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Abstract

The problem of complete characterization of trees with minimal atom-bond con-
nectivity (ABC) index is still an open problem. In [21], a conjecture on the structure
of the trees with minimal ABC index, based on the assumption of existence of a
central vertex, was posed. This conjecture was partially disproved in [1, 2], and sub-
sequently in [12], which led to its modification. Here, we show that for sufficiently
large trees, also the modified version of the conjecture fails in all of its cases. Presented
counterexamples and their analysis suggest new conjectures.
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1 Introduction

Let G = (V,E) be a simple undirected graph of order n = |V | and size m = |E|. For
v ∈ V (G), the degree of v, denoted by d(v), is the number of edges incident to v.

Then the atom-bond connectivity (ABC) index of G is defined as

ABC(G) =
∑

uv∈E(G)

f(u, v),

where f(u, v) =
√
(d(u) + d(v)− 2)/(d(u)d(v)). This vertex-degree-based graph

topological index was proposed in 1998 by Estrada et al. [15], who showed that the

ABC index can be a valuable predictive tool in the study of the heat of formation in

alkanes. Later, the physico-chemical applicability of the ABC index was confirmed

and extended in several studies [14, 24].

The ABC index has attracted a lot of interest in the last several years both in

mathematical and chemical research communities and numerous results and structural

properties of ABC index were established [3–10,13,16,17, 19–23,26,27,29–33].

In [9] it was shown that adding an edge in a graph strictly increases its ABC index

(equivalently, in [4] it was shown that deleting an edge in a graph strictly decreases

its ABC index). From this result, two immediate consequences follow: Firstly, among

all connected graphs with n vertices, the complete graph Kn has maximal value of

ABC index, and secondly, among all connected graphs with n vertices, the graph with

minimal ABC index is a tree.

To show that the star graph Sn is a tree with maximal ABC index is fairly easy [17],

while the complete characterization of trees with minimal ABC index (also refereed

as minimal-ABC trees) is still an open problem. To accomplish that task, besides

the theoretically proven properties of the trees with minimal ABC index, computer

supported search can be of help [12, 18]. The plausible structural computational

model and its refined version presented in [18] is based on the main assumption that

the minimal-ABC tree posses a single central vertex, or said with other words, it is

based on the assumption that the vertices of a minimal-ABC tree of degree ≥ 3 induce

a star graph. Related to this concept, we introduce a notation of a big vertex, that

will be used later in the paper. A vertex is big, if its degree is at least 3 and it is not

adjacent to a vertex of degree 2. The assumption of a central vertex raised a conjecture

of the structural properties of trees with minimal ABC index was proposed [21].
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Also based on the central vertex assumption and some known properties of mini-

mal ABC trees, a new class of trees, so-called Kragujevac trees, was introduced [25].

A Kragujevac tree is a tree that is comprised of a central vertex and Bk-branches,

k ≥ 1 (see Figure 1 for an illustration of Bk-branches). For Kragujevac trees the

conjecture from [21] was answer in affirmative.

B1 B2 B3 B4

k

Bk

Figure 1: Bk-branches. The vertex of a Bk-branch with degree k+ 1 is considered as
the root of the branch.

In [1, 2], and sequentially in [12], counterexamples for the cases n ≡ 2 (mod 7)

and n ≡ 4 (mod 7) to the conjecture in [21] were found (see graphs T2 and T4 in

Figure 2 in this paper). As result of those counterexamples the modified conjecture

was obtained [12]:

Conjecture 1.1. Let G be a tree with minimal ABC index among all trees of size n.

(i) If n ≡ 0 (mod 7) and n ≥ 175, then G has the structure T0 depicted in Figure 2.

(ii) If n ≡ 1 (mod 7) and n ≥ 64, then G has the structure T1 depicted in Figure 2.

(iii) If n ≡ 2 (mod 7) and n ≥ 1185, then G has the structure T2 depicted in Fig-

ure 2.

(iv) If n ≡ 3 (mod 7) and n ≥ 80, then G has the structure T3 depicted in Figure 2.

(v) If n ≡ 4 (mod 7) and n ≥ 312, then G has the structure T4 depicted in Figure 2.

(vi) If n ≡ 5 (mod 7) and n ≥ 117, then G has the structure T5 depicted in Figure 2.

(vii) If n ≡ 6 (mod 7) and n ≥ 62, then G has the structure T6 depicted in Figure 2.

Note that except for n ≡ 4 (mod 7), in all other cases of Conjecture 1.1 the

assumption of the existence of a central vertex is supported. In the next section, we

present counterexamples for all cases of Conjecture 1.1 with more than one central

vertex.
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Figure 2: Types of trees with minimal ABC index that correspond to Conjecture 1.1.

