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Abstract

For a (molecular) graph, the first and second Zagreb indices (M1 and M2) are
two well-known topological indices in chemical graph theory introduced in 1972
by Gutman and Trinajstić. Let Gn,m be the set of connected graphs of order n
and with m edges. In this paper we characterize the extremal graphs from Gn,m

with n + 2 ≤ m ≤ 2n − 4 with maximal first Zagreb index and from Gn,m with

m−n =
(
k
2

)
− k for k ≥ 4 with maximal second Zagreb index, respectively. Finally

a related conjecture has been proposed to the extremal graphs with respect to
second Zagreb index.

1 Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let G be

a graph with vertex set V (G) and edge set E(G). The cardinality of E(G) is usually

denoted by m(G). The degree of v ∈ V (G), denoted by dG(v), is the number of vertices

in G adjacent to v. In particular, Δ(G) denotes the maximum degree of vertices in G,

and Δ2(G) is the second maximum degree of vertices in G. For each v ∈ V (G) , the set of

neighbors of the vertex v is denoted by NG(v). For a subset W of V (G), let G−W be the
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subgraph of G obtained by deleting the vertices of W and the edges incident with them.

Similarly, for a subset E ′ of E(G), we denote by G− E ′ the subgraph of G obtained by

deleting the edges of E ′. If W = {v} and E ′ = {xy}, the subgraphs G−W and G− E ′

will be written as G − v and G − xy for short, respectively. For any two nonadjacent

vertices x and y of graph G, we let G + xy be the graph obtained from G by adding an

edge xy. In the following we always denote by K1,n−1 the star graph of order n, and by

Kn the complete graph of order n. Other undefined notations and terminology on the

graph theory can be found in [4].

A graphical invariant is a number related to a graph which is a structural invariant, in

other words, it is a fixed number under graph automorphisms. In chemical graph theory,

these invariants are also known as the topological indices. Two of the oldest graph

invariants are the well-known Zagreb indices first introduced in [16] where Gutman and

Trinajstić examined the dependence of total π-electron energy on molecular structure

and elaborated in [17]. For a (molecular) graph G, the first Zagreb index M1(G) and the

second Zagreb index M2(G) are, respectively, defined as follows:

M1 = M1(G) =
∑

v∈V (G)

dG(v)
2, M2 = M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

Alternatively, the first Zagreb index M1 can be also rewritten as the following useful

form:

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)) (1)

These two classical topological indices reflect the extent of branching of the molecular

carbon-atom skeleton [3, 23]. The main properties of M1 and M2 were summarized in

[5, 6, 8, 9, 11, 12, 14, 18, 21, 26, 30]. In particular, Deng [9] gave a unified approach to

determine extremal values of Zagreb indices for trees, unicyclic, and bicyclic graphs,

respectively. In recent years, some novel variants of ordinary Zagreb indices have been

introduced and studied, such as Zagreb coindices [1, 2], multiplicative Zagreb indices

[13, 24, 29], multiplicative sum Zagreb index [10, 27] and multiplicative Zagreb coindices

[28]. Especially the first and second Zagreb coindices of graph G are defined [1] in the

following:

M1 = M1(G) =
∑

u�=v,uv/∈E(G)

(dG(u)+dG(v)), M2 = M2(G) =
∑

u�=v,uv/∈E(G)

dG(u)dG(v).
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Let Gn,m be the set of connected graphs of order n and with m edges. In this paper

we characterized the extremal graphs from Gn,m where n− 1 ≤ m ≤ 2n− 3 maximizing

the first Zagreb index and from Gn,m where m − n =
(
k
2

)
− k with k ≥ 4 with maximal

second Zagreb index, respectively. Finally a related conjecture has been proposed with

to the extremal graphs with respect to second Zagreb index.

2 Main results

Before stating our main results, we will list or prove some lemmas as preliminaries, which

will play an important role in the next proofs.

Lemma 2.1. Let G ∈ Gn,m with maximum Zagreb index Mi for i = 1, 2. Then we have

Δ(G) = n− 1.

Proof. If Δ(G) = n − 1, our result in this lemma holds immediately. If not, we choose

a vertex u in the graph G with maximum degree and another vertex v ∈ V (G). So

we have dG(u) ≥ dG(v). Assume that NG(v) \ NG(u) = {v1, v2, · · · , vs}. Note that

NG(v) \ NG(u) �= ∅ because of the fact that dG(u) < n − 1. Now we construct a new

graph G′, which is called the neighbor-change transformation of G on the vertices u, v

(or, exactly, from vertex v to vertex u), in the following way:

G′ = G− {vv1, vv2, · · · , vvs}+ {uv1, uv2, · · · , uvs}.

