alpha}+\alpha(x+2)^{\alpha-1}(x-1)-2 \cdot 4^{\alpha}$. We have $(x+2)^{\alpha}+3^{\alpha}-2 \cdot 4^{\alpha} \geq 5^{\alpha}+3^{\alpha}-2 \cdot 4^{\alpha}>0$ by Jensen inequality. This implies that $\xi^{\prime}(x)>0$, hence $\xi(x)$ is strictly increasing. Thus (5) is valid since it holds for $k=3$.

If $n=2 k+1$, where $k \geq 2$, the proof is similar, using in the same way Jensen inequality.

The following observation will be useful.
Lemma 2.2. Let T be a tree and $x \in V(T)$, which is adjacent to pendant vertices $v_{1}, \ldots v_{r}$. If $r \geq 2$ then any maximum independent subset of $V(T)$ contains v_{1}, \ldots, v_{r}.

Theorem 2.3. Let $n \geq 2, n / 2 \leq s \leq n-1$ and T be a tree of order n with independence number s. Then for every $\alpha>1,{ }^{0} R_{\alpha}(T)$ is maximum if and only if $T=S_{n, s}$.

Proof. The proof is by induction on n. For $n=2$ we get $s=1$ and $S_{2,1}=P_{2}$ and for $n=3$ we deduce $s=2$ and $S_{3,2}=P_{3}$. For $n=4$ we have two possible values for $s: s=2$, when $S_{4,2}=P_{4}$ and $s=3$, when $S_{4,3}=K_{1,3}$. These trees are unique for respective values of parameters n and s, therefore they are extremal.

Let $n \geq 5$ and suppose that the property is true for all trees of order $n-1$. By Lemma
$2.1{ }^{0} R_{\alpha}\left(P_{n}\right)$ cannot be maximum. Since $n \geq 5$ we deduce $s \geq 3$. Suppose that $s=3$. It follows that $n=5$ or $n=6$. For $n=5$ we get only two trees of order 5 and independence number 3, namely P_{5} and $S_{5,3}$ and for $n=6$ we get P_{6} and $S_{6,3}$. The theorem is verified in this case since P_{5} and P_{6} are not extremal. It follows that we can consider only the case when $\Delta(T) \geq 3$ and $s \geq 4$.
Let T be a tree of order $n \geq 5$ having $\Delta(T) \geq 3$ and independence number $s \geq 4$. As in [2] we shall consider a path $v_{1}, v_{2}, \ldots, v_{d+1}$ of maximum length in T, where d is the diameter of T. We can suppose that $d \geq 3$ since otherwise $T=K_{1, n-1}, s=n-1$ and the theorem is verified. Both vertices v_{1} and v_{d+1} are pendant. By letting $d\left(v_{2}\right)=d_{2}$, we obtain $s \geq \Delta(T) \geq d_{2}$.
First we consider the case when $\alpha\left(T-v_{1}\right)=\alpha(T)-1$. By the induction hypothesis we can write

$$
\begin{gathered}
{ }^{0} R_{\alpha}(T)={ }^{0} R_{\alpha}\left(T-v_{1}\right)+1+d_{2}^{\alpha}-\left(d_{2}-1\right)^{\alpha} \\
\leq^{0} R_{\alpha}\left(S_{n-1, s-1}\right)+1+d_{2}^{\alpha}-\left(d_{2}-1\right)^{\alpha} \\
=(s-1)^{\alpha}+(s-1)\left(1-2^{\alpha}\right)+2^{\alpha}(n-2)+1+d_{2}^{\alpha}-\left(d_{2}-1\right)^{\alpha} .
\end{gathered}
$$

Since the function $x^{\alpha}-(x-1)^{\alpha}$ is strictly increasing for $x \geq 1$ and $\alpha>1$, it follows that $d_{2}^{\alpha}-\left(d_{2}-1\right)^{\alpha} \leq s^{\alpha}-(s-1)^{\alpha}$, equality holding if and only if $d_{2}=s$.

It follows that ${ }^{0} R_{\alpha}(T) \leq s^{\alpha}+s\left(1-2^{\alpha}\right)+2^{\alpha}(n-1)={ }^{0} R_{\alpha}\left(S_{n, s}\right)$ and equality holds if and only if $T-v_{1}=S_{n-1, s-1}$ and pendant vertex v_{1} is adjacent to a vertex of degree $s-1$ in $S_{n-1, s-1}$. Since $s-1 \geq 3$ it follows that for equality v_{1} must be adjacent to the central vertex of the star $K_{1, s-1}$ of $S_{n-1, s-1}$. We deduce that $T=S_{n, s}$.

