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Abstract

We determine the maximum value of the second Zagreb index among graphs
with given numbers of vertices, edges, minimum and maximum vertex degrees. As
the extremal graphs may happen to be multigraphs, we, in addition, determine trees
with the maximum value of the second Zagreb index among all trees with given num-
ber of vertices and maximum vertex degree. As an application of the latter result,
we answer the question of Ashrafi, Došlić and Hamzeh [MATCH Commun. Math.
Comput. Chem. 65 (2011), 85–92] on the minimum values of Zagreb coindices over
chemical trees.

1 Introduction

Let G = (V,E) be a graph with the vertex set V , n = |V |, and the edge set E, m = |E|.
For a vertex u ∈ V , let du be its degree. The first and the second Zagreb indices, defined

as

M1 = M1(G) =
∑
u∈V

d2u,

M2 = M2(G) =
∑
uv∈E

dudv,
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kind hospitality is gratefully acknowledged.
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are widely studied degree-based topological indices, that were introduced by Gutman and

Trinajstić [1] in 1972. Gutman provides an overview of recent developments among degree-

based topological indices in [2], while further mathematical properties of M1 and M2 are

surveyed in [3, 4]. Although the first Zagreb index has attracted considerable attention in

literature, the second Zagreb index has been much less studied, with some of the earliest

general properties of M2 reported only in 2004 in [5].

Zhou and Gutman [6] presented an upper bound forM1 in terms of n, m, the minimum

vertex degree δ and the maximum vertex degree Δ:

Theorem 1 ([6]) Let G be a graph with n vertices, m edges, the minimum vertex degree

δ ≥ 1, and the maximum vertex degree Δ > δ. Then

M1(G) ≤ 2m(δ +Δ)− nδΔ+ (δ − k)(Δ− k) (1)

where k is the integer defined via

k − δ ≡ 2m− nδ (mod Δ− δ), δ ≤ k ≤ Δ− 1,

i.e.,

k = 2m− δ(n− 1)− (Δ− δ)

⌊
2m− nδ

Δ− δ

⌋
.

Equality in (1) is attained if and only if at most one vertex of G has degree different from

Δ and δ.

Our main goal here is to provide an analogous bound for M2 in terms of n, m, δ and Δ.

This new bound is proved and discussed in Section 2. As the extremal graphs may happen

to be multigraphs, as pointed out in Subsection 2.1, we, in addition, determine trees with

the maximum value of M2 among trees with given n and Δ in Subsection 2.2. As an

application of these results, we resolve a question of Ashrafi, Došlić and Hamzeh [7] on

the minimum values of Zagreb coindices over chemical trees in Section 3.

2 Upper bound for the second Zagreb index

Here we prove the following upper bound on M2 for general values of n, m, δ and Δ.

Theorem 2 Let G be a graph with n vertices, m edges, the minimum vertex degree δ ≥ 1

and the maximum vertex degree Δ > δ + 1. Then

M2 ≤
(2m− k) (Δ2 +Δδ + δ2)− (n− 1)Δδ(Δ + δ)

2
+

{
kδ

(
k − δ

2

)
if k ≤ (Δ + δ)/2,

kΔ
(
k − Δ

2

)
if k > (Δ + δ)/2,

(2)
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where k is the integer defined via

2m− nδ ≡ k − δ (mod Δ− δ), δ ≤ k ≤ Δ− 1,

i.e.,

k = 2m− δ(n− 1)− (Δ− δ)

⌊
2m− nδ

Δ− δ

⌋
. (3)

A graph G attains equality in Eq. (2) if and only if G does not contain an edge connecting

a vertex of degree Δ to a vertex of degree δ and it contains at most one vertex of degree

k �= Δ, δ such that:

(i) the vertex of degree k is adjacent to vertices of degree δ only, when k < (Δ + δ)/2;

(iii) the vertex of degree k is adjacent to vertices of degree Δ only, when k > (Δ+ δ)/2.

