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Abstract: For the structural characterization of a connected graph G with n vertices and m edges two 
novel graph irregularity measures are introduced, they are defined as IRM1(G)=M1(G)-4m2/n and 
IRM2(G)=M2(G)-4m3/n2 where M1(G) and M2(G) are the first and second Zagreb indices of graph G, 
respectively. For irregularity indices IRM1(G) and IRM2(G) of trees, unicyclic, bicyclic and tricyclic 
graphs,  upper bounds as a function of vertex number n are given. Moreover, it has been proved, that if 
the Zagreb indices inequality M2(G)/m ≥ M1G)/n  is fulfilled for a connected graph G, then the relation 
IRM2(G)/m ≥ IRM1G)/n holds for G,  as well. Tests performed on the sets of dual graphs of C66 
fullerene isomers verified that the topological invariant IRM2 has a good discriminatory power and can 
be successfully applicable to the stability prediction of fullerenes.  

 

1. Introduction 

Let G=G(V,E) be a simple connected graph with  finite vertex set V and edge set E, and 
denote by n= V and m= E  the number of vertices and edges,  respectively. Using the standard 

terminology in graph theory, we refer the reader to [41]. The degree d(u) of the vertex u is the 
number of the edges incident to u. Denote by ni the number of vertices of degree i for 
i=1,2,..,n-1. The edge of the graph G connecting the vertices u and v is denoted by uv.   

                                                           
1 Corresponding author. E-mail: reti.tamas@bgk.uni-obuda.hu 

                          
MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 72 (2014) 669-683 

                                          ISSN 0340 - 6253  

 



 
 

Let Δ=Δ(G) and δ=δ(G) be the maximum and the minimum degrees, respectively, of vertices 
of G. A graph is called regular, if all its vertices have the same degree. The average degree of 
a graph G is [d] = [d(G)] =2m/n.  A connected graph G is said to be bidegreed with degrees Δ 
and δ (Δ >δ≥1), if at least one vertex of G has degree �  and at least one vertex has degree δ, 
and if no vertex of G has degree different from Δ or δ. A connected bidegreed bipartite graph 
is called semiregular if each vertex in the same part of a bipartition has the same degree. 

 
 Let gn,m denote the family of connected graphs on n vertices and m edges, and let gn be 
the class of connected graphs of order n. We shall consider three subclasses of gn: 1

ng , 2
ng  and 

3
ng ,   which denote the sets of connected unicyclic, bicyclic and tricyclic graphs, respectively. 

Note that any graph in 1
ng contains a unique cycle and it has n edges and every graph in 2

ng  

contains two linearly independent cycles, having  n+1 edges and that any graph in 3
ng  contains 

three linearly independent cycles, having n+2 edges. Any n-vertex connected graph without  
cycles is a tree with n-1edges. The girth of G is the length of a shortest cycle contained in G. 
Let d(u,v) be the length of a shortest path connecting vertices u and v.  

 
The first Zagreb index M1(G) and the second Zagreb index M2(G) of a graph G are defined as 
[20,21,29,36]: 

 )u(d)G(MM
)G(Vu

2
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�
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�
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22 )v(d)u(d)G(MM .   

Conjecture 1 [23] It has been conjectured that for all simple graphs G with n vertices and m 
edges the so-called Zagreb indices inequality holds, that is,  

 

 
m

)G(M
n

)G(M 21 � ,  

is fulfilled.  
 

It has been verified that the Zagreb indices inequality is true for a broad class of connected 
graphs: for chemical graphs with maximum degree four, bidegreed graphs, unicyclic graphs, 
threshold graphs, graphs with vertex degrees in any interval of length three [1,2,23-
27,35,38,40].  

Moreover, the bound is tight and is attained if G is a regular or semiregular graph [1,20,21, 
27]. It was also shown that there are infinitely many connected graphs, that neither regular nor 
semiregular, which satisfy the Zagreb indices equality [1]. 
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The Zagreb indices inequality does not hold for general graphs, for example, counter 
examples are given for connected bicyclic and tricyclic graphs [2,27]. 

