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Abstract

Das, Xu and Gutman [MATCH Commun. Math. Comput. Chem. 70(2013) 301-314] proved

that in the class of trees of order n and independence number s, the spur Sn,s maximizes both

first and second Zagreb indices and this graph is unique with these properties. In this paper,

we show that in the same class of trees T , Sn,s is the unique graph maximizing zeroth-order

general Randić index 0Rα(T ) for α > 1 and general sum-connectivity index χα(T ) for α ≥ 1.

This property does not hold for general Randić index Rα(T ) if α ≥ 2 .

1 Introduction

Let G be a simple graph having vertex set V (G) and edge set E(G). For a vertex

u ∈ V (G), d(u) denotes the degree of u and N(u) the set of vertices adjacent with u.

The maximum vertex degree of G is denoted by Δ(G). The distance between vertices u

and v of a connected graph, denoted by d(u, v), is the length of a shortest path between

them. The diameter of G is the maximum distance between vertices of G. If x ∈ V (G),

G−x denotes the subgraph of G obtained by deleting x and its incident edges. A similar
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notation is G − xy, where xy ∈ E(G). Given a graph G, a subset S of V (G) is said to

be an independent set of G if every two vertices of S are not adjacent. The maximum

number of vertices in an independent set of G is called the independence number of G

and is denoted by α(G). K1,n−1 and Pn will denote, respectively, the star and the path on

n vertices. Since a tree on n vertices is a bipartite graph, at least one partite set, which is

an independent set, has at least n/2 vertices, which implies that for any tree T we have

α(T ) ≥ �n/2
 and this bound is reached for paths. Also, α(T ) ≤ n− 1 and the equality

holds only for the star graph. For every n ≥ 2 and n/2 ≤ s ≤ n − 1 the spur Sn,s [2] is

a tree consisting of 2s − n + 1 edges and n − s − 1 paths of length 2 having a common

endvertex; in other words, it is obtained from a star K1,s by attaching a pendant edge to

n− s− 1 pendant vertices of K1,s. We have α(Sn,s) = s. A bistar of order n, denoted by

BS(p, q), consists of two vertex disjoint stars, K1,p and K1,q, where p+ q = n− 2, and a

new edge joining the centers of these stars.

For other notations in graph theory, we refer [16].

The Randić index R(G), proposed by Randić [12] in 1975, one of the most used

molecular descriptors in structure-property and structure-activity relationship studies [5,

6, 9, 10, 11, 13, 14, 15], was defined as

R(G) =
∑

uv∈E(G)

(d(u)d(v))−1/2.

The general Randić connectivity index (or general product-connectivity index) of G,

denoted by Rα, was defined by Bollobás and Erdös [1] as

Rα = Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α,

where α is a real number. Then R−1/2 is the classical Randić connectivity index and for

α = 1 it is also known as second Zagreb index and denoted by M2(G).

This concept was extended to the general sum-connectivity index χα(G) in [18], which

is defined by

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α,

where α is a real number. The sum-connectivity index χ−1/2(G) was proposed in [17].

The zeroth-order general Randić index, denoted by 0Rα(G) was defined in [8] and [9]

as
0Rα(G) =

∑
u∈V (G)

d(u)α,
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where α is a real number. For α = 2 this index is also known as first Zagreb index and

denoted by M1(G). Notice that χ1(G) =0R2(G) = M2(G).

Thus, the general Randić connectivity index generalizes both the ordinary Randić

connectivity index and the second Zagreb index, while the general sum-connectivity index

generalizes both the ordinary sum-connectivity index and the first Zagreb index [18].

Several extremal properties of the sum-connectivity and general sum-connectivity in-

dices for trees, unicyclic graphs and general graphs were given in [3, 4, 17, 18].

Das, Xu and Gutman [2] proved that in the class of trees of order n and independence

number s, the spur Sn,s maximizes both first and second Zagreb indices and this graph is

unique with these properties. In this paper, we further study the extremal properties of

this graph, showing that Sn,s is the unique graph maximizing zeroth-order general Randić

index 0Rα(T ) for α > 1 and general sum-connectivity index χα(T ) for α ≥ 1 in the set of

trees of order n and independence number s. This property is not still valid for general

Randić index Rα(T ) if α ≥ 2.

