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Abstract 

The atom-bond connectivity (ABC) index of a graph ( , )G V E�  is defined as 

( ) [ ( ) ( ) 2] / [ ( ) ( )]
i j

i j i jv v E
ABC G d v d v d v d v

�
� � �� , where ( )id v  denotes the degree of vertex 

iv  of G . This recently introduced molecular structure descriptor found interesting applications in 
chemistry. However, the problem of characterizing trees with minimal ABC index remains open. In 
attempts to guess the general structure of such trees, some computer search algorithms were developed. 
Dimitrov [Appl. Math. Comput. 224 (2013)] presented an algorithm based on tree degree sequences. In 
this paper we improve this algorithm. Our algorithm generates only less than 2% tree degree 
sequences, and can find all the n -vertex tree(s) with minimal ABC index for 350n �  within 8 days. 
Our search results support Dimitrov’s "modulo 7 conjecture" concerning trees with minimal ABC 
index, and disprove a conjecture we proposed before.  

1. Introduction and notations 

We consider non-trivial connected simple graphs only. Such a graph will be denoted by 

( , )G V E� , where 0 1 1{ , , , }nV v v v �� , }1  and ( )E E G�  are the vertex set and edge set of G , 

respectively. Let ( )id v  denote the degree of vertex iv , and ( )G� � �  the maximum degree of 

G . 0 1 1( ) ( ( ), ( ), , ( ))nG d v d v d v �� )1d(  is called the degree sequence of G . 
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Given a positive integer sequence 0 1 1( , , , )nd d d �� )1d , if there exists a connected simple 

graph G  with ( )G  � , then   is said to be a (graphic) degree sequence. In particular, if G  

is a tree, then   is called a tree degree sequence. Let ( ) { |T T �TT  is a tree and ( ) }T  � . 

A path 0 1 kP u u u� ku  of length k  ( 1k 
 ) in graph G  with 0( ) 3d u 
  is said to be a pendent 

path of G , if 1 2 1( ) ( ) ( ) 2kd u d u d u �� � � �((d((((  and ( ) 1kd u � . The length of a longest path of 

G  is called the diameter of G . 

Molecular descriptors have found a wide application in QSPR/QSAR studies [1]. One of 

the best known is the Randić index introduced in 1975 by Randić [2], who has shown this 

index to reflect molecular branching. However, many physic-chemical properties are 

dependent on factors rather different than branching. In order to take this into account but at 

the same time to keep the spirit of the Randić index, in 1998 Estrada et al. [3] proposed the 

atom-bond connectivity (ABC) index. The ABC index of graph ( , )G V E�  is defined as 

( ) [ ( ) ( ) 2] / [ ( ) ( )]
i j

i j i jv v E
ABC G d v d v d v d v

�
� � �� .  

In the last few years there is an increased interest in the mathematical properties of the ABC 

index (See [4-20]). However, the problem of characterizing n -vertex tree(s) with minimal 

ABC index remains open. 

In attempts to guess the general structure of n -vertex tree(s) with minimal ABC index, 

Gutman et al. [21] carried out a brute-force computer search, which consists of two successive 

steps: (1) Generate all the n -vertex trees using a recursive scheme, and (2) compute the ABC 

index of each generated tree in order to find its minimum value. Due to the rapidly increases 

of the number of n -vertex trees with n , the search, even with the second step parallelized, is 

not feasible for 32n 
 . Hence, with Conjecture 1.1, an uncompleted search was tested up to 

700n �  [22]. 

Conjecture 1.1 [22]. (a) The n -vertex ( 10n 
 ) tree(s) with minimal ABC index has a single 

high-degree vertex, 0v . (b) To the vertex 0v  only branches with 2, 5, 7, 8, 9, or 11 vertices are 

attached.  