 

2. Zagreb indices based irregularity indices 

In what follows, we define two Zagreb indices based graph irregularity indices. For that 
purpose, we need the following Lemma: 

Lemma 1 [25] Let G be a connected graph. Then M1(G)≥4m2/n and M2(G)≥4m3/n2 with  
equalities if and only if G is a regular graph. 

In an analogy with the first and second Zagreb indices, we define the first IRM1(G) and the 
second  IRM2(G)  Zagreb irregularity indices as follows: 

    
n
m4)G(M)G(IRM

2

11 �� ,  

    
2

3

22 n
m4)G(M)G(IRM �� .  

 

From Lemma 1 we can conclude that IRM1(G) and IRM2(G) are non-negative numbers and 
IRM1(G) = IRM2(G)=0 if and only if G is regular. 

Denote by�2
)m,n(  the maximum value of M1(G), where G is a connected graph with n 

vertices and m edges, that is � 	� ��
2 m,n1 gG)G(Mmax)m,n( . 

Lemma 2 [4] If G is a connected graph on n vertices and m edges such that 

�� 21 )m,n()G(M , then G contains a vertex of degree n-1.  

Sometimes, a vertex u with degree n-1 is called a universal vertex. There are several 
connected graphs (stars, wheel graphs, windmill graphs, threshold graphs) which contain 
universal vertices. To select the graphs with a maximum IRM1 index, by using a computer 
search, according to Lemma 2, it is enough to consider only the graphs having universal 
vertices.  

 

Two other closely related measures of graph irregularity are the variance of degree of graph 
VAR(G) and the Collatz-Sinogowitz index CS(G), which are defined as [6, 7, 22, 30]: 

   0
n
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where ρ(G) is the spectral radius of graph G. In both cases, equality holds if and only if G is a 
regular graph. The invariant VAR(G) belongs to the family of degree-based topological 
indices, which are studied and applied in the mathematical chemistry [15-19,22, 30]. The 
papers [22, 30] report comparative tests of the irregularity measures VAR(G) and CS(G). 

 
Lemma 3 [30] Let G be a connected graph, then 
 

  4 2 )G(VARn)G(CS
m22

)G(VAR
�� .  

 
References [37,44] are concerned with vertex degree distributions in unicyclic, bicyclic and 
tricyclic graphs. The following results will be useful in finding extremal graphs and upper 
bounds for irregularity indices over such graphs. 

A sequence d1 ≥ d2 ≥.... ≥ dn is called the degree sequence of a graph G if there exists a 
labeling  

{v1, v2,...,vn} of vertices of G such that  d1=d(v1),  d2 =d(v2),…, dn =d(vn).  

Lemma 4 [37] Let n ≥3 be an arbitrary positive integer.  The integers  d1 ≥ d2 ≥.... ≥ dn ≥1 are 
the degrees of the vertices of a unicyclic graph if and only if their sum is equal to 2n and at 
least three of them are greater or equal to 2. 

Lemma 5 [37] Let n ≥4 be an arbitrary positive integer.  The integers  d1 ≥ d2 ≥.... ≥ dn ≥1 are 
the degrees of the vertices of a bicyclic graph if and only if their sum is equal to 2n+2 and at 
least four of them are greater or equal to 2 and d1 ≤ n – 1. 

Lemma 6 [44] Let n ≥4 be an arbitrary positive integer.  Let the integers  n-1 ≥ d1 ≥ d2 ≥.... ≥ 
dn ≥1 be the degrees of the vertices of a tricyclic graph if and only if their sum is equal to 
2n+4 and at least four of them are greater or equal to 2 and for sufficiently large n, (d1, d2,..., 

dn ) �  
�
�
�

�
�
� �� )1,...,1,2,2,5,1n(),1,...,1,2,3,4,1n( .    

Lemma 7 [28] If G is a connected graph that is neither a tree nor a cycle, then the inequality 
M2(G)-M1(G)≥1 holds. 
 