Next we will show that Mi(G
′) > Mi(G) for i = 1, 2. For convenience, we set Ai =

Mi(G
′)−Mi(G) for i = 1, 2. By the definition of first Zagreb index (M1), we have

A1 = (d(u) + s)2 + (d(v)− s)2 − d(u)2 − d(v)2

= 2s(d(u)− d(v)) + 2s2

> 0.

Note that, for the edges not incident with u or v, the corresponding parts in M2(G)
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and M2(G
′) are identical. It follows that

A2 =
∑

x∈NG(u)\NG(v)

(d(u) + s)d(x) +
s∑

i=1

(d(u) + s)d(vi)

+
∑

y∈NG(u)∩NG(v)

(d(u) + s+ d(v)− s)d(y)−
∑

x∈NG(u)\NG(v)

d(u)d(x)−
s∑

i=1

d(v)d(vi)

−
∑

y∈NG(u)∩NG(v)

(d(u) + d(v))d(y)

=
∑

x∈NG(u)\NG(v)

sd(x) +
s∑

i=1

(s+ d(u)− d(v))d(vi) > 0.

Therefore Mi(G
′) > Mi(G) for i = 1, 2 as claimed above. Thus we find that G′ ∈ Gn,m

with a larger Zagreb index (M1 or M2) than that of G. This is a contradiction to the

choice of G, which finishes the proof of this lemma.

Lemma 2.2. Let G be a connected graph with two non-adjacent vertices u, v ∈ V (G) and

G′ = G+ uv. Then we have M1(G
′) = M1(G) + 2 + 2(dG(u) + dG(v)).

Proof. By the definition of first Zagreb index, we have

M1(G
′)−M1(G) = dG′(u)2 − dG(u)

2 + dG′(v)2 − dG(v)
2

= (dG(u) + 1)2 − dG(u)
2 + (dG(v) + 1)2 − d2G(v)

= 2 + 2(dG(u) + dG(v)),

which completes the proof.

Lemma 2.3. Let G be a connected graph with two non-adjacent vertices u, v ∈ V (G) and

NG(v) = {v1, v2, · · · , vα} and NG(u) = {u1, u2, · · · , uβ}. Suppose that G′ = G+uv. Then

M2(G
′) = M2(G)− [(dG(u)+1)(dG(v)+1)+dG(v1)+ · · ·+dG(vα)+dG(u1)+ · · ·+dG(uβ)].

Proof. From the definition of second Zagreb index, we have

M2(G
′)−M2(G) = (dG(v)+1)[dG(v1)+· · ·+dG(vα)]+(dG(u)+1)[dG(u1)+· · ·+dG(uβ)]

− [dG(v)(dG(v1) + · · ·+ dG(vα)) + dG(u)(dG(u1) + · · ·+ dG(uβ))]

+ (dG(u) + 1)(dG(v) + 1)

= [(dG(u)+1)(dG(v)+1)+dG(v1)+· · ·+dG(vα)+dG(u1)+· · ·+dG(uβ)].

Thus we complete the proof of this lemma.

Lemma 2.4. ( [1, 2]) Let G be a connected graph of order n and with m edges. Then

(i) M1(G) = 2m(n− 1)−M1(G);
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(ii) M2(G) = 2m2 −M2(G)− 1
2
M1(G).

In the next step we start to deal with the extremal graphs with maximal Zagreb

indices. First we focus on the case when m is small. As two examples, two graphs B
(1)
n

and B
(2)
n in Gn,n+1 are shown in Fig. 1. Based on Lemma 2.1, we can obtain easily the

following result.

Figure 1: Two graphs B
(1)
n and B

(2)
n

Theorem 2.5. ( [9]) Let n− 1 ≤ m ≤ n+ 1 and Gi ∈ Gn,m with maximum Zagreb index

Mi for i = 1, 2. Then we have

(i) G1 = G2
∼= K1,n−1 for m = n− 1;

(ii) G1 = G2
∼= K1,n−1 + e for m = n where e = uv with u, v as two pendent vertices in

K1,n−1;

(iii) G1 = G2
∼= B

(1)
n for m = n+ 1 where B

(1)
n is shown in Fig. 1.

