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Abstract

Das, Xu and Gutman [MATCH Commun. Math. Comput. Chem. 70(2013) 301-314] proved
that in the class of trees of order n and independence number s, the spur S, ; maximizes both
first and second Zagreb indices and this graph is unique with these properties. In this paper,
we show that in the same class of trees T', S, ¢ is the unique graph maximizing zeroth-order
general Randi¢ index "Ro(T) for o > 1 and general sum-connectivity index yq(7) for o > 1.
This property does not hold for general Randi¢ index Ry (T) if > 2 .

1 Introduction

Let G be a simple graph having vertex set V(G) and edge set E(G). For a vertex
u € V(G), d(u) denotes the degree of u and N(u) the set of vertices adjacent with wu.
The maximum vertex degree of G is denoted by A(G). The distance between vertices u
and v of a connected graph, denoted by d(u,v), is the length of a shortest path between
them. The diameter of G is the maximum distance between vertices of G. If x € V/(G),

G — z denotes the subgraph of G obtained by deleting x and its incident edges. A similar
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notation is G — zy, where zy € E(G). Given a graph G, a subset S of V(G) is said to
be an independent set of G if every two vertices of S are not adjacent. The maximum
number of vertices in an independent set of G is called the independence number of G
and is denoted by «(G). K;,-1 and P, will denote, respectively, the star and the path on
n vertices. Since a tree on n vertices is a bipartite graph, at least one partite set, which is
an independent set, has at least n/2 vertices, which implies that for any tree 7' we have
a(T) > [n/2] and this bound is reached for paths. Also, a(T) < n — 1 and the equality
holds only for the star graph. For every n > 2 and n/2 < s < n — 1 the spur S, [2] is
a tree consisting of 2s —n + 1 edges and n — s — 1 paths of length 2 having a common
endvertex; in other words, it is obtained from a star K , by attaching a pendant edge to
n — s — 1 pendant vertices of K. We have a(S,, ) = s. A bistar of order n, denoted by
BS(p, q), consists of two vertex disjoint stars, K, and K ,, where p+¢=n—2, and a
new edge joining the centers of these stars.

For other notations in graph theory, we refer [16].

The Randi¢ index R(G), proposed by Randié¢ [12] in 1975, one of the most used
molecular descriptors in structure-property and structure-activity relationship studies [5,
6,9, 10, 11, 13, 14, 15], was defined as

R@) = Y (du)dw)

weB(G)
The general Randié connectivity index (or general product-connectivity index) of G,

denoted by R,, was defined by Bollobds and Erdos [1] as
Ro= Ra(G)= Y (d(u)d(v)),

weE(G)

where a is a real number. Then R_, /5 is the classical Randi¢ connectivity index and for
a =11t is also known as second Zagreb index and denoted by Ms(G).

This concept was extended to the general sum-connectivity index x,(G) in [18], which
is defined by

XalG) = Y (dlu) +d(v))",
weE(G)

where a is a real number. The sum-connectivity index x_1/2(G) was proposed in [17].

The zeroth-order general Randi¢ index, denoted by R, (G) was defined in [8] and [9)]

as

Ra(G) = Y d(w),

ueV(G)



-717-

where « is a real number. For o = 2 this index is also known as first Zagreb index and
denoted by M;(G). Notice that y1(G) =0 Rao(G) = Ms(G).

Thus, the general Randi¢ connectivity index generalizes both the ordinary Randié
connectivity index and the second Zagreb index, while the general sum-connectivity index
generalizes both the ordinary sum-connectivity index and the first Zagreb index [18].

Several extremal properties of the sum-connectivity and general sum-connectivity in-
dices for trees, unicyclic graphs and general graphs were given in [3, 4, 17, 18].

Das, Xu and Gutman [2] proved that in the class of trees of order n and independence
number s, the spur 5, ; maximizes both first and second Zagreb indices and this graph is
unique with these properties. In this paper, we further study the extremal properties of
this graph, showing that S, ; is the unique graph maximizing zeroth-order general Randi¢
index °R,(T) for a > 1 and general sum-connectivity index y,(7") for o > 1 in the set of
trees of order n and independence number s. This property is not still valid for general

Randié¢ index R, (T) if o > 2.

2 Main results
The zeroth-order general Randi¢ index and general sum-connectivity index of S, 5 are
readily calculated:

QR (Sps) = 8%+ s(1 —2%) +2%(n — 1);
Xa(Sns) =02s —n+1)(s+1)*+ (n—s—1)((s +2)%+ 3%).

The path P, has independence number equal to [n/2].

Lemma 2.1. Let n > 5 and a > 1. The following inequalities hold:
ORQ(STLJW/?]) >? Ro(Py) (1)

Xa(Sn,(n/Q'\) > Xa(Pn)- (2)

Proof. We get °R,(P,) = (n — 2)2% +2 and x(P,) = (n — 3)4* + 2 - 3% If n is even,

n =2k, (1) can be written as
B — 20k +k+2%—2>0, (3)

where k > 3 and a > 1. Consider the function ¢(x) = 2* — 2°2 + x, where & > 3.