The proof of this theorem will rely on the use of edge rotations to increase the value

of M2. For a vertex u ∈ V , let Nu = {v : uv ∈ E} and mu =
∑

v∈Nu
dv denote the

neighborhood of u and the sum of degrees of the neighbors of u, respectively. Further,

for vertices u, a, b ∈ V such that ua ∈ E, an edge rotation from a to b around u, shortly

denoted as ua → ub, is a transformation in which the edge ua is deleted and a new edge

ub is added to a graph. In other words, after an edge rotation the transformed graph

becomes G′ = G − ua + ub. Edge rotation decreases the degree of a by 1 and increases

the degree of b by 1, leaving all other vertex degrees unchanged. The difference between

M2(G
′) and M2(G) is then due to: deletion of edge ua from G, addition of edge ub to G′,

decrease in contributions of edges va, v �= u, to M2, increase in contributions of edges wb,

w �= u, and, provided that a and b are adjacent, the change in contribution of edge ab.

Hence,

M2(G
′)−M2(G) =

{
du(db − da + 2) + (mb −ma), ab /∈ E,
du(db − da + 2) + (mb −ma)− 1, ab ∈ E.

(4)

In case the edge rotation was applied in the other direction, so that edge ub is deleted

from G and edge ua is added to obtain G′′, then

M2(G
′′)−M2(G) =

{
du(da − db + 2) + (ma −mb), ab /∈ E,
du(da − db + 2) + (ma −mb)− 1, ab ∈ E.

(5)

The following lemma is the main ingredient of the proof of Theorem 2.

Lemma 3 If G contains at least two vertices whose degrees are different from δ and Δ,

then there exists an edge rotation that strictly increases the value of M2(G).
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Proof Suppose, on the contrary, that G contains two vertices a and b such that δ+1 ≤
da, db ≤ Δ− 1 and that no edge rotation (either of the form ua → ub or vb → va) strictly

increases the value of M2. Suppose first that a and b are not adjacent. Then for each

u ∈ Na

du(db − da + 2) + (mb −ma) ≤ 0

and for each v ∈ Nb

dv(da − db + 2) + (ma −mb) ≤ 0.

Summing up the above inequalities for all u ∈ Na and v ∈ Nb separately, we obtain∑
u∈Na

[du(db − da + 2) + (mb −ma)] ≤ 0,∑
v∈Nb

[dv(da − db + 2) + (ma −mb)] ≤ 0,

which yields

ma(db − da + 2) + da(mb −ma) ≤ 0,

mb(da − db + 2) + db(ma −mb) ≤ 0.

Adding these two inequalities together and rearranging the terms we get

ma +mb ≤ (ma −mb)(da − db).

Since ma +mb > 0, this implies that the differences ma −mb and da − db are of the same

sign. If ma − mb and da − db are both negative, then a rotation ua → ub around any

u ∈ Na increases M2 by (4). If ma − mb and da − db are both positive, then a rotation

vb → va around any v ∈ Nb increases M2 by (5). In both cases we obtain a contradiction

to the starting assumption that no edge rotation increases M2.

An analogous argument applies in case that a and b are adjacent. If for each u ∈ Na

du(db − da + 2) + (mb −ma)− 1 ≤ 0

and for each v ∈ Nb

dv(da − db + 2) + (ma −mb)− 1 ≤ 0,

then summing up these inequalities for all u ∈ Na and v ∈ Nb we get, after rearranging

the terms,

ma +mb −
da + db

2
≤ (ma −mb)(da − db).
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Since ma ≥ δda ≥ da and mb ≥ δdb ≥ db, the left-hand side ma + mb − da+db
2

≥ da+db
2

is positive and the differences ma − mb and da − db are, therefore, of the same sign.

This shows that either an edge rotation ua → ub or an edge rotation vb → va increases

M2, once again giving a contradiction to the starting assumption that no edge rotation

increases M2.