However, Conjecture 1.1 is not always valid. For example, one can refer to [17] for a 312-

vertex counter-example. Dimitrov [23] presented a novel computer search algorithm based on 

tree degree sequences, which can find all n -vertex tree (s) with minimal ABC index for 

300n �  on a single processor platform in about 15 days. 
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In this paper, we improve Dimitrov’s algorithm, and find all n -vertex tree(s) with minimal 

ABC index for 350n � . By considering some features of tree degree sequences of trees with 

minimal ABC index, our algorithm generates only less than 2% tree degree sequences. 

Before present our algorithm, we firstly introduce some notations and results from integer 

partition theory, which will help us to explain the superiority of our algorithm. 

An integer partition (having k  parts) of a positive integer m  is a representation of m  as a 

sum of ( k ) positive integers, say 0 1 1km d d d �� � � � 1kdk  ( 1k 
 ). The summands 0 1 1, , , kd d d �1kdk  

are called the parts of the partition. If 0 1 1kd d d �
 
 
 1kdk , then the partition is said to be in 

standard form, and can be written as a sequence, i.e., 0 1 1( , , , )kd d d � )1d . ( , )P m k  will denote 

the set of all integer partitions of m  having k  parts, 
1

( ) ( , )m

k
P m P m k

�
�

1
( , )

1

m

k
( ,( ,

�
,  

0 1 1 0( ) {( , , , ) ( ) | , 1, , 1,1 }d k iP m d d d P m d d d i k k m�� � � 
 � � � �, 1, , 1,1 }1 01d d d d k k, ) ( ) | , 1, , 1,1) ( ) | , 1, , 1,11 011, ) ( ) | , 1, , 1,1) ( ) | , 1, , 1,1( ) | , 1, , 1,1, ) ( ) |) ( ) |) ( ) |( ) |1 011 , and 

0 1 1( , ) {( , , , ) ( , ) | , 0,1, , 1}d k iP m k d d d P m k d d i k
 �� � 
 � �, 0,1, , 1}) ( , ) |1d k d d k) ( , ) | , 0,1, ,) ( , ) | , 0,1,) ( , ) |1, ) ( , ) | , 0,1, ,) ( , ) | , 0,1,( , ) | ,, ) ( , ) |) ( , ) |) ( , ) |1 . Let ( , ) ( , )p m k P m k� , 

( ) ( )p m P m� , ( ) ( )d dp m P m� , and ( , ) ( , )d dp m k P m k
 
� . Note that, it is defined that 

(0) (0,0) 1p p� � , and ( ,0) 0p m �  for all 1m 
 . 

Lemma 1.2. 

(1) 0 1 0 1( , , ) ( , ) ( 1, , 1) ( ( 1), )k d kd d P m k d d d d P m k d k� 
 �� ! � � � � � � �) (1 0 1d k d d d d k) ( ) ( 1 1) () ( ) ( 1 1) ()11 00011 ) (1( , ) ( 1, , 1) (( , ) ( 1, , 1) (( , ) ( 1, , 1) (1( ) ( 1( ) ( 1( ) ( 1( ) ( 0000000000000 . 

(2) For fixed 1k 
 , ( , )p m k  strictly increases with m k
 . 

Proof. (1) Immediate from the definitions of ( , )dP m k
  and ( , )P m k . 

(2) Let : ( , ) ( 1, )P m k P m k" # �  such that � �0 1 1 0 1 1( , , , ) ( 1, , , )k kd d d d d d" � �� �� 1)1 0 11 0 1�1 0 10 11 0 1�d d d d�) ( 1) ( 1�) 1�1 0 10 10 1�1 0 10 1� ((( 0  for each 

0 1 1( , , , ) ( , )kd d d P m k� �)1d, )1 . Then it is easily seen that, "  is injective but not surjective. The 

conclusion follows.                                                                                                                     ■ 

Lemma 1.3 [24]. ( , ) ( )dp m d p m� . 

Lemma 1.4. If 2m d� , then ( ) ( )dp m p m d� � . 