Next we assume that $\alpha\left(T-v_{1}\right)=\alpha(T)$. If v_{2} would be adjacent to a vertex $w \neq v_{1}, v_{3}$, the degree of w cannot be greater than one, since in this case the path v_{1}, \ldots, v_{d+1} has not maximum length in T. It follows that $d(w)=1$ and by Lemma 2.2 every maximum independent set of vertices of T include both v_{1} and w. This implies $\alpha\left(T-v_{1}\right)=\alpha(T)-1$, which contradicts the hypothesis. It follows that $d_{2}=2$. We can write

$$
{ }^{0} R_{\alpha}(T)={ }^{0} R_{\alpha}\left(T-v_{1}\right)+2^{\alpha} \leq{ }^{0} R_{\alpha}\left(S_{n-1, s}\right)+2^{\alpha}=s^{\alpha}+s\left(1-2^{\alpha}\right)+2^{\alpha}(n-1)={ }^{0} R_{\alpha}\left(S_{n, s}\right)
$$

The equality holds if and only if $T-v_{1}=S_{n-1, s}$ and pendant vertex v_{1} is adjacent to a pendant vertex of $S_{n-1, s}$. Let x be the vertex of degree s of $S_{n-1, s}$. If v_{1} is adjacent to a pendant vertex v_{2} of $S_{n-1, s}$ such that $d\left(v_{2}, x\right)=2$, the resulting tree T has $\alpha(T)=$
$s+1$, which contradicts the hypothesis. We deduce that v_{1} is adjacent to a pendant vertex which is adjacent to x, which implies that $T=S_{n, s}$.

A similar result holds for general sum-connectivity index.
Theorem 2.4. Let $n \geq 2, n / 2 \leq s \leq n-1$ and T be a tree of order n with independence number s. Then for every $\alpha \geq 1, \chi_{\alpha}(T)$ is maximum if and only if $T=S_{n, s}$.

Proof. For $\alpha=1$ we have $\chi_{1}(T)={ }^{0} R_{2}(T)$ and by Theorem 2.3 the result holds true. Suppose that $\alpha>1$. We shall use induction on n in the same way as in the proof of Theorem 2.3. By the same arguments and inequality (2) we can consider $n \geq 5$, $s \geq 4$, a tree T of order n and independence number s such that $\Delta(T) \geq 3$, and a path $v_{1}, v_{2}, \ldots, v_{d+1}$ of length d in T, where $d \geq 3$ is the diameter of T.
First we consider the case when $\alpha\left(T-v_{1}\right)=\alpha(T)$. As in the proof of Theorem 2.3 we deduce $d\left(v_{2}\right)=2$ and $d\left(v_{3}\right)=d_{3} \leq \Delta(T) \leq s$.
By the induction hypothesis we get

$$
\begin{gathered}
\chi_{\alpha}(T)=\chi_{\alpha}\left(T-v_{1}\right)+3^{\alpha}+\left(d_{3}+2\right)^{\alpha}-\left(d_{3}+1\right)^{\alpha} \\
\leq(2 s-n+2)(s+1)^{\alpha}+(n-s-2)(s+2)^{\alpha}+(n-s-2) 3^{\alpha}+3^{\alpha}+\left(d_{3}+2\right)^{\alpha}-\left(d_{3}+1\right)^{\alpha} .
\end{gathered}
$$

Since $d_{3} \leq s$ we have $\left(d_{3}+2\right)^{\alpha}-\left(d_{3}+1\right)^{\alpha} \leq(s+2)^{\alpha}-(s+1)^{\alpha}$ and equality holds if and only if $d_{3}=s$.

It follows that $\chi_{\alpha}(T) \leq(2 s-n+1)(s+1)^{\alpha}+(n-s-1)(s+2)^{\alpha}+(n-s-1) 3^{\alpha}=\chi_{\alpha}\left(S_{n, s}\right)$ and equality holds if and only if $T-v_{1}=S_{n-1, s}, d\left(v_{2}\right)=2$ and $d_{3}=s$, which implies that $T=S_{n, s}$.