Lemma 8 [39] For connected graph G, one obtains   

 � �� � .m)1)v(d1)u(d)G(M)G(M
)G(Euv

12 ����� �
�
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The following lemma summarizes some properties of IRM1(G) and IRM2(G) irregularity 
indices.  

Lemma 9 Let G be a connected graph with vertex number n and edge number m. Then 
  

 
21n
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�� .    (2) 

 

 
n

)G(IRM
m

)G(IRM
n

)G(M
m

)G(M 1212 ���    (3)  

Proof. The identities (1) and (3) can be obtained from the definitions of IRM1(G) and 
IRM2(G) indices. The inequality (2) follows directly from Eq. (1) and Lemma 3.

As a consequence of Eq. (3), one obtains: 

Theorem 1. Let G be a connected graph for which the Zagreb indices inequality holds. From 
Eq. (3) we have  

n
)G(IRM

m
)G(IRM 12 
       (4) 

with equality, for example,  if G is regular or semiregular. 

 
 
3. Irregularity indices of trees, unicyclic, bicyclic and tricyclic graphs 

In what follows, we determine the extremal values of IRM1(G) and IRM2(G) indices for some 
particular classes of connected graphs (trees, unicyclic, bicyclic, tricyclic graphs) and 
additionally, we provide upper bounds for IRM1(G) and IRM2(G) indices for connected 
graphs with arbitrary vertex and edge numbers.  

 

3.1 Irregularity indices of trees 

It is known that among n-vertex trees, the path Pn and the star Sn have the minimum and 
maximum M1 and M2 Zagreb indices, respectively [11,20]. From this, it follows that among 
n-vertex trees the path Pn and the star Sn have the minimum and maximum IRM1 and IRM2 
indices, respectively.  
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Lemma 10 [45] If T is a tree on n vertices, then M1(T)≤ n(n-1) and  M2(T)≤ (n-1)2 and 
equality holds if and only if T is a star graph Sn. 

From Lemma 10 we get: 

Theorem 2. Let T be a tree with n vertices and m=n-1 edges. Then 

 
n

)1n(4n)1n()T(IRM
2

1
�

���                 (5) 

 
2

3
2

2 n
)1n(4)1n()T(IRM �

���     (6) 

with equality if and only if  T is a star. 

Theorem 3 Let T be an n-vertex chemical tree with maximum degree 4. Then 

 

� �

� ��
�
�
�
�
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�

��

���

�

othewise4n4n2
n
1

)3(mod2nif4n2n2
n
1

)T(IRM

2

2

1
             

and the bounds are sharp for all such n≥2. Equality is attained if and only if either (i) every 
vertex of T is of degree 1 or 4 (in which case n ≡2 (mod 3)), or (ii) one vertex of T has degree 
2 or 3, and all other vertices are of degree 1 or 4.  
 
Proof. The result is the direct consequence of the Theorem 4 in [22], by taking into 
consideration the equality (1).▄ 
 
Example 1 Three extremal chemical tree graphs with vertex number 12 are depicted in Fig.1. 
For them, the maximum value of IRM1 is equal to 59/3=19.6667. 
 

 
 

Figure 1:  All extremal chemical tree graphs for IRM1 when n=12 
 
Theorem 4. Let T be an n-vertex chemical tree with maximum degree 4. Then 
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with equality if and only if (i) every vertex of T is of degree 1 or 4 (in which case n ≡2 (mod 
3)),      or (ii) one vertex of T has degree 2 or 3 and it is adjacent to a single vertex of degree 4, 
while all other vertices are of degree 1 or 4.  
 
Proof. The result follows directly from the Corollary 7 in [17].▄ 
 
Example 2 In Fig. 2 two extremal chemical tree graphs with vertex number 14 are depicted. 
For them, the maximum value of IRM2 is equal to 43.1624. 
 

 

 
 

Figure 2:  Extremal chemical tree graphs for IRM2 when n=14 
 
 
Lemma 11 [35] Let T be a tree with n vertices, m=n-1edges and maximum degree Δ. Then 

   0)T(mM)T(nM 12 �� , 

if T is a star graph, and  

)2)(1()3n(2)T(mM)T(nM 12 ������
�    

otherwise. In the above formula, equality is attained if and only if T is a broom. 