2 Main results

The zeroth-order general Randić index and general sum-connectivity index of Sn,s are

readily calculated:

0Rα(Sn,s) = sα + s(1− 2α) + 2α(n− 1);

χα(Sn,s) = (2s− n+ 1)(s+ 1)α + (n− s− 1)((s+ 2)α + 3α).

The path Pn has independence number equal to �n/2
.
Lemma 2.1. Let n ≥ 5 and α > 1. The following inequalities hold:

0Rα(Sn,�n/2�) >
0Rα(Pn) (1)

χα(Sn,�n/2�) > χα(Pn). (2)

Proof. We get 0Rα(Pn) = (n − 2)2α + 2 and χα(Pn) = (n − 3)4α + 2 · 3α. If n is even,

n = 2k, (1) can be written as

kα − 2αk + k + 2α − 2 > 0, (3)

where k ≥ 3 and α > 1. Consider the function ϕ(x) = xα − 2αx + x, where x ≥ 3.

We get ϕ′(x) = αxα−1 − 2α + 1 ≥ α3α−1 − 2α + 1. By letting ψ(y) = y3y−1 − 2y + 1,
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where y > 1, we have ψ′(y) = 3y−1(1 + y ln 3) − ln 2 · 2y. Since (3
2
)y > 1.5 we deduce

ψ′(y) > 2y(1+y ln 3
2

− ln 2) > 2y(1+ln 3
2

− ln 2) = 2y−1 ln 3e
4
> 0.

Because ψ(1) = 0 we have ψ(y) > 0, thus ϕ(x) is strictly increasing for x ≥ 3 and α > 1.

It follows that it is sufficient to prove (3) for k = 3. For k = 3 (3) becomes

3α − 2 · 2α + 1 > 0, (4)

where α > 1. (4) can be deduced by Jensen inequality written for the function xα, which

is strictly convex for α > 1.

If n = 2k + 1, where k ≥ 2, we have α(P2k+1) = k + 1 and (1) becomes (3) in which

k ≥ 3 has been replaced by k + 1 ≥ 3, which is true.

In order to prove (2) consider first the case n even, n = 2k. In this case (2) is

(k + 1)α + (k − 1)((k + 2)α + 3α)− (2k − 3)4α − 2 · 3α > 0, (5)

where k ≥ 3 and α > 1. For k = 3 (5) becomes 2 · 5α − 2 · 4α > 0, which is true.

Consider the function ξ(x) = (x + 1)α + (x − 1)((x + 2)α + 3α) − 2 · 4αx, where x ≥ 3.

We get ξ′(x) = α(x + 1)α−1 + (x + 2)α + 3α + α(x + 2)α−1(x − 1) − 2 · 4α. We have

(x + 2)α + 3α − 2 · 4α ≥ 5α + 3α − 2 · 4α > 0 by Jensen inequality. This implies that

ξ′(x) > 0, hence ξ(x) is strictly increasing. Thus (5) is valid since it holds for k = 3.

If n = 2k + 1, where k ≥ 2, the proof is similar, using in the same way Jensen

inequality. �

The following observation will be useful.

Lemma 2.2. Let T be a tree and x ∈ V (T ), which is adjacent to pendant vertices

v1, . . . vr. If r ≥ 2 then any maximum independent subset of V (T ) contains v1, . . . , vr.

Theorem 2.3. Let n ≥ 2, n/2 ≤ s ≤ n− 1 and T be a tree of order n with independence

number s. Then for every α > 1, 0Rα(T ) is maximum if and only if T = Sn,s.

Proof. The proof is by induction on n. For n = 2 we get s = 1 and S2,1 = P2 and for

n = 3 we deduce s = 2 and S3,2 = P3. For n = 4 we have two possible values for s: s = 2,

when S4,2 = P4 and s = 3, when S4,3 = K1,3. These trees are unique for respective values

of parameters n and s, therefore they are extremal.