2 Counterexamples to Conjecture 1.1

The counterexamples presented in this section (see Figure 3) not only shattered the

conjecture of existence of a central vertex, as it did the example in [1, 12], but they

also show that the minimal-ABC trees may have more than two central vertices.

We would like to stress that, the second central vertex from the counterexample

from [1, 12], graph T4 in Figure 2, is of degree 4, while here we present trees with

smaller values of ABC-index than in Conjecture 1.1 with degrees of central vertices of

order O(n). Also, we present counterexamples that have smaller ABC-index than the
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Hi

xi xi

xi

k

Figure 3: Graph Hi, i = 0, 1, . . . , 6 that have smaller ABC-index than its correspond-
ing graph Ti from Conjecture 1.1. For i = 0, 2, 3, 4, 5, 6, k = (i + 6) mod 7, and
k = 7, for i = 1.

two counterexamples for cases n ≡ 2 (mod 7) and n ≡ 4 (mod 7) proposed in [1,2,12]

(graphs T2 and T4 in Figure 2). A brief comparison analysis between the examples

from Conjecture 1.1 and the corresponding counterexamples in Figure 3 follows.

Case n ≡ 0 (mod 7). Let n/7 − 4 = 7x0 − 3. Then, T0 and H0 have same number

of vertices. For x0 ≥ 4, T0 and H0 satisfy the requirements of Conjecture 1.1(i). We

show that H0 has smaller ABC-index than T0, for x ≥ 42. Indeed, the ABC-index of

T0 is

ABC(T0) = 3f(7x0, 5) + (7x0 − 3)f(7x0, 4) + 3 · 4 · f(5, 2) + 3 · 4 · f(2, 1)

+3(7x0 − 3)f(4, 2) + 3(7x0 − 3)f(2, 1),

while the ABC-index of H0 is

ABC(H0) = 6f(x0 + 6, x0 + 1) + x0f(x0 + 6, 4) + 6x0f(x0 + 1, 4)

+3 · 7x0 · f(4, 2) + 3 · 7x0 · f(2, 1).

Evaluating and simplifying the difference of the last two expressions, we obtain

ABC(T0)− ABC(H0) = 3
√
2− 3

2

√
1 +

2

7x
+

3√
35

√
7 +

3

x
− 6

√
5 + 2x

6 + 7x+ x2

−1

2
x

(
−
√
7

√
7 +

2

x
+ 6

√
3 + x

1 + x
+

√
8 + x

6 + x

)
.
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The graph of the function ABC(T0)−ABC(H0) is depicted in Figure 4. For x0 ≥ 2 the

function is monotonically increasing, with limx0→∞(ABC(T0)−ABC(H0)) = 1.08428

and it is positive for every integer at least 42. From here it follows that ever graph

of type H0 is a counterexample to the graph T0 if both are of equal order n ≥ 2065.

200 400 600 800 1000

0.4

0.6

0.8

1.0

1.2

Figure 4: Graph of the function ABC(G0(x0))− ABC(H0(x0)).

Next, we consider the cases n ≡ 1, 2, . . . , 6 (mod 7). Since the explanations for them

are similar with that in the case n ≡ 0 (mod 7), we will omit the complete analysis

and just state the final conclusions.

Case n ≡ 1 (mod 7). In this case consider the graphs T1 and H1. When x1 ≥ 1 and


n/7� = 8x1 + 1, the graphs satisfy Conjecture 1.1(ii). For x1 ≥ 46 (n ≥ 2584), it

follows that ABC(T1) > ABC(H1).

Case n ≡ 2 (mod 7). Consider the graphs T2 andH2. When x2 ≥ 85 and 
n/7�−5 =

2x2−5, the graphs satisfy Conjecture 1.1(iii). We obtain that ABC(T2) > ABC(H2),

for x2 ≥ 49, which corresponds to n ≥ 688.

Case n ≡ 3 (mod 7). The graphs T3 and H3 satisfy Conjecture 1.1(iv), for x3 ≥ 4

and 
n/7� − 1 = 3x2 − 1. For x3 ≥ 43 (n ≥ 906), the relation ABC(T3) > ABC(H3)

holds.

Case n ≡ 4 (mod 7). In this case consider the graphs T4 and H4. When x4 ≥ 11 and


n/7� − 1 = x4 − 1, the graphs satisfy Conjecture 1.1(v). For x4 ≥ 40 (n ≥ 1124), it
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holds that ABC(T4) > ABC(H4).

Case n ≡ 5 (mod 7). Consider now the graphs T5 and H5. When x5 ≥ 4 and


n/7�−2 = x5−2, the graphs satisfy Conjecture 1.1(vi). We obtain that ABC(T5) >

ABC(H5), for x5 ≥ 42 (n ≥ 1475).