Proof. If m d$ , ( ) ( ) 0dp m p m d� � � , and if m d� , ( ) ( ) 1dp m p m d� � � . Hence assume 

m d% , namely 0 m d d$ � � . Let : ( ) ( )dP m P m d" # �  such that 

� �1 1 1 1( , , , ) ( , , )k kd d d d d" � ��� 1)11 11 1�1 111 1�d d d�) () (�) (�1 111�1 11�  for each 1 1( , , , ) ( )k dd d d P m� �)1d ))1 . It is easily seen that,  "  is 

a bijection, and the conclusion holds.                                                                                         ■ 
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Lemma 1.5. � �2

2( ) ( )mp m p% � &� '  if 2m 
 . 

Proof. 22 mm � � &� '  if m  is even, and 21 2 mm� � � &� '  if m  is odd. From Lemma 1.2 (2), it is 

sufficient to show the case m  is even. Then the conclusion follows from the facts that, 

2 2( ) ( ) ( )m mP P P m( )� & � &� ' � '  and partition 2 2( ) ( ) ( ) ( )m mm P m P P� � (� & � &� ' � ' .                                    ■ 

Lemma 1.6 [24]. 2 /3( ) ( / )mp m e m � * . 

One may refer to [24] for more details of integer partition theory, as well as the algorithm 

(Algorithm 3.7: PARTITIONLEXSUCCESSOR) which will be used in our algorithm to 

generate the partitions of ( , )P m k . 

 

2. Computer search algorithms based on tree degree sequences 

Definition 2.1 [25]. Suppose that the degrees of the non-leaf vertices are given, the greedy 

tree is achieved by the following ‘greedy algorithm’: 

(i) Label the vertex with the largest degree as v  (the root); 

(ii) Label the neighbors of v  as 1 2, ,v v , assign the largest degree available to them such 

that 1 2( ) ( )d v d v
 
 ; 

(iii) Label the neighbors of 1v  (except v ) as 11 12, ,v v  such that they take all the largest 

degrees available and that 11 12( ) ( )d v d v
 
 ; 

(iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of the 

labeled vertex with largest degree whose neighbors are not labeled yet. 

Lemma 2.2 [13,14,16]. Given the degree sequence  , the greedy tree *( )T   minimizes the 

ABC index in ( ) TT . 

Dimitrov’s algorithm [23] consists of the following three successive steps: 

(1) Generate all tree degree sequences (recursively);  

(2) Find corresponding greedy tree *( )T   for each generated degree sequence  ;  

(3) Calculate *( ( ))ABC T   and select the tree(s) with minimal value. 
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This approach was proven to be computationally superior to the brute-force search [21], 

mainly because it avoids generating and storing all trees. Moreover, by considering some 

known structural features (summarized in Lemma 2.3) of trees with minimal ABC index, the 

number of tree degree sequences have to be generated is significantly reduced. 

Lemma 2.3 [15]. If 10n 
  and T  is an n -vertex tree with minimal ABC index, then each 

pendent path of T  is of length 2 or 3, and T  contains at most one pendent path of length 3. 

Our algorithm is similar to Dimitrov’s, but generates much less and shorter sequences. To 

accomplish this, the following results will be used. For convenience, we say a non-increasing 

positive integer sequence 0 1 1( , , , )nd d d �� )1d  is optimal, if it is the degree sequence of an n -

vertex tree with minimal ABC index. 

Lemma 2.4 [19]. Let T  be a tree with minimal ABC index, and d  an integer with 

0 1d� � �� . Then the subgraph induced by the vertices of T whose degrees are greater than 

d  is also a tree. In particular, the subgraph induced by the vertices of degree �  is also a tree. 

Theorem 2.5. Let 10n 
 , and 0 1 1 1( , , , , , , )t t nd d d d d � �� )1d d d11111111  ( 3td 
 and 1 2td � � ) is optimal. 

Let in  denotes the number of i ’s in  . Then 7
31 nt �� � � &� ' , 1

1 2
n tn � �� � &� ' , and 1

2 2
n tn � �� � +� & . 