Proof of Theorem 2 Starting with an arbitrary graph with n vertices, m edges, the

minimum vertex degree δ and the maximum vertex degree Δ, we see that we can strictly

increase the value of M2 by repeated application of Lemma 3 as long as graph contains

at least two vertices with degrees different from Δ, δ. Since the subsequent values of M2

are integers and bounded from above (say, by the trivial bound mΔ2), Lemma 3 can be

applied finitely many times only. This means that as a result of repeated application of

Lemma 3 we arrive at a graph that contains at most one vertex with degree different

from Δ and δ. The degree of such vertex, if it exists, can be obtained by considering the

numbers nΔ of vertices of degree Δ and nδ of vertices of degree δ. Namely, if all vertices

have degree either Δ or δ, then nΔ and nδ satisfy the system

n = nΔ + nδ,

2m = ΔnΔ + δnδ,

which has an integer solution if and only if Δ − δ|2m − nδ. Otherwise, if there exists a

vertex of degree k, δ < k < Δ, then

n = nΔ + nδ + 1,

2m = ΔnΔ + δnδ + k,

wherefrom

k − δ ≡ 2m− nδ (mod Δ− δ)

and

nΔ =
(2m− nδ)− (k − δ)

Δ− δ
, (6)

nδ =
(nΔ− 2m)− (Δ− k)

Δ− δ
. (7)

In order to find the maximum value of M2 among all graphs having vertices of degree

Δ, δ and at most one vertex of degree k, satisfying (3), we need to classify the edges of a

graph according to degrees of their end vertices:
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• mΔ,Δ is the number of edges having both end vertices of degree Δ;

• mΔ,δ is the number of edges joining a vertex of degree Δ with a vertex of degree δ;

• mδ,δ is the number of edges having both end vertices of degree δ;

• mk,Δ is the number of edges between a vertex of degree k and vertices of degree Δ;

• mk,δ is the number of edges between a vertex of degree k and vertices of degree δ.

Counting the numbers of edges having an end vertex of a given degree (Δ, δ or k) in two

ways, we get the following system

ΔnΔ = 2mΔ,Δ +mΔ,δ +mk,Δ,

δnδ = mΔ,δ + 2mδ,δ +mk,δ,

k = mk,Δ +mk,δ.

Assuming mΔ,δ and mk,Δ to be free variables, we can express mΔ,Δ, mδ,δ and mk,δ:

mΔ,Δ =
ΔnΔ −mΔ,δ −mk,Δ

2
,

mδ,δ =
δnδ −mΔ,δ +mk,Δ − k

2
,

mk,δ = k −mk,Δ.

Therefore,

M2 = Δ2mΔ,Δ +ΔδmΔ,δ + δ2mδ,δ + kΔmk,Δ + kδmk,δ

=
Δ3nΔ+δ3nδ

2
+kδ

(
k − δ

2

)
−mΔ,δ

2
(Δ− δ)2−mk,Δ(Δ− δ)

(
Δ+ δ

2
− k

)
. (8)

The maximal possible value of M2 is obtained for mΔ,δ = 0 and

• if k < (Δ + δ)/2, for mk,Δ = 0 and mk,δ = k;

• if k = (Δ + δ)/2, for arbitrary nonnegative mk,Δ +mk,δ = k, and

• if k > (Δ + δ)/2, for mk,Δ = k and mk,δ = 0.

Hence,

M2 ≤
Δ3nΔ + δ3nδ

2
+

{
kδ

(
k − δ

2

)
if k ≤ (Δ + δ)/2,

kΔ
(
k − Δ

2

)
if k > (Δ + δ)/2.
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Finally, after substituting nΔ and nδ from Eqs. (6) and (7) we get

M2 ≤
(2m− k) (Δ2 +Δδ + δ2)− (n− 1)Δδ(Δ + δ)

2
+

{
kδ

(
k − δ

2

)
if k ≤ (Δ + δ)/2,

kΔ
(
k − Δ

2

)
if k > (Δ + δ)/2.