Case n ≡ 6 (mod 7). The graphs T6 and H6 satisfy Conjecture 1.1(vii), for x6 ≥ 2

and 
n/7� = x6. Graph H6 is a counterexample to the graph T6, since for x6 ≥ 42

(n ≥ 1770), the relation ABC(T6) > ABC(H6), holds.

3 Further counterexamples

In this section we present trees that for large n have smaller ABC than those presented

in the previous section. Consider the example depicted in Figure 5.

Ji

z − 1 z − 1 z − 1

z

Figure 5: Graph Ji, i = 0, 1, . . . , 6 that for enough big n has smaller ABC-index than
its corresponding graph Hi in Figure 3. The root vertex of Ji has z children vertices,
each of degree z.

It holds that

ABC(Ji) = zf(z, z) + z(z − 1)f(z, 4) + 6z(z − 1)f(2, 1), (1)

for i = 0, 1, . . . , 6. On the other hand,

ABC(Hi) = kf(xi + k, z) + xif(xi + k, 4) + kxif(xi + 1, 4)

+3kxif(4, 2) + 3kxif(4, 2) + 3xif(4, 2) + 3xif(2, 1). (2)

Since we consider graphs of same order n,

n = 7kxi + k + 1 + 7xi = 1 + z + 7z(z − 1), (3)
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and

i = (z + 1) mod 7 = (k + 1) mod 7, (4)

must hold. From (1) and (2), after a simplification, we obtain

ABC(Hi)− ABC(Ji) = 3
√
2(1 + k)xi +

1

2
kxi

√
3 + x

1 + xi

+ k

√
−1 + k + 2x

(1 + xi)(k + xi)

+
1

2
xi

√
1 +

2

k + xi

− 3
√
2(−1 + z)z − 1

2
(−1 + z)z

√
2 + z

z

−z

√
−2 + 2z

z2
. (5)

Considering the constrains (3) and (4), it is easy to determine when the difference

(5) is positive. In the sequel, we summarize those results for each of the seven cases

with respect to n ≡ i (mod 7).

Case n ≡ 0 (mod 7). In this case k = 6 and the difference ABC(H0) − ABC(J0) is

positive for x0 > 541, which corresponds to n ≥ 26537.

Case n ≡ 1 (mod 7). In this k = 7 and the difference ABC(H1) − ABC(J1) is

positive for x1 > 489, which corresponds to n ≥ 27406.

Case n ≡ 2 (mod 7). In this case k = 1 and the difference ABC(H2) − ABC(J2) is

positive for x2 > 1228, which corresponds to n ≥ 17201.

Case n ≡ 3 (mod 7). In this case k = 2 and the difference ABC(H3) − ABC(J3) is

positive for x3 > 852, which corresponds to n ≥ 17902.

Case n ≡ 4 (mod 7). In this case k = 3 and the difference ABC(H4) − ABC(J4) is

positive for x4 > 857, which corresponds to n ≥ 24014.

Case n ≡ 5 (mod 7). In this case k = 4 and the difference ABC(H5) − ABC(J5) is

positive for x5 > 709, which corresponds to n ≥ 24841.

Case n ≡ 6 (mod 7). In this case k = 5 and the difference ABC(H6) − ABC(J6) is

positive for x6 > 611, which corresponds to n ≥ 25682.

From the examples in Figures 3 and 5, one can deduce the following conjectures.

Conjecture 3.1. The big vertices of the minimal ABC-tree induce a star graph.

Conjecture 3.2. After some enough big n beside the big vertices, minimal ABC-trees

have only B3-branches.
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4 A generalization of the example in Figure 5

Note that the counterexamples presented in Figures 3 and 5 are not feasible for every

n. However, those counterexamples can be easily extended for trees of any order.

Such an extension of the construction in Figure 5 is the graph G(n, z) depicted in

Figure 6. For that purpose, in this construction, the B3 branches are divided in

two groups: rl subgraphs of z + 1 B3-branches with common parent vertex, and rr

subgraphs of z B3-branches with common parent vertex.

G(n, z)

z + 1 z + 1

rl

z z

rr

Figure 6: A generalization of the construction in Figure 5.

The ABC index of G(n, z) depends on two variables n and z. Determining the

parameter z for a fixed n, such that G(n, z) has minimal ABC index is done in the

next section.

4.1 Determining the optimal parameters

For a fixed number of vertices n, the so-called Dz-branch (depicted in Figure 7) plays

the main role in the construction of a tree in Figure 6. Using Dz-branches we can

construct only trees with specific number of vertices, n = Nz ∗(1+z∗7)+1, where Nz

is the number of used Dz-branches. So, to construct a tree with an arbitrary number

of vertices we should use other kinds of branches. Our observations show that, in

addition to Dz, we should use only Dz−1 or Dz+1.
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z

Figure 7: Main branch in the structure of minimal ABC-trees, Dz, comprised of z
B3-branches and their common parent vertex.