Proof. Let ( )T  �TT  with minimal ABC index. From Lemmas 2.3 and 2.4, it is easily seen 

that, 2 1n n� or 1 1n � . On the other hand, by counting the number of vertices of  T , we have 

1 21 t n n n� � � � . Hence 1
1 2

n tn � �� � &� '  and 1
2 2

n tn � �� � +� & . It remains to show 7
31 nt �� � � &� ' . 

By counting the sum of the degree of the vertices of T , we have 1 22 2 3( 1) 2n t n n� 
 � � � . 

Hence 1 1 1
2 2 22 2 3( 1) 2 3( 1) 3n t n t n tn t t� � � � � �� 
 � � � 
 � �� & � +� ' � & , and 7

3
nt �� � &� ' . 1t 
  holds from 

Lemma 4.2 of [15]. The proof is thus completed.                                                                      ■ 

    We call a non-increasing positive integer sequence 0 1 1 1( , , , , , , )t t nd d d d d � �� )1d d d11111111  where 

3td 
 and 1 2td � �  is candidate, if   satisfies the conditions of Theorem 2.5. Let 

0 1( , , , )td d d � , )d, , 0 1( 2, 2, , 2)td d d � � � �( 0 20d 2 � ( 2 , 2),d , and 1 1
2 20

2 2 2t n t n t
t ii

D d n � � � �
�

� � � � �� & � +� ' � &� . 

From Theorem 2.5 and Lemma 1.2 (1), it is easily seen that,   is optimal  ,  is candidate 

3( , 1)tP D t 
! � � ( 2 2, 1)tP D t t ! � � � �((P(� (P( . Hence, in order to identify the n -vertex tree(s) 

( 10n 
 ) with minimal ABC index, instead of generating all the tree degrees, it is sufficient to 

generate the candidate ones only, or equivalently, to generate all the  ’s derived from 
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3( , 1)tP D t 
� �  or ( 2 2, 1)tP D t t � � � �(P( �P(  for each t : 7
31 nt �� � � &� ' . Thus our algorithm 

consists of the following three successive steps: 

Step 1. Generate all 3( , 1)tP D t 
� �  (or ( 2 2, 1)tP D t t � � � �(P( �P( ) for each t : 7
31 nt �� � � &� ' ; 

Step 2. For each   (or   ) compute *( ( ))ABC T   to find its minimum value; 

Step 3. Output all the trees with degree sequence  satisfying  *( ( ))ABC T   is minimum. 

For fixed 10n 
 , the number of candidate tree degree sequences of length n , denoted by 

( )cS n , is exactly 
7

3

1
( 2 2, 1)

n

tt
p D t t

�� &� '
�

� � �� , which is much less than ( ) (2 2, )S n p n n� � , the 

number of tree degree sequence of length n . Table 1. shows the ratios ( ) ( ) / ( )cr n S n S n�  for 

some n ’s: 21 140n� � . In fact, we have the following result: 

Theorem 2.6. lim ( ) 0
n

r n
#�-

� , and ( ) 2%r n �  if 23n 
 . 

Proof. Since 7
31 nt �� � � &� ' , it is easily to verify that, 

1 1 1 1
2 2 2 2 22 2 2 2 2 2 2 2 4 3 2 ( 5) 1n t n t n t n

tD t n t n t n t� � � � � �� � � � � � � � � � � � � � � $ �� & � + � &� ' � & � ' . 

Hence 
7

3 2 1
2 21 1

( ) ( 2 2, 1) ( 1, ) ( 1)
n n

n n
c tt k

S n p D t t p k p
�� & � &�� ' � '
� �

� � � � $ � � �� & � &� ' � '� �  from Lemma 1.2 

(2). On the other hand, from Lemmas 1.3-1.5, we have 

� �2

2( ) (2 2, ) (2 2) ( 2) ( 1)n
nS n p n n p n p n p� � � � � � % �� &� ' . 

Thus, 2( ) 1/ ( 1)nr n p$ �� &� ' , and lim ( ) 0
n

r n
#�-

�  from Lemma 1.6. 

It is easy to verify that, (23) 15 / 792 2%r � $ , and ( ) 1/ (11) 1/ 55 2%r n p$ � $  if 24n 
 .  