Let n ≥ 5 and suppose that the property is true for all trees of order n − 1. By Lemma
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2.1 0Rα(Pn) cannot be maximum. Since n ≥ 5 we deduce s ≥ 3. Suppose that s = 3. It

follows that n = 5 or n = 6. For n = 5 we get only two trees of order 5 and independence

number 3, namely P5 and S5,3 and for n = 6 we get P6 and S6,3. The theorem is verified

in this case since P5 and P6 are not extremal. It follows that we can consider only the

case when Δ(T ) ≥ 3 and s ≥ 4.

Let T be a tree of order n ≥ 5 having Δ(T ) ≥ 3 and independence number s ≥ 4. As

in [2] we shall consider a path v1, v2, . . . , vd+1 of maximum length in T , where d is the

diameter of T . We can suppose that d ≥ 3 since otherwise T = K1,n−1, s = n − 1 and

the theorem is verified. Both vertices v1 and vd+1 are pendant. By letting d(v2) = d2, we

obtain s ≥ Δ(T ) ≥ d2.

First we consider the case when α(T − v1) = α(T ) − 1. By the induction hypothesis we

can write

0Rα(T ) =
0Rα(T − v1) + 1 + dα2 − (d2 − 1)α

≤0Rα(Sn−1,s−1) + 1 + dα2 − (d2 − 1)α

= (s− 1)α + (s− 1)(1− 2α) + 2α(n− 2) + 1 + dα2 − (d2 − 1)α.

Since the function xα − (x− 1)α is strictly increasing for x ≥ 1 and α > 1, it follows that

dα2 − (d2 − 1)α ≤ sα − (s− 1)α, equality holding if and only if d2 = s.

It follows that 0Rα(T ) ≤ sα + s(1− 2α) + 2α(n− 1) =0Rα(Sn,s) and equality holds if

and only if T −v1 = Sn−1,s−1 and pendant vertex v1 is adjacent to a vertex of degree s−1

in Sn−1,s−1. Since s− 1 ≥ 3 it follows that for equality v1 must be adjacent to the central

vertex of the star K1,s−1 of Sn−1,s−1. We deduce that T = Sn,s.

Next we assume that α(T −v1) = α(T ). If v2 would be adjacent to a vertex w �= v1, v3,

the degree of w cannot be greater than one, since in this case the path v1, . . . , vd+1 has

not maximum length in T . It follows that d(w) = 1 and by Lemma 2.2 every maximum

independent set of vertices of T include both v1 and w. This implies α(T−v1) = α(T )−1,

which contradicts the hypothesis. It follows that d2 = 2. We can write

0Rα(T ) =
0Rα(T − v1) + 2α ≤0Rα(Sn−1,s) + 2α = sα + s(1− 2α) + 2α(n− 1) =0Rα(Sn,s).

The equality holds if and only if T − v1 = Sn−1,s and pendant vertex v1 is adjacent to

a pendant vertex of Sn−1,s. Let x be the vertex of degree s of Sn−1,s. If v1 is adjacent

to a pendant vertex v2 of Sn−1,s such that d(v2, x) = 2, the resulting tree T has α(T ) =
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s+1,which contradicts the hypothesis. We deduce that v1 is adjacent to a pendant vertex

which is adjacent to x, which implies that T = Sn,s. �
A similar result holds for general sum-connectivity index.

Theorem 2.4. Let n ≥ 2, n/2 ≤ s ≤ n− 1 and T be a tree of order n with independence

number s. Then for every α ≥ 1, χα(T ) is maximum if and only if T = Sn,s.

Proof. For α = 1 we have χ1(T ) =0 R2(T ) and by Theorem 2.3 the result holds true.

Suppose that α > 1. We shall use induction on n in the same way as in the proof

of Theorem 2.3. By the same arguments and inequality (2) we can consider n ≥ 5,

s ≥ 4, a tree T of order n and independence number s such that Δ(T ) ≥ 3, and a path

v1, v2, . . . , vd+1 of length d in T , where d ≥ 3 is the diameter of T .

First we consider the case when α(T − v1) = α(T ). As in the proof of Theorem 2.3 we

deduce d(v2) = 2 and d(v3) = d3 ≤ Δ(T ) ≤ s.