We can model the structure of trees with minimum ABC-index as below:

minimize Nz−1 ∗ (ABC(c, z) + (z − 1) ∗ ABC(z, 4) + (z − 1) ∗ 6 ∗ ABC(2, 1))

+Nz ∗ (ABC(c, z + 1) + z ∗ ABC(z + 1, 4) + z ∗ 6 ∗ ABC(2, 1))

+Nz+1 ∗ (ABC(c, z + 2) + (z + 1) ∗ ABC(z + 2, 4)

+ (z + 1) ∗ 6 ∗ ABC(2, 1))

subject to n = Nz−1 ∗ (1 + (z − 1) ∗ 7) +Nz ∗ (1 + z ∗ 7)

+Nz+1 ∗ (1 + (z + 1) ∗ 7) + 1

c = Nz +Nz−1 +Nz+1

Nz−1 ∗Nz+1 = 0

z, c, Nz, Nz−1, Nz+1 ∈ Z
≥0.

In this model c is the degree of the central vertex and other variables are as discussed

above. The third constraint shows that Dz+1 and Dz−1 should not occur simulta-

neously and this condition will be satisfied since it has been proved that two Dz

branches will always be better than one Dz−1 and one Dz+1, so Dz−1 and Dz+1 do

not occur simultaneously in the minimum structure. It is necessary to mention that

the first two conditions can be substituted to the objective function, therefore we

can substitute c and Nz easily without lose of generality. So we have to minimize a

function with three non-negative integer variables (z, Nz−1 and Nz+1) and with no

extra condition.

Now, let’s consider the integer conditions. Since Dz is the main branch in an

interval so number of Dz−1 and Dz+1 branches will be as small as possible. For a

fixed z we can find Nz−1 by using the following optimization program:

minimize Nz−1

subject to Nz =
n−Nz−1(1 + 7(z − 1))

1 + 7z
∈ Z

≥0.
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This program indicates that we should use the smallest number of Dz−1 branch

such that Nz (that has been calculated from the first condition in the main program)

become an integer. Since Dz−1 and Dz+1 can not occur simultaneously, here we

suppose that Nz+1 = 0.

Similarly, we can use the following program to find the optimized value for Nz+1:

minimize Nz+1

subject to Nz =
(n−Nz+1(1 + 7(z + 1))

1 + 7z
∈ Z

≥0.

It is easy to show that we can use 7z + 3 of Dz instead of 7z + 1 of Dz+1 and

we can use 7z − 1 of Dz instead of 7z + 1 of Dz−1 with smaller ABC-index. So, for

a fixed z we can conclude that 0 ≤ Nz−1, Nz+1 ≤ 7z. Therefore, each of the above

programs can be easily solved by a simple loop.

In the first program we have considered that Nz+1 = 0 and in the second one we

have Nz+1 = 0 and we have constructed two different structures. So, after solving

each of the above programs we should compare these two structures and figure out

which one is better and use that one to solve the main program. Since for a fixed z

we can find N∗
z , N

∗
z+1 and N∗

z−1, we have to solve a minimization program with only

one variable, z.

The optimum value of z in this program, z∗, increases with respect to n and

when we solve this minimization program without considering the integer conditions

for infinitely large n, we have z∗ = 51.89. So we can conclude that z∗ ≤ 52 by

considering the integer conditions.

Therefore, the three variables of the main program are bounded and the program

can be solved by three simple loops in O(1) time for every n. A pseudocode for solving

this program is given next.
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Alg. 1 OptimalParameters(n). An algorithm for calculating the optimal parameters,
with respect to the minimal ABC index, of trees of the type depicted in Figure 6.

Input: An order n of a tree
Output: The optimal parameters with respect to the minimal ABC index

1: min-ABC := ∞
2: for z ≤ 52 do
3: for Nz−1 ≤ 7z do

4: Nz :=
n−Nz−1(1 + 7(z − 1))

1 + 7z
5 if Nz is an integer then
6: goto 9
7 end if
8 end for
9: ABC1 := ABC-index of the structure with z, Nz, Nz−1 and Nz+1 = 0
10: for Nz+1 ≤ 7z do

11: Nz :=
(n−Nz+1(1 + 7(z + 1))

1 + 7z
12: if Nz is an integer then
13: goto 16
14: end if
15 end for
16: ABC2 := ABC-index of the structure with z, Nz, Nz+1 and Nz−1 = 0
17: if ABC1 or ABC2 is less than min-ABC then
18: Update min-ABC, z∗, N∗

z , N
∗
z−1 and N∗

z+1

19: end if
20: end for
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