In order for equality to be attained in Eq. (2), the graph G has to have at most one

vertex of degree k different from Δ and δ (so that Lemma 3 cannot be applied). The

degree of vertex k satisfies (3) and then Eq. (8) holds for G. The upper bound in Eq.

(8) is equal to the one in Eq. (2) if and only if mΔ,δ = 0 and mk,Δ = 0 if k < (Δ + δ)/2,

while mk,δ = 0 if k > (Δ + δ)/2.

2.1 Extremal graphs may be disconnected multigraphs

From the case of equality in Eq. (2) it is evident that, if k �= (Δ + δ)/2, then the graph

with the maximum value of M2 for given n, m, Δ and δ is necessarily disconnected: if

k < (Δ+ δ)/2, then the vertices of degree Δ are adjacent only to other vertices of degree

Δ, while if k > (Δ + δ)/2, the vertices of degree δ are adjacent only to other vertices of

degree δ. Only when k = (Δ + δ)/2, an M2-maximal graph may be connected, as then

the vertex of degree k may be adjacent both to vertices of degree Δ and to vertices of

degree δ.

Further, as the argument applied in the proof of Theorem 2 does not allow us to impose

restrictions on edge rotations, it is possible that anM2-maximal graph is no longer a simple

graph, but a multigraph containing parallel edges and/or loops. Consider, for example,

the case of m = n, Δ = n−1, δ = 1, and arbitrary n > 3. There exists exactly one simple

graph with these parameters — a star Sn with an additional edge joining two of its leaves

— which contains two vertices (say, a and b) of degree two. Regardless of how we apply

an edge rotation ua → ub we have to end up with one of multigraphs depicted in Fig. 1

— edge rotation around one of a or b produces a loop, while edge rotation around the

central vertex produces two parallel edges.

The same situation of implicit appearance of multigraphs is present in Zhou and

Gutman’s Theorem 1 as well. Namely, their argument within the proof of Theorem 1 in

[6] that there exists a graph with n vertices and m edges, possessing a unique vertex of

degree k different from δ and Δ, starts with a graph with n vertices and all degrees equal

to δ (except, possibly, one vertex with degree 0 if both n and δ are odd), and involves the

process of adding edges to this graph in order to increase the vertex degrees up to Δ and

k, without ensuring that the resulting graph is either simple or connected. In particular,
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Figure 1: Multigraphs with maximal M2 for m = n,Δ = n− 1 and δ = 1.

for the special case m = n = 8, Δ = 7 and δ = 1 this argument starts with four disjoint

edges and then adds new edges as long as it does not reach one of multigraphs depicted

in Fig. 1.

Note that all this is not, by any means, a mistake — it simply means that graphs

attaining the maximum value of the first or the second Zagreb index may happen to be

disconnected multigraphs.

2.2 Trees with the maximum second Zagreb index

The appearance of disconnected multigraphs as extremal graphs for the second Zagreb

index may be avoided in the case of trees. Namely, we have

Theorem 4 Let T be a tree with n vertices and the maximum vertex degree Δ ≥ 2. Then

M2(T ) ≤ Δ(2n−Δ− 1− k) + k(k − 1), (9)

where k is the integer defined via

k ≡ n− 1 (mod Δ− 1), 1 ≤ k ≤ Δ− 1,

i.e.,

k = n− 1− (Δ− 1)

⌊
n− 2

Δ− 1

⌋
.

Equality is attained in Eq. (9) if and only if T has at most one vertex of degree k that is

adjacent to a single vertex of degree Δ, and all other vertices of T have degree either Δ

or 1.