By the induction hypothesis we get

χα(T ) = χα(T − v1) + 3α + (d3 + 2)α − (d3 + 1)α

≤ (2s− n+ 2)(s+ 1)α + (n− s− 2)(s+ 2)α + (n− s− 2)3α + 3α + (d3 + 2)α − (d3 + 1)α.

Since d3 ≤ s we have (d3 +2)α − (d3 +1)α ≤ (s+2)α − (s+1)α and equality holds if and

only if d3 = s.

It follows that χα(T ) ≤ (2s−n+1)(s+1)α+(n−s−1)(s+2)α+(n−s−1)3α = χα(Sn,s)

and equality holds if and only if T − v1 = Sn−1,s, d(v2) = 2 and d3 = s, which implies that

T = Sn,s.

Next we assume that α(T − v1) = α(T ) − 1. Since v1, v2, v3, . . . , vd+1 is a path of

maximum length of T , v3 is the only vertex in N(v2) having degree d3 ≥ 2. By letting

d(v2) = d2 ≤ s we have

χα(T ) = χα(T − v1) + (d2 + 1)α + (d2 − 2)((d2 + 1)α − dα2 ) + (d2 + d3)
α − (d2 + d3 − 1)α.

The function (x− 2)((x+1)α−xα) being strictly increasing in x for x ≥ 2 and α ≥ 1, we

have (d2−2)((d2+1)α−dα2 ) ≤ (s−2)((s+1)α−sα); also (d2+1)α ≤ (s+1)α. v2 is adjacent

to d2− 1 pendant vertices and in the graph T − v2v3 the degree of v3 is equal to d3− 1. It

follows that d2− 1+d3− 1 ≤ s, or d2+d3 ≤ s+2 since T has at least d2+d3− 2 pendant

vertices. This implies (d2+ d3)
α− (d2+ d3− 1)α ≤ (s+2)α− (s+1)α with equality if and
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only if d2 + d3 = s+ 2. By the induction hypothesis we have χα(T − v1) ≤ χα(Sn−1,s−1).

Thus we get χα(T ) ≤ (2s−n)sα+(n−s−1)(s+1)α+(n−s−1)3α+(s+1)α+(s−2)((s+

1)α− sα)+ (s+2)α− (s+1)α = (s+2)α+(n− 3)(s+1)α+(s−n+2)sα+(n− s− 1)3α.

By denoting the last expression by E(n, s, α), the inequality E(n, s, α) ≤ χα(Sn,s) is

equivalent to

(n− s− 2)(s+ 2)α + (n− s− 2)sα ≥ 2(n− s− 2)(s+ 1)α. (6)

If s = n− 1 then T = K1,n−1 = Sn,n−1 and the theorem is true. If s = n− 2 then (6)

becomes an equality. Otherwise n−s−2 ≥ 1 and (6) is equivalent to (s+2)α+sα ≥ 2(s+

1)α. By Jensen inequality this inequality is strict. It follows that if α(T−v1) = α(T )−1 we

have χα(T ) ≤ χα(Sn,s) and the equality holds only if s = n− 2, T − v1 = Sn−1,n−3, d2 = s

and d2 + d3 = s + 2, i. e., d3 = 2. It follows that the equality holds only if T = Sn,n−2

and the proof is complete.

Notice that only if n− s− 1 ∈ {0, 1} a pendant vertex adjacent to the center of the star

K1,s is the endvertex of a longest path in Sn,s, and this corresponds to the equality in (6).

�

In the family of trees T of order n and independence number s the second Zagreb

index M2(G) = R1(T ) is maximum if and only if T = Sn,s [2]. But this property does

not hold for Rα(T ) if α ≥ 2, since in [7] it was shown that for α ≥ 2 and n ≥ 8, only the

balanced double star S(p, q), where p + q = n− 2 and |p− q| ≤ 1 realizes the maximum

value of Rα(T ) in the set of trees of order n. The independence number of S(p, q) is n−2,

but Sn,n−2 is not a balanced double star.
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Randić indices, J. Math. Chem. 41 (2007) 173–181.

[9] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure – Activity Analysis , Wiley,

New York, 1986.

[10] X. Li, I. Gutman, Mathematical Aspects of Randić–type Molecular Structure Descrip-
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[17] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009)

1252–1270.
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