Proof. From Lemma 2.1 and the definition of the set Gn,m, the results in (i) and (ii) holds

immediately. Now we turn the proof for (iii). Thanks to Lemma 2.1, again, we find that

the extremal graph from Gn,m with m = n + 1 maximizing the first and second Zagreb

indices must be graph obtained by adding two new edges into the star Sn, that is, one

of graphs B
(1)
n and B

(2)
n as shown in Fig. 1. By some simple calculation of Mi(B

(1)
n ) and

Mi(B
(2)
n ) for i = 1, 2, our result in (iii) follows immediately.

From Theorem 2.5 we notice that, in Gn,m with n − 1 ≤ m ≤ n + 1, the graphs

with maximal first Zagreb index are the same as the graphs with maximal second Zagreb

index. By Lemma 2.4, the following corollary can be easily obtained.
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Figure 2: Two graphs G
′
n,n+2 and G

′′
n,n+2 in Gn,n+2

Corollary 2.6. ( [2]) Let n − 1 ≤ m ≤ n + 1 and Hi ∈ Gn,m with minimum Zagreb

coindex M i for i = 1, 2. Then we have

(i) H1 = H2
∼= K1,n−1 for m = n− 1;

(ii) H1 = H2
∼= K1,n−1 + e for m = n where e = uv with u, v as two pendent vertices in

K1,n−1;

(iii) H1 = H2
∼= B

(1)
n for m = n+ 1 where B

(1)
n is shown in Fig. 1.

In the next theorem we will determine the graphs from Gn,n+2 maximizing the Zagreb

indices (M1 and M2). Before doing it, we first give two graphs G
′
n,n+2 and G

′′
n,n+2 in

Gn,n+2 as shown in Fig. 2.

Theorem 2.7. Let G ∈ Gn,n+2. Then we have

(i) M1(G) ≤ n2−n+24 with equality holding if and only if G ∼= G
′
n,n+2 or G

∼= G
′′
n,n+2;

(ii) M2(G) ≤ n2 + 4n+ 22 with equality holding if and only if G ∼= G
′′
n,n+2.

Proof. Note that any graph in Gn,n+2 can be obtained by adding a new edge to a graph

in Gn,n+1. By the respective definitions of first and second Zagreb indices, we have

M1(B
(1)
n ) = n2 − n+ 14, (2)

M2(B
(1)
n ) = n2 + 2n+ 9. (3)

Assume that G ∈ Gn,n+2 with M1(G) as large as possible. In view of Lemma 2.1, we claim

that Δ(G) = n− 1. Therefore there exists a graph G0 ∈ Gn,n+1 with Δ(G0) = n− 1 such
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that G = G0+uv. Combining the fact that Δ(G0) = n−1 and G0 ∈ Gn,n+1, we conclude

that, for any non-adjacent vertices u, v ∈ V (G0), dG0(u) + dG0(v) ≤ 4. Moreover, the

second maximum vertex degree in G0 is at most 3 and the case occurs only when there

is a single vertex with degree 3 in G0.

Firstly we prove the result in (i). By Lemma 2.2 and Theorem 2.5 (iii), considering

the equality (2), we have

M1(G) = M1(G0) + 2 + 2(dG0(u) + dG0(v))

≤ n2 − n+ 14 + 2 + 2× 4

= n2 − n+ 24.

The above equality holds if and only if G0
∼= B

(1)
n and dG0(u) + dG0(v) = 4, that is,

(dG0(u), dG0(v)) = (1, 3) or (2, 2) in G0
∼= B

(1)
n . Equivalently, we have G ∼= G

′
n,n+2 or

G ∼= G
′′
n,n+2, finishing the proof of (1).

Next we turn to the proof of the result in (ii). Assume that NG0(v) = {v1, v2, · · · , vα}
with dG0(v1) ≥ dG0(v2) ≥ · · · ≥ dG0(vα) and NG0(u) = {u1, u2, · · · , uβ} with dG0(u1) ≥
dG0(u2) ≥ · · · ≥ dG0(uβ). By the above argument we claim that dG0(v1) = n−1 = dG0(u1),

α ≤ 2 and β ≤ 2. From Lemma 2.3, Theorem 2.5 (iii) and the equality (3), we arrive at

M2(G) = M2(G0) + (dG0(u) + 1)(dG0(v) + 1)

+[dG0(v1) + · · ·+ dG0(vα) + dG0(u1) + · · ·+ dG0(uβ)]

≤ n2 + 2n+ 9 + (2 + 1)× (2 + 1) + [(n− 1) + 3 + (n− 1) + 3]

= n2 + 4n+ 22.