The proof of this theorem will be analogous to that of Theorem 2, with the distinction

that we have to forbid rotation of an edge ua to ub if T − ua+ ub is not a tree. Let P be
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the unique path between vertices a and b in T . If u is a neighbor of a that does not belong

to P , then T − ua + ub contains P and, consequently, T − ua + ub remains connected:

if ua has appeared in a walk between any two vertices of T , then it may be replaced by

the edge ub followed by the path P from b to a (moreover, T − ua+ ub contains no loop

or parallel edge in this case). On the other hand, if u belongs to P , then T − ua+ ub no

longer contains P and a and b necessarily belong to distinct components of T − ua+ ub.

Hence, we only need to forbid rotation of edge ua to ub if u is the neighbor of a belonging

to the unique path between a and b. Now we can prove the following variant of Lemma

3.

Lemma 5 If a tree T contains two vertices whose degrees are different from Δ and 1,

then there exists an edge rotation that from T produces a tree T ′ with M2(T ) < M2(T
′).

Proof Suppose first that T contains two adjacent vertices a and b such that 2 ≤ da, db ≤
Δ − 1. Choose arbitrarily u ∈ Na \ {b} and v ∈ Nb \ {a}. If neither of edge rotations

ua → ub and vb → va increases M2, then from Eqs. (4) and (5) we have

du(db − da + 2) +mb −ma − 1 ≤ 0,

dv(da − db + 2) +ma −mb − 1 ≤ 0.

Adding these two inequalities together and rearranging the terms yields

2(du + dv − 1) ≤ (dv − du)(db − da). (10)

Since the left-hand side of (10) is positive, we see that the case da = db is impossible.

Suppose therefore that da < db. Then also du < dv has to hold, as otherwise the

right-hand side of (10) would be nonpositive. Since u and b were arbitrarily chosen, we

conclude that du < dv holds for each u ∈ Na \ {b} and each v ∈ Nb \ {a}. Let a′ have the
largest degree among the vertices in Na \ {b} and let b′ have the smallest degree among

the vertices in Nb \ {a}. Then

ma − db =
∑

u∈Na\{b}
du ≤ (da − 1)da′ < (da − 1)db′ < (db − 1)db′ ≤

∑
v∈Nb\{a}

dv = mb − da.

However, this yields a contradiction with the assumption that edge rotation ua → ub does

not increase M2:

0 ≥ du(db − da + 2) +mb −ma − 1 ≥ db − da + 2 +mb −ma − 1 > 1.
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A contradiction is obtained similarly in the case da > db.

Hence, we conclude that if T contains two adjacent vertices a and b with 2 ≤ da, db ≤
Δ − 1, then one of edge rotations ua → ub and vb → va, u ∈ Na \ {b}, v ∈ Nb \ {a},
produces a tree T ′ with M2(T ) < M2(T

′).

Suppose, therefore, that no two vertices whose degrees are different from Δ and 1 are

adjacent in T . Choose arbitrarily vertices a and b with 2 ≤ da, db ≤ Δ − 1. Let P be

the unique path between a and b in T , and denote by a∗ and b∗ the neighbors of a and b

on path P , respectively. Since no two vertices whose degrees are different from Δ and 1

are adjacent in T , and da∗ , db∗ ≥ 2 (as a∗ and b∗ belong to the path P ), we conclude that

da∗ = db∗ = Δ.

Now, if none of edge rotations ua → ub, u ∈ Na \ {a∗}, and vb → va, v ∈ Nb \ {b∗},
increases M2, then from Eqs. (4) and (5) we have

du(db − da + 2) +mb −ma ≤ 0,

dv(da − db + 2) +ma −mb ≤ 0.

