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Abstract

Let G be a connected undirected graph with vertex set {1, 2, . . . , n} and degrees
di, for 1 ≤ i ≤ n. Then we show that

ABC(G) =
∑
i∼j

√
di + dj − 2

didj
≤
∑
i∼j

√
Rij ,

where Rij is the effective resistance between i and j.
This general bound allows us to obtain many other particular bounds and asymp-

totic maximal results for the ABC index with elementary proofs.

1 Introduction

Among the various descriptors in Mathematical Chemistry, the Kirchhoff index R(G) and

the ABC index, have received considerable attention in recent times. For a connected

undirected graph G = (V,E) with vertex set {1, 2, . . . , n} and edge set E, the Kirchhoff

index was defined by Klein and Randić in [1] as

R(G) =
∑
i<j

Rij,

where Rij is the effective resistance between vertices i and j. We refer the reader to

references [2] through [5], among others, for a variety of approaches expressing this index

in terms of eigenvalues of the Laplacian matrix, hitting times of random walks and the
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average of the Wiener capacities of its vertices. The ABC index, proposed by Estrada et

al. in [6], and reintroduced in [7] was defined as

ABC(G) =
∑
i∼j

√√√√di + dj − 2

didj
, (1)

where i ∼ j means that the vertices i and j are neighbors and di is the index of the vertex

i. (For all graph theoretical terms the reader is referred to reference [8])

The index ABC(G) has been studied in a large number of references of which we

mention [9], [10] and [11] for their own interest and for many other related references

found in them.

In this article we want to give a new upper bound for ABC(G) that uses some ideas

pertinent to the Kirchhoff and other resistive descriptors. This upper bound yields a

number of particular bounds and asymptotic maximal results with proofs that we believe

are easier than those found in the literature, and introduces new electrical insights in the

study of the ABC index.

With the exception of proposition 3, in what follows we will assume that the graphs

satisfy n ≥ 3 in order to avoid cases where i ∼ j and di = dj = 1.

2 The bounds

The following proposition was shown first in [12] and we include a refined version of its

proof here for completeness

Proposition 1 For any G with n ≥ 3, if i ∼ j then

Rij ≥
di + dj − 2

didj − 1
. (2)

Proof. There is an edge between i and j. If di = 1 or dj = 1 then Rij = 1 and (2) holds.

So we take di ≥ 2 and dj ≥ 2. Consider now all the endpoints of all the other di− 1 edges

stemming out of i and all the dj−1 edges stemming out of j. Short all these. Then we get

two edges in parallel: one with resistance 1 and the other with resistance
1

di − 1
+

1

dj − 1
.

Solving this into a single resistor, and applying the monotonicity principle (see [13]),

finishes the proof •
Now we obtain as a corollary
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Proposition 2 For any G with n ≥ 3 we have

ABC(G) ≤
∑
i∼j

√√√√di + dj − 2

didj − 1
≤

∑
i∼j

√
Rij. (3)

Proof. Obvious •
The middle term in (3) could be thought of as an alternative definition of the ABC

index that we will call ABC∗(G). The rightmost term is the bound, that we will call P ,

from which we will be extracting all the information. As we mentioned above, effective

resistances can be studied from a variety of viewpoints, and given in terms of eigenvalues

of the Laplacian matrix (see also [14]), or of Wiener capacities, or of hitting times of

random walks, and these approaches might lead to new results for the ABC index. In

this note, however, we will concentrate on purely electrical ideas. The first question of

interest is: how small can P be? We answer that question in the next

Proposition 3 For any G we have

P ≥ n− 1. (4)

Proof. It is well known that in a simple connected graph, if i ∼ j then 2
n
≤ Rij ≤ 1 and

therefore

P =
∑
i∼j

√
Rij ≥

∑
i∼j

Rij = n− 1,

where the last equality is Foster’s first formula (see [15]) •
It is evident that this lower value for P is attained by all trees. The next question is:

how large can P be and how good can it be to bound ABC(G)? This is answered in the

next

Proposition 4 For any graph G with n ≥ 3 we have

ABC(G) ≤ ABC∗(G) ≤
√
|E|(n− 1) ≤

√
n(n− 1)√

2
. (5)

Proof. The Cauchy Schwarz inequality tells us that

P 2 =

⎛⎝∑
i∼j

√
Rij

⎞⎠2

≤
∑
i∼j

1
∑
i∼j

Rij = |E|(n− 1),

where the last equality uses Foster’s first formula •
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Notice that the inequality P ≤
√
|E|(n− 1) becomes an equality whenever the graph

is edge transitive, in which case all the edges have the same resistance
n− 1

|E| . Now for the

star graph Sn it is easy to compute ABC∗(Sn) = n−1 and ABC(Sn) =
√
(n− 1)(n− 2),

so the middle inequality in (5) shows that Sn is maximal among trees for ABC∗ and

asymptotically maximal for ABC, because for trees
√
|E|(n− 1) = n−1. For the complete

graph Kn it is easily seen that ABC∗(Kn) =
n
√
n− 1√
2

and ABC(Kn) =
n
√
n− 2√
2

, so the

rightmost inequality in (5) shows that Kn is asymptotically maximal for both ABC and

ABC∗.

Even though the bounds in (5) are easy to prove and give the right order of magnitude

of the maximal tree and maximal general graph for the descriptor ABC, up to the constant

coefficient, they are weaker than the exact known results of maximality for this descriptor

given in [9] for trees and in [10] for general graphs. The more useful inequality in (5) is

the middle one that enables us to prove better results, when the graph is not a tree, than

the naive bound ABC(G) ≤ |E| valid for all graphs. Thus for example the following two

propositions provide bounds with little effort, that do not seem to be obtainable easily

from the direct application of the definition (1).

Proposition 5 If G is c-cyclic, c ≥ 0, and n ≥ 3, then

ABC(G) ≤ ABC∗(G) ≤
√
(n− 1 + c)(n− 1). (6)

Proof. Use in (5) that |E| = n− 1 + c •

Proposition 6 If G is planar and n ≥ 3 then

ABC(G) ≤ ABC∗(G) ≤
√
3(n− 1)(n− 2). (7)

Proof. It is well known that for a planar graph |E| ≤ 3(n− 2). Use this in (5) •
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