We get ¢'(z) = ax®t — 2% +1 > a3* 1 — 2% + 1. By letting ¢(y) = y3Y~1 —2¥ + 1,
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where y > 1, we have ¢/(y) = 3*"'(1 + yIn3) — In2- 2Y. Since (£)V > 1.5 we deduce
V' (y) > 2“(1“’#1"3 —In2) > 2v(HR3 _p2) = 2v-Tn e > 0.
Because (1) = 0 we have ¢(y) > 0, thus ¢p(x) is strictly increasing for > 3 and o > 1.

It follows that it is sufficient to prove (3) for k = 3. For k = 3 (3) becomes
39 -92.2°41>0, (4)

where a > 1. (4) can be deduced by Jensen inequality written for the function x*, which
is strictly convex for av > 1.

If n = 2k + 1, where k > 2, we have a(Psy41) = k + 1 and (1) becomes (3) in which
k > 3 has been replaced by k + 1 > 3, which is true.

In order to prove (2) consider first the case n even, n = 2k. In this case (2) is
(F+1)%+ (k= 1)((k+2)*+3%) — (2k — 3)4* —2-3% > 0, (5)

where k£ > 3 and o > 1. For k = 3 (5) becomes 2 - 5% — 2 -4 > 0, which is true.
Consider the function &{(x) = (z + 1)* + (z — 1)((@ + 2)* + 3%) — 2 - 4°2, where z > 3.
We get &(z) = alz + 1)1 + (z +2)* + 3% + a(z + 2)*1(z — 1) — 2 - 4% We have
(x+2)*+3*—=2-4% > 5+ 3* — 2. 4% > 0 by Jensen inequality. This implies that
&'(x) > 0, hence &(x) is strictly increasing. Thus (5) is valid since it holds for k = 3.

If n = 2k + 1, where & > 2, the proof is similar, using in the same way Jensen

inequality. |
The following observation will be useful.

Lemma 2.2. Let T be a tree and x € V(T), which is adjacent to pendant vertices

U1, ..U If 7 > 2 then any mazimum independent subset of V(T) contains vy, . .., v,.

Theorem 2.3. Letn >2,n/2<s<n—1andT be a tree of order n with independence

number s. Then for every o > 1, °Ry(T) is mazimum if and only if T = S, .

Proof. The proof is by induction on n. For n = 2 we get s = 1 and Ss; = % and for
n = 3 we deduce s = 2 and S35 = P3. For n = 4 we have two possible values for s: s = 2,
when Sy9 = Py and s = 3, when Sy 3 = K 3. These trees are unique for respective values
of parameters n and s, therefore they are extremal.

Let n > 5 and suppose that the property is true for all trees of order n — 1. By Lemma
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2.1 °R,(P,) cannot be maximum. Since n > 5 we deduce s > 3. Suppose that s = 3. It
follows that n =5 or n = 6. For n =5 we get only two trees of order 5 and independence
number 3, namely P5; and S5 3 and for n = 6 we get P and Sg 3. The theorem is verified
in this case since P5 and Py are not extremal. It follows that we can consider only the
case when A(T') > 3 and s > 4.
Let T be a tree of order n > 5 having A(T) > 3 and independence number s > 4. As
in [2] we shall consider a path vy, vs,...,v441 of maximum length in 7', where d is the
diameter of 7. We can suppose that d > 3 since otherwise ' = K;,_1, s =n — 1 and
the theorem is verified. Both vertices v; and v4.; are pendant. By letting d(vy) = da, we
obtain s > A(T) > ds.
First we consider the case when a(7 — v;) = «(T') — 1. By the induction hypothesis we
can write
Ra(T) =" Ro(T — v1) + 1+ d§ — (dg — 1)
<ORa(Sn1s1) +1+dy — (dy — 1)°
=(s—=1)"+(s=1)1—=2%+2%Mn—2)+1+dy — (dy — 1)~
Since the function z® — (z — 1) is strictly increasing for z > 1 and « > 1, it follows that
dy — (dy — 1)* < s* — (s — 1), equality holding if and only if dy = s.

It follows that °R,(T") < s* + s(1 — 2%) +2%(n — 1) =" R, (S,5) and equality holds if
and only if T'— vy = S,_1 s_1 and pendant vertex vy is adjacent to a vertex of degree s —1
in Sy_1,-1. Since s —1 > 3 it follows that for equality v; must be adjacent to the central
vertex of the star Ky 1 of S, 1. We deduce that 7" = 5, ;.