Summing up these inequalities for all u ∈ Na \ {a∗} and v ∈ Nb \ {b∗}, and rearranging

the terms, we obtain

ma +mb − 2Δ ≤ (mb −ma)(db − da). (11)

Note that ma,mb > Δ, as both a and b have a neighbor of degree Δ (equal to a∗ and b∗,

respectively) and at least one more neighbor due to da, db ≥ 2. Therefore, the left-hand

side of (11) is positive, implying that the differences mb −ma and db − da are of the same

sign. If mb − ma and db − da are both positive, then a rotation ua → ub around any

u ∈ Na \ {a∗} increases M2 by (4). If mb − ma and db − da are both negative, then a

rotation vb → va around any v ∈ Nb \ {b∗} increases M2 by (5). In both cases, we arrive

at a contradiction with the starting assumption that none of edge rotations increases M2.

Proof of Theorem 4 Starting with an arbitrary tree with n vertices and the maxi-

mum vertex degree Δ, we see that we can strictly increase the value of M2 by repeated

application of Lemma 5 if the tree contains at least two vertices with degrees different

from Δ and 1.

Hence, the maximum value of M2 is obtained by some tree that has at most one vertex

a of degree different from Δ and 1. The degree k of vertex a, as in the proof of Theorem

2, satisfies (3), which for m = n − 1 and δ = 1 reads k = n − 1 − (Δ − 1)
⌊
n−2
Δ−1

⌋
. In
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addition, the numbers nΔ and n1 of vertices of T of degree Δ and 1, respectively, satisfy

Eqs. (6) and (7).

Let t ≥ 1 be the number of neighbors of a of degree Δ. The tree T then has k−t edges

with end-degrees k and 1, n1 − k + t edges with end-degrees 1 and Δ, and n− n1 − t− 1

edges with both end-degrees Δ, so that

M2(T ) = tkΔ+ (k − t)k + (n1 − k + t)Δ + (n− n1 − t− 1)Δ2

= −t(Δ− 1)(Δ− k) +
[
(n− n1 − 1)Δ2 + (n1 − k)Δ + k2

]
.

Since the summand in the brackets above is constant and (Δ− 1)(Δ− k) is positive, we

conclude that the maximum value of M2(T ) is obtained for t = 1, which yields (9) after

replacing n1 from (7).

At the end, it is visible from above that if equality is attained in (9), then T has to

have at most one vertex of degree different from Δ and 1 (as otherwise Lemma 5 could

be applied to T to increase M2), and that vertex has to be adjacent to a single vertex of

degree Δ (as otherwise t ≥ 2).

3 Zagreb coindices of chemical trees and benzenoid

chains

Thanks to Theorems 1 and 4, we are now in position to resolve open questions of Ashrafi,

Došlić and Hamzeh [7] on the minimum values of Zagreb coindices over chemical trees.

The Zagreb coindices, opposites of the Zagreb indices, were introduced in [8]:

M1(G) =
∑
uv/∈E

(du + dv),

M2(G) =
∑
uv/∈E

dudv.

The Zagreb coindices turn out to be closely related to the Zagreb indices via the following

formulas, obtained in [9]:

M1(G) = 2m(n− 1)−M1(G), (12)

M2(G) = 2m2 −M2(G)− 1

2
M1(G). (13)

3.1 The first Zagreb coindex of chemical trees

Recall that a tree is a connected graph with exactly m = n − 1 edges. From Eq. (12)

it is then apparent that the sum M1(T ) +M1(T ) = 2(n − 1)2 is constant for fixed n, so
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that the task of determining the minimum first Zagreb coindex translates to the task of

determining the maximum first Zagreb index. The latter problem has been studied in

many papers, and the case of chemical trees has been resolved in [6], where Theorem 1 is

proved. For chemical trees, in which δ = 1 and Δ = 4, this theorem yields

Corollary 6 For a chemical tree T with n ≥ 2 vertices

M1(T ) ≤
{

6n− 10 if n ≡ 2 (mod 3),
6n− 12 otherwise,

with equality if and only if either (i) every vertex of T is of degree 1 or 4 (in which case

n ≡ 2 (mod 3)), or (ii) one vertex of T has degree 2 or 3, and all other vertices are of

degree 1 or 4.