The above equality holds if and only if G0
∼= B

(1)
n , dG0(u) = dG0(v) = 2 and dG0(v2) =

dG0(u2) = 3 with v2 = u2 in G0, that is to say, G ∼= G
′′
n,n+2, which completes the proof.

In view of the formulas in Lemma 2.4, we have M1(G
′
n,n+2) = M1(G

′′
n,n+2) = n2 +

3n− 28 and M2(G
′′
n,n+2) =

1
2
n2 + 9

2
n− 26. Thanks to Lemma 2.4, again, the following is

an immediate result.

Corollary 2.8. Let H ∈ Gn,n+2. Then we have

(i) M1(H) ≥ n2+3n−28 with equality holding if and only if H ∼= G
′
n,n+2 or H

∼= G
′′
n,n+2;

(ii) M2(H) ≥ 1
2
n2 + 9

2
n− 26 with equality holding if and only if H ∼= G

′′
n,n+2.
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The following result is very similar to Theorem 3.7 [5], we omit its proof.

Lemma 2.9. Let G be a graph of order n with m edges (1 ≤ m ≤ n− 1). Then

M1(G) ≤ m(m+ 1) (4)

with equality holding if and only if G ∼= K1,m ∪ (n−m− 1)K1.

For any integer m satisfying n+ 3 ≤ m ≤ 2n− 4, we denote by Nn−1,m−n+2
n,m a graph

of order n and with m edges in which maximum degree is n−1 and the second maximum

degree is m− n+ 2. The structure of graph Nn−1,m−n+2
n,m can be seen in Fig. 3.

Theorem 2.10. For any graph G ∈ Gn,m where n+ 3 ≤ m ≤ 2n− 4, we have

M1(G) ≤ n(n− 1) + (m− n+ 1)(m− n+ 6) (5)

with equality holding if and only if G ∼= Nn−1,m−n+2
n,m .

Proof. Assume that G ∈ Gn,m with M1(G) as large as possible. By Lemma 2.1, we find

that the graph G contains a star K1,n−1 as a subgraph. Therefore G can be viewed as a

graph obtained by adding m− n+ 1 new edges to the star Sn. Then we can construct a

new graph G′ of order n−1 with m−n+1 edges (n+3 ≤ m ≤ 2n−4), obtained from G

by deleting the vertex of maximum degree and the incident edges with it. Let the degree

sequence of G be π(G) = (d1, d2, d3, . . . , dn) and also let the degree sequence of G′ be

π(G′) = (d′1, d
′
2, . . . , d

′
n−1). Then we have d1 = n− 1, di+1 = d′i + 1, i = 1, 2, . . . , n− 1,

and

M1(G) =
n∑

i=1

d2i = (n− 1)2 +
n−1∑
i=1

(
d′i + 1)2

= (n− 1)2 + (n− 1) +
n−1∑
i=1

d′ 2i + 2
n−1∑
i=1

d′i

≤ n(n− 1) + (m− n+ 1)(m− n+ 2) + 4(m− n+ 1) by Lemma 2.9 (6)

= n(n− 1) + (m− n+ 1)(m− n+ 6).

Moreover, the equality holds in (5) if and only if the equality holds in (6), that is to say,

G′ ∼= K1,m−n+1∪(2n−m−3)K1 by Lemma 2.9. Thus we conclude that Δ2(G) = m−n+2

and G ∼= Nn−1,m−n+2
n,m , finishing the proof of this theorem.
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Figure 3: The graph Nn−1,m−n+2
n,m

To characterize the extremal graphs from Gn,m where m ≥ n + 3 with maximum

second Zagreb index, we need introduce some new notations. Denote by Kn−k
k the graph

obtained by attaching n−k pendent vertices to one vertex of Kk. For any positive integer

t < k, let Kn−k
k (t) be a graph obtained by adding t new edges between one pendent vertex

in Kn−k
k and t vertices with degree k − 1 in it. In particular, the graph G

′′
n,n+2 defined

before is just Kn−4
4 . For a graph G, we define M∗(G) =

∑
uv∈E(G)

(dG(u) + 1)(dG(v) + 1).

Before turning to my main result, we first prove a preliminary lemma as follows.

Lemma 2.11. Let G be a graph of order n and with
(
k
2

)
edges where 4 ≤ k ≤ n − 1.