The proof is thus completed.                                                                                                  ■ 

Comparing with Dimitrov’s algorithm, ours have two advantages, one is, we generate much 

less and shorter sequences, the other is, the generation of sequences can be easily parallelized. 

To test our algorithm, we implemented two C programs: Program 1. single-threaded, and 

Program 2. 7
3

n�� &� ' -threaded, a thread for each t : 7
31 nt �� � � &� ' . Program 1 run on Platform 1 

(Intel Pentium Dual E2220 @ 2.4 GHz processor with 2.4 GHz, 2 GB RAM), and cost 75.5 

hours for computation for 30 300n� � . Program 2 run on Intel Xeon CPU E5-2403 @1.80 

GHz (2 processors, 8 cores) with 32.0 GB RAM, and cost 107.8 hours for 
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computing 301 350n� � . Note that, our Platform 1 is almost equal to the test platform of 

Dimitrov, Intel i5 @2.3 GHz processor with 4 GB RAM. We shortened the running time from 

about 15 days to 75.5 hours for 300n � . However, to conduct a complete search for larger n  

(e.g., 500n 
 ) needs a better algorithm, implementation, or test platform. In fact, it is not 

wise to run a program with too many threads on a single workstation or server, but much 

better performance of Program 2 can be expected if we run it on a computer cluster. We leave 

it a task in the future. 

Table 1. The ratios ( ) ( ) / ( )cr n S n S n�  for some n ’s: 21 140n� � . 

n  ( )cS n  ( )S n  ( ) / ( )cS n S n   n  ( )cS n  ( )S n  ( ) / ( )cS n S n  

21 10 490 2.040%  34 73 8349 0.982% 

22 13 627 2.070%  35 83 10143 0.870% 

23 15 792 1.890%  40 155 26015 0.820% 

24 17 1002 1.700%  50 487 147273 0.600% 

25 21 1255 1.670%  60 1389 715220 0.330% 

26 24 1575 1.520%  70 3687 3087735 0.190% 

27 27 1958 1.380%  80 9203 12132164 0.120% 

28 32 2436 1.310%  90 21861 44108109 0.080% 

29 37 3010 1.230%  100 49819 150198136 0.050% 

30 42 3718 1.130%  110 109475 483502844 0.030% 

31 49 4565 1.070%  120 233083 1482074143 0.016% 

32 56 5604 1.000%  130 482626 4351078600 0.011% 

33 63 6842 0.920%  140 974669 12292341831 0.010% 

 

3. Our computer search results 

In short, our search results support the following modulo 7 conjecture, which was initially 

proposed by Gutman and Furtula [22], and modified by Dimitrov [23]. 

Conjecture 3.1 [23]. Let T  be an n -vertex tree with minimal ABC index. 
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(i) If 0(mod7)n �  and 175n 
 , then T  is 0 ( )T n . 

(ii) If 1(mod7)n �  and 64n 
 , then T  is 1( )T n . 

(iii) If 2(mod7)n �  and 1185n 
 , then T  is 2 ( )T n . 

(iv) If 3(mod7)n �  and 80n 
 , then T  is 3( )T n . 

(v) If 4(mod7)n �  and 312n 
 , then T  is 4 ( )T n . 

(vi) If 5(mod7)n �  and 117n 
 , then T  is 5 ( )T n . 

(vii) If 6(mod7)n �  and 62n 
 , then T  is 6 ( )T n . 

Moreover, our search validates that, the tree 4 ( )T n  uniquely minimizes the ABC index of 

n -vertex trees for 312,319,326,333,340,347n � . Hence the following conjecture we 

proposed before is disproved, to which 4 (312)T  is the minimum counter-example. 

Conjecture 3.2 [15]. If 15n 
  and T  is an n -vertex tree with minimal ABC index, then the 

diameter of the subgraph induced by the vertices of T  whose degrees are greater than 2 is 

equal to 2. 

 

Acknowledgments: We would like to thank the referees for their useful suggestions. 
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