Next we assume that a(7 —v;) = a(T'). If v would be adjacent to a vertex w # vy, vs,
the degree of w cannot be greater than one, since in this case the path vy, ..., v4y1 has
not maximum length in 7". Tt follows that d(w) = 1 and by Lemma 2.2 every maximum
independent set of vertices of T" include both v; and w. This implies a(T—vy) = a(T) — 1,

which contradicts the hypothesis. It follows that dy = 2. We can write
Ra(T) =" Ro(T — v1) + 2% <O R (Spo1s) +2% = 8% + 5(1 = 2%) +2%(n — 1) =" R0 (S,0.5).
The equality holds if and only if 7' — v; = S,_1 s and pendant vertex v; is adjacent to

a pendant vertex of S,,_;,. Let x be the vertex of degree s of S,,_1,. If v; is adjacent

to a pendant vertex vy of S,_1 such that d(vs, z) = 2, the resulting tree T has o(T) =
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s+ 1,which contradicts the hypothesis. We deduce that v, is adjacent to a pendant vertex

which is adjacent to @, which implies that 7" = S,, ;. |
A similar result holds for general sum-connectivity index.

Theorem 2.4. Letn >2,n/2<s<n—1andT be a tree of order n with independence

number s. Then for every o > 1, xo(T) is mazimum if and only if T = S, 5.

Proof. For o = 1 we have x;(T) =" Ry(T) and by Theorem 2.3 the result holds true.
Suppose that a > 1. We shall use induction on n in the same way as in the proof
of Theorem 2.3. By the same arguments and inequality (2) we can consider n > 5,
s >4, a tree T of order n and independence number s such that A(T) > 3, and a path
V1, Vg, ..., V41 Of length d in T, where d > 3 is the diameter of 7.

First we consider the case when a(T — v1) = a(T'). As in the proof of Theorem 2.3 we
deduce d(ve) =2 and d(v3) = ds < A(T) < s.

By the induction hypothesis we get

Xa(T) = xa(T —v1) + 3%+ (d3 + 2)* — (d3 + 1)

<2s—n+2)(s+1)*"+(n—5—2)(s+2)"+ (n—5—2)3" + 3"+ (ds +2)* — (d3 + 1)".

Since dy < s we have (d3 +2)* — (ds +1)* < (s +2)* — (s +1)* and equality holds if and
only if d3 = s.

It follows that xo(7') < (2s—n+1)(s+1)*+(n—s5—1)(s+2)*+(n—5—1)3% = Xa(Sn,s)
and equality holds if and only if T'— vy = S,,_1 4, d(v2) = 2 and d3 = s, which implies that
T =5,;.

Next we assume that (T — vy) = a(T) — 1. Since vy, v9,v3,...,0441 is a path of
maximum length of T', vs is the only vertex in N(vy) having degree d3 > 2. By letting

d(vg) = dy < s we have
XalT) = XalT = v1) + (d2 + 1)* + (d2 = 2)((d2 + 1)* — d5) + (da + d3)* — (da + d3 — 1)

The function (z —2)((x 4+ 1)* — 2*) being strictly increasing in « for > 2 and o > 1, we
have (de—2)((da+1)*—d$) < (s—2)((s+1)*—5%); also (da+1)* < (s+1)*. vy is adjacent
to dy — 1 pendant vertices and in the graph T'— vov3 the degree of v3 is equal to dg — 1. It
follows that do —1+d3—1 < s, or dy +d3 < s+ 2 since T has at least dy + d3 — 2 pendant
vertices. This implies (dy +d3)® — (dg +d3 — 1)* < (s+2)* — (s + 1)* with equality if and
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only if dy 4+ d3 = s + 2. By the induction hypothesis we have xo(T — v1) < Xa(Sn-1,5-1)-
Thus we get xo(T) < (2s—n)s*+(n—s—1)(s+1)*+(n—s—1)3*+(s+1)*+(s—2)((s+
D=5+ (s+2)*—(s+1)*=(s+2)*+(n=3)(s+ 1)*+ (s —n+2)s*+ (n—s—1)3%
By denoting the last expression by E(n,s, ), the inequality E(n,s,a) < xo(Sns) is
equivalent to
m—s=2)(s+2)"+(n—s—2)s">2(n—s—2)(s+ 1)~ (6)
If s=n—1then T = Ky,_1 = Sy,-1 and the theorem is true. If s =n — 2 then (6)
becomes an equality. Otherwise n—s—2 > 1 and (6) is equivalent to (s+2)*+s* > 2(s+
1)®. By Jensen inequality this inequality is strict. It follows that if (T —vy) = a(T)—1 we
have xo(T') < Xa(Shs) and the equality holds only if s =n —2,T —vy = S,_1-3,do = s
and do +ds = s+ 2, 1. e., d3 = 2. It follows that the equality holds only if 7" = 5, ,,—»
and the proof is complete.
Notice that only if n — s — 1 € {0,1} a pendant vertex adjacent to the center of the star

K 4 is the endvertex of a longest path in S, 5, and this corresponds to the equality in (6).

In the family of trees T of order n and independence number s the second Zagreb
index M>(G) = Ry(T) is maximum if and only if T = S, [2]. But this property does
not hold for R,(T) if o > 2, since in [7] it was shown that for a > 2 and n > 8, only the
balanced double star S(p, ¢), where p+ ¢ =n —2 and |p — ¢| < 1 realizes the maximum
value of R,(T) in the set of trees of order n. The independence number of S(p, q) is n— 2,

but S, ,—2 is not a balanced double star.
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