Next we assume that $\alpha\left(T-v_{1}\right)=\alpha(T)-1$. Since $v_{1}, v_{2}, v_{3}, \ldots, v_{d+1}$ is a path of maximum length of T, v_{3} is the only vertex in $N\left(v_{2}\right)$ having degree $d_{3} \geq 2$. By letting $d\left(v_{2}\right)=d_{2} \leq s$ we have
$\chi_{\alpha}(T)=\chi_{\alpha}\left(T-v_{1}\right)+\left(d_{2}+1\right)^{\alpha}+\left(d_{2}-2\right)\left(\left(d_{2}+1\right)^{\alpha}-d_{2}^{\alpha}\right)+\left(d_{2}+d_{3}\right)^{\alpha}-\left(d_{2}+d_{3}-1\right)^{\alpha}$.
The function $(x-2)\left((x+1)^{\alpha}-x^{\alpha}\right)$ being strictly increasing in x for $x \geq 2$ and $\alpha \geq 1$, we have $\left(d_{2}-2\right)\left(\left(d_{2}+1\right)^{\alpha}-d_{2}^{\alpha}\right) \leq(s-2)\left((s+1)^{\alpha}-s^{\alpha}\right)$; also $\left(d_{2}+1\right)^{\alpha} \leq(s+1)^{\alpha} . v_{2}$ is adjacent to $d_{2}-1$ pendant vertices and in the graph $T-v_{2} v_{3}$ the degree of v_{3} is equal to $d_{3}-1$. It follows that $d_{2}-1+d_{3}-1 \leq s$, or $d_{2}+d_{3} \leq s+2$ since T has at least $d_{2}+d_{3}-2$ pendant vertices. This implies $\left(d_{2}+d_{3}\right)^{\alpha}-\left(d_{2}+d_{3}-1\right)^{\alpha} \leq(s+2)^{\alpha}-(s+1)^{\alpha}$ with equality if and
only if $d_{2}+d_{3}=s+2$. By the induction hypothesis we have $\chi_{\alpha}\left(T-v_{1}\right) \leq \chi_{\alpha}\left(S_{n-1, s-1}\right)$. Thus we get $\chi_{\alpha}(T) \leq(2 s-n) s^{\alpha}+(n-s-1)(s+1)^{\alpha}+(n-s-1) 3^{\alpha}+(s+1)^{\alpha}+(s-2)((s+$ $\left.1)^{\alpha}-s^{\alpha}\right)+(s+2)^{\alpha}-(s+1)^{\alpha}=(s+2)^{\alpha}+(n-3)(s+1)^{\alpha}+(s-n+2) s^{\alpha}+(n-s-1) 3^{\alpha}$. By denoting the last expression by $E(n, s, \alpha)$, the inequality $E(n, s, \alpha) \leq \chi_{\alpha}\left(S_{n, s}\right)$ is equivalent to

$$
\begin{equation*}
(n-s-2)(s+2)^{\alpha}+(n-s-2) s^{\alpha} \geq 2(n-s-2)(s+1)^{\alpha} . \tag{6}
\end{equation*}
$$

If $s=n-1$ then $T=K_{1, n-1}=S_{n, n-1}$ and the theorem is true. If $s=n-2$ then (6) becomes an equality. Otherwise $n-s-2 \geq 1$ and (6) is equivalent to $(s+2)^{\alpha}+s^{\alpha} \geq 2(s+$ $1)^{\alpha}$. By Jensen inequality this inequality is strict. It follows that if $\alpha\left(T-v_{1}\right)=\alpha(T)-1$ we have $\chi_{\alpha}(T) \leq \chi_{\alpha}\left(S_{n, s}\right)$ and the equality holds only if $s=n-2, T-v_{1}=S_{n-1, n-3}, d_{2}=s$ and $d_{2}+d_{3}=s+2$, i. e., $d_{3}=2$. It follows that the equality holds only if $T=S_{n, n-2}$ and the proof is complete.
Notice that only if $n-s-1 \in\{0,1\}$ a pendant vertex adjacent to the center of the star $K_{1, s}$ is the endvertex of a longest path in $S_{n, s}$, and this corresponds to the equality in (6).

In the family of trees T of order n and independence number s the second Zagreb index $M_{2}(G)=R_{1}(T)$ is maximum if and only if $T=S_{n, s}$ [2]. But this property does not hold for $R_{\alpha}(T)$ if $\alpha \geq 2$, since in [7] it was shown that for $\alpha \geq 2$ and $n \geq 8$, only the balanced double star $S(p, q)$, where $p+q=n-2$ and $|p-q| \leq 1$ realizes the maximum value of $R_{\alpha}(T)$ in the set of trees of order n. The independence number of $S(p, q)$ is $n-2$, but $S_{n, n-2}$ is not a balanced double star.

References

[1] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[2] K. Ch. Das, K. Xu, I. Gutman, On Zagreb and Harary indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 301-314.
[3] Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem. 48 (2010) 697-703.
[4] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (2011) 402-405.
[5] R. Garcia-Domenech, J. Gálvez, J. V. de Julián-Ortiz, L. Pogliani, Some new trends in chemical graph theory, Chem. Rev. 108 (2008) 1127-1169.
[6] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[7] Y. Hu, X. Li, Y. Yuan, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 129-146.
[8] H. Hua, H. Deng, Unicycle graphs with maximum and minimum zeroth-order general Randić indices, J. Math. Chem. 41 (2007) 173-181.
[9] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure - Activity Analysis, Wiley, New York, 1986.
[10] X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[11] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827-3858.
[12] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[13] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
[14] M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5-124.
[15] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[16] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2001.
[17] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.
[18] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.

[^0]: ${ }^{1}$ This research is partially supported by Higher Education Commission, Pakistan.