Recall that a broom is a tree obtained from a star with at least two leaves by replacing one of 
its edges with a path having at least two edges. From the Lemma 11 one obtains: 

Theorem 5. Let T be a tree with n vertices, m=n+1edges and maximum degree Δ. Then 

   0n/)T(IRMm/)T(IRM 12 �� , 

if G is a star graph, and  
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otherwise. In the above formula equality holds if and only if T is a broom.                                  

 
3.2  Irregularity indices of unicyclic graphs 
 
In this section, we obtain results of irregularity indices over unicyclic graphs.  
  
Theorem 6. If G is a unicyclic graph, then 6n5n)G(IRM 2

1 ���  and equality holds if and 
only if  G is isomorphic to K1,n-1 + e. 

Proof. Since the sum of degrees in G is equal to 2n by Lemma 4, M1(G) attains its maximum 
on 1

ng  if and only if d1=n-1, d2=d3=2 and d4 =…=dn=1, i.e. G=K1,n-1 + e. Therefore, 

6nn)G(M 2
1 ���  and 6n5n)G(IRM 2

1 ��� .▄ 

 
Theorem 7. [42] If G is a unicyclic graph with n vertices, then 3n4n)G(IRM 2

2 ���  and 
equality holds if and only if G is isomorphic to K1,n-1 + e. Additionally, it has been proved that  
K1,n-1 + e is the unique graph with largest Zagreb index M2 among all unicyclic graphs with n 
vertices.  

From Lemma 7 and Lemma 8, one obtains directly: 
 

Theorem 8. Let G be a connected unicyclic graph that is not a cycle Cn. Then 

 � �� � .
n
1)1)v(d1)u(d

n
11

n
)G(M

n
)G(M

n
)G(IRM

m
)G(IRM

)G(Euv

1212 
�������� �
�

 

It is easy to see that the equality holds for infinitely many connected unicyclic graphs 
obtained by attaching a pendent edge to a cycle Cn on n≥3 vertices. 

 
      
3.3  Irregularity indices of bicyclic graphs 
 
In this section, we obtain results concerning irregularity indices over bicyclic graphs.  
 
Theorem 9. If G is a bicyclic graph, then n/46n5n)G(IRM 2

1 ���� , and equality holds if 
and only if G is isomorphic to K1,n-1 + e + f, where edges e and f meet at a common vertex 
forming two adjacent triangles. (See Fig 3.) 
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Figure 3:  Construction of a bicyclic graph, K1,n-1 + e + f  (case of n=9) 

 
 

Proof. Since the sum of degrees in G is equal to 2n + 2 by Lemma 5, M1(G) attains its 
maximum on 2

ng  if and only if d1=n-1, d2=3, d3=d4=2 and d5 =...= dn=1, i.e. G = K1,n-1 + e + f. 

Therefore, 14nn)G(M 2
1 ���  and n/46n5n)G(IRM 2

1 ���� .▄ 

Theorem 10.[12] Let G be an n-vertex bicyclic graph. Then 
22

2 n/4n/123n2n)G(IRM ����� , and equality holds if and only if G is isomorphic to K1,n-

1 + e + f. Moreover, it has been proved that K1,n-1 + e + f is the unique graph with largest 
Zagreb index M2  among all bicyclic graphs with  n vertices. 

 
3.4  Irregularity indices of tricyclic graphs 
 
In this section, we obtain results of irregularity index IRM1(G) over tricyclic graphs.  
 