Therefore, for the first Zagreb coindex of a chemical tree T

M1(T ) ≥ 2(n− 1)2 −
{

6n− 10 if n ≡ 2 (mod 3),
6n− 12 otherwise,

with equality as stated in Corollary 6.

3.2 The second Zagreb coindex of chemical trees

From Eq. (13) we see that a tree T has the minimum second Zagreb coindex if and only if

it has the maximum value of M2(T ) +
1
2
M1(T ). Since the trees with the maximum value

of M2 among trees with given n and Δ have, at the same time, also the maximum value of

M1 (but not necessarily vice versa), we see that the maximum value of M2(T ) +
1
2
M1(T )

is obtained exactly for trees attaining equality in (9). Note that for chemical trees with

Δ = 4, Theorem 4 yields

Corollary 7 For a chemical tree T with n ≥ 2 vertices

M2(T ) ≤
{

8n− 24 if n ≡ 2 (mod 3),
8n− 26 otherwise,

with equality if and only if either (i) every vertex of T is of degree 1 or 4 (in which case

n ≡ 2 (mod 3)), or (ii) one vertex of T has degree 2 or 3 and it is adjacent to a single

vertex of degree 4, while all other vertices are of degree 1 or 4.

Therefore, for the second Zagreb coindex of a chemical tree T

M2(T ) ≥ 2(n− 1)2 −
{

11n− 29 if n ≡ 2 (mod 3),
11n− 32 otherwise,

with equality as stated in Corollary 7.
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3.3 The Zagreb coindices of benzenoid chains

Ashrafi, Došlić and Hamzeh [7] have also posed the question of the minimum values of

Zagreb coindices of benzenoid chains. This question is, however, implicitly resolved in a

later paper of Došlić [10]. For the sake of completeness, let us explain this briefly.

As in [10], a hexagonal system is a collection of congruent regular hexagons arranged

in a plane in such a way that two hexagons are either disjoint or have a common edge.

The hexagonal system whose interior is 1-connected is called the benzenoid system. To

each benzenoid system corresponds a benzenoid graph, obtained by taking the vertices

of hexagons as the vertices of the graph, and the sides of hexagons as graph edges. The

resulting graph is simple, planar, with all bounded faces being hexagons. The vertices

of a benzenoid graph belonging to the unbounded face are called external, while the

remaining vertices are called internal. A benzenoid graph without internal vertices is

called catacondensed. It follows by a simple counting argument that a catacondensed

benzenoid with h hexagons has 4h+2 vertices and 5h+1 edges [11]. Its h hexagons belong

to one of the four possible types, depending on the number and the relative position of

the edges they share with other hexagons. If a hexagon shares one edge with another

hexagon, it is called terminal. If it shares three edges, no two of which are incident to the

same vertex, it is called branching. If two shared edges are parallel, the hexagon is called

straight, and if they are not parallel, it is called kinky.

Došlić [10] has proved that for a catacondensed benzenoid graph with h hexagons

M1 = 26h− 2,

M2 = 34h− 11 + B − S,

where B and S are the number of branching and straight hexagons, respectively. From

Eqs. (12) and (13) follows

M1 = 40h2 − 8h+ 4,

M2 = 50h2 − 27h+ 14− B + S.

Thus, all catacondensed benzenoids with h hexagons have constant first Zagreb coindex,

while the minimum value of the second Zagreb coindex is obtained for catacondensed

benzenoids having the maximum number of branching hexagons and minimum number

of straight hexagons (S = 0). In particular, if a catacondensed benzenoid is a benzenoid

chain, as asked by Ashrafi, Došlić and Hamzeh in [7], then it contains no branching

-667-



hexagons (B = 0) and the minimum value 50h2 − 27h+ 14 of the second Zagreb coindex

is achieved for benzenoid chains consisting of kinky hexagons only (and two terminal

hexagons).
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