Theorem 11. If G is a tricyclic n-vertex graph, then n/168n5n)G(IRM 2
1 ���� , and 

equality holds only in two cases, that is for two different graphs denoted by Ha and Hb ( See 
Fig 4.): 

 
 

Figure 4:   Construction of extremal tricyclic graphs Ha and Hb with two different methods 
 
 
Proof. Since the sum of degrees in G is equal to 2n + 4 by Lemma 6, M1(G) attains its 
maximum on  3

ng  if and only if d1=n-1, d2=d3=d4=3 and d5 =...= dn=1, or d1=n-1, d2=4, d3 = d4 
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= d5 =2 and d6=...= dn = 1. Therefore, 24nn)G(M 2
1 ���  and 

n/168n5n)G(IRM 2
1 ���� .▄ 

The two versions of the n-vertex extremal graphs (Ha and Hb) can be generated from the graph 
K1,n-1 by adding 3 edges to K1,n-1. 

a) The graph Ha is constructed from a graph  K1,n-1 such that Ha = K1,n-1 + e + f + g , where  e 
and f are two edges with a common vertex, f and g  are two edges with common vertex and e 
and g are two edges with common vertex, so that e, f and g  form a triangle. 
b) The extremal graph Hb is obtained from  K1,n-1 such that Hb = K1,n-1 + e + f + g, but in this 
case the 3 new edges (e,f,g) are added to K1,n-1 such that edges e, f and g will meet at a 
common vertex of degree 4 ( See Fig 4.) ▄ 

 
3.5 Irregularity indices of connected graphs with arbitrary vertex and edge numbers  

In this section, some upper bounds are provided for the irregularity indices of connected 
graphs with arbitrary vertex and edge numbers. 

 

Lemma 12 [8,9,26,45] Let G be a connected graph with n vertices and m edges. Then 

 �
�


�
�
� ��

�
� 2n

1n
m2m)G(M1                                  (7)  

with equality if and only if  G is the complete graph Kn or the star graph Sn.  

Theorem 12. Let G be a connected, non-regular graph with n vertices and m edges. Then 

 
n
m42n

1n
m2m)G(IRM

2
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�
�
� ��

�
�                            (8) 

with equality if and only if  G is a star Sn.  

Corollary 1 If G is a tree graph, from Theorem 12, as a particular case, the inequality (5) can 
be obtained: Let T be a tree graph with n vertices and m=n-1 edges. Then 

n
)1n(4n)1n(

n
m42n

1n
m2m)T(IRM

22

1
�

�����
�


�
�
� ��

�
�           (9) 

with equality if and only if  T is a star Sn . 

Lemma 13. [5,26,45] Let G be a connected graph with n vertices and m edges. Then 

 
2

2 2
1

4
1m2m)G(M ��
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with equality if and only if  G is identical to the complete graph Kn. 

As a consequence of Lemma 13, one obtains: 

Theorem 13. Let G be a connected graph with n vertices and m edges, different from tree 
graphs. Then 

 
2

32

2 n
m4

2
1

4
1m2m)G(IRM ���

�


��
�

�
��� .                     (11) 

Remark 1 Several upper bounds for the second Zagreb index of connected graphs are known 
[5,8,9,26,45]. Comparing these upper bounds, we concluded that the inequality (10) seems to 
be the best choice. It is easy to see that for tree graphs the inequality (6) can be considered a 
better upper bound of IRM2 than the more general inequality represented by Eq. (11). 

 
4. Application: Structural characterization of fullerenes   

According to the traditional definition, fullerenes are all-carbon molecules that are modeled 
by trivalent polyhedra having only pentagonal and hexagonal faces, or simple (3-regular) 
polyhedral graphs. The vertices represent the carbon atoms, the edges correspond to bounds 
between pairs of carbon atoms.  A fullerene (fullerene graph) with k vertices, denoted by Ck 
exists for all even k≥ 20 except k=22, where the number of pentagon is 12, and the number of 
hexagons is k/2-10 [13]. Over the past decade, as a result of intensive research, several 
quantitative methods have been proposed for the structural characterization of fullerenes. 
Primarily, for the prediction of their relative stability, a number of graph theoretical invariants 
(called molecular descriptors) have been defined and studied [14,32,33,34]. 

In what follows, it will be demonstrated that to the topological classification (stability 
ranking) of fullerene isomers, certain appropriately defined irregularity indices can also be 
successfully applicable if we used them for the structural characterization of bidegreed duals 
of fullerene graphs. 

In the set of Ck fullerenes, each isomer has 12 pentagonal faces. Because k is fixed, it follows 
that the dual graphs of isomers ( dual

kC  ) have 12 vertices of degree 5 and k/2 -10 vertices of 
degree 6, exactly. Consequently, by means of IRM1(G) irregularity index, it is not possible to 
discriminate between the graphs (dual graphs) of fullerene isomers having an identical vertex 
number. It has been expected that the irregularity index IRM2(G) is more sensitive to the 
graph structure, and among dual graphs of isomers a better discriminating ability can be 
achieved.   

To test the discriminating power of IRM2 index, for that purpose, the set of C66 isomers has 
been chosen. The number of topologically different C66 isomers is 4478 [32,43] .  
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Simultaneously, based on the Density Functional Tight-Binding (DFTB) method [31] we 
calculated the total energy values TQ characterizing the relative stability of isomers. The most 
stable isomers are characterized by the lowest value of this energy.  

Denoting by )C(V dual
k  and  )C(E dual

k  the number of vertices and edges of dual graphs, for the 

dual graph dual
kC  of a traditional fullerene isomer Ck, the following equalities 

hold: 2/k3)C(E dual
k � , 2/)4k()C(V dual

k ��  and 360Npk54)C(M dual
k2 ��� .   

In the above formula, Np stands for the so-called pentagon adjacency index of a fullerene 
isomer [3,10,13]. This non-negative integer is identical to the total number of edges between 
adjacent pentagons in a fullerene isomer. It is generally supposed that fullerenes which 
minimize NP are more likely to be stable than those that do not [3,10]. For simplicity, let us 
denote by IRMd the irregularity index of a dual fullerene graph dual

kC . Using the above 
formulas, for a traditional k-vertex fullerene isomer Ck, one obtains: 

2

3
dual
k22dual

k

3dual
kdual

k2
dual
k2 )4k(

k54)C(M
)C(V

)C(E4
)C(M)C(IRMIRMd

�
����� , 

This implies that  

 
2

3

)4k(
k54360Npk54IRMd
�

���� .   

As can be seen, for a fixed vertex number k, the irregularity index IRMd can be computed 
as an increasing linear function of Np. That means that for classical fullerenes the 
discriminating power of IRMd and Np is considered to be equivalent. In Figure 5, the 
variation of tight binding total energy (TQ) with IRMd index in C66 fullerene isomers is 
depicted. 

 

Figure 5: Relation between the tight binding total energy and the IRMd irregularity index 
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As can be observed, the 4478 isomers form 14 well-separated clusters in the figure. They 
correspond to the isomer subsets having identical pentagon adjacency indices Np. 
Consequently, the first cluster represents the most stable 3 isomers, namely C66:4169, 
C66:4348 and C66:4466 with Np=2. This finding is compatible with the theoretical 
computational results in [31,43]. There are no isomers corresponding to Np=15. The last 
cluster belongs to the lonely, “least stable” isomer C66:1 characterized by the maximum 
pentagon adjacency index (Np=16).  

As we can conclude, IRMd can be considered as a quantitative measure of the structural 
heterogeneity of fullerene isomers, because IRMd characterizes the irregularity in the local 
arrangement of pentagonal and hexagonal faces. It is worth noting that a particular advantage 
of IRMd index is that its application can be extended to the structural characterization of non-
traditional fullerenes including square and heptagonal faces. 

5. Final remarks 

We determined the maximum IRM2(G) indices for connected graphs with n=4, 5 and 6 
vertices. The results obtained are included in Table 1. 

 

Table 1: Extremal IRM2(G) index for connected graphs with n=4, 5 and 6 vertices 

 

Based on computed results, it is conjectured that among n≥4-vertex connected graphs the 
maximum value of the irregularity index IRM2(G) belongs to the so-called lollipop graphs Ln 
obtained as by a joining a complete graph Kn-1 to graph P2 with a bridge, (that is Ln= Kn-1+e). 
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