Then we have

M∗(G) ≤ (k − 1)k3

2

with equality holding if and only if G ∼= Kk ∪ (n− k)K1.

Proof. By the definition of M∗(G), considering the equality (1), we have

M∗(G) =
∑

uv∈E(G)

(dG(u) + 1)(dG(v) + 1)

≤ 1

2

∑
uv∈E(G)

[(dG(u) + 1)2 + (dG(v) + 1)2] (7)

=
1

2

∑
uv∈E(G)

[dG(u)
2 + dG(v)

2 + 2(dG(u) + dG(v)) + 2]

=
1

2

∑
u∈V (G)

[dG(u)
3 + 2dG(v)

2 + dG(u)]

=
1

2

∑
u∈V (G)

[dG(u)
3 + 2dG(u)

2] +

(
k

2

)
.
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Note that the above equality (7) holds if and only if dG(u) = dG(v) for any edge uv ∈
E(G). Now it suffices to determine the maximum of A(G)

Δ
=

∑
u∈V (G)

[dG(u)
3 + 2dG(u)

2].

Next we will distinguish the following two cases.

Case 1. All
(
k
2

)
edges in G form exactly one nontrivial connected component in it.

In this case, we find that the equality (7) holds if and only if G ∼= G∗ ∪ (n − s)K1

where G∗ is a connected regular graph of order s. Moreover, A(G∗) = A(G). Now we

conclude that all vertices in G∗ have degree k(k−1)
s

, and

A(G∗) = s

[
(
k(k − 1)

s
)3 + 2(

k(k − 1)

s
)2
]

=
(k(k − 1))3

s2
+ 2

(k(k − 1))2

s
.

Clearly A(G∗) will reach its maximum when s is as small as possible. Taking into

account the fact the simple graph G∗ is a regular one with
(
k
2

)
edges, we find that the

minimum value of s is k. Thus we have

A(G∗) =
(k(k − 1))3

s2
+ 2

(k(k − 1))2

s

≤ (k(k − 1))3

k2
+ 2

(k(k − 1))2

k

= (k − 1)2k(k + 1).

The above equality holds if and only if s = k, that is to say, G∗ ∼= Kk ∪ (n− k)K1. This

finishes the proof of “Only if” part in this case.

Case 2. All
(
k
2

)
edges in G form more than one nontrivial connected components in

it.

From the above argument (before Case 1), these
(
k
2

)
edges form a regular subgraph in

G and with t ≥ 2 nontrivial connected components when M∗(G) reaches its maximum.

Assume that G = G0∪(n−s)K1 where G0 = G
(p1)
s1 ∪G(p2)

s2 · · ·G(pt)
st denotes a union of some

connected or disconnected regular graphs with G
(pi)
si being an pi-regular graph of order si

and with mi edges for pi ∈ {1, 2, · · · , t} with 1 ≤ t ≤ k − 2 such that
t∑

i=1

mi =
(
k
2

)
. Then

we have si =
2mi

pi
. Therefore in this case we only need to prove the following inequality:

t∑
i=1

2mi

pi
(p3i + 2p2i ) < (k − 1)2k(k + 1),

which is just
t∑

i=1

(p2i + 2pi)mi < (k2 − 1)
t∑

i=1

mi (8)
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We claim that the inequality (8) holds immediately from the fact that p2i +2pi < k2−1

for pi ∈ {1, 2, · · · , t} with 1 ≤ t ≤ k − 2. This completes the proof of “only if” part in

this case.

Conversely, we can easily find that M∗(G) = (k−1)k3

2
if G ∼= Kk ∪ (n − k)K1, ending

the proof of this lemma.

Theorem 2.12. Assume that m− n =
(
k
2

)
− k with k ≥ 4. Let G ∈ Gn,m with maximum

second Zagreb index. Then we have G ∼= Kn−k
k .

Proof. By Lemma 2.1, we conclude that there are at least one vertex of degree n− 1. So

we have

G = G∗ ∨K1 ,

where

|V (G∗)| = n− 1, and m(G∗) =
1

2
(k − 1)(k − 2) .

Let d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ dn be the degree vertices of graph G and also let

d∗1 ≥ d∗2 ≥ · · · ≥ d∗n−2 ≥ d∗n−1 be the degree vertices of graph G∗ . Thus we have

di = d∗i−1 + 1, i=2, 3,. . . , n and d1 = n− 1. Then we have

M2(G) =
∑

vivj∈E(G)

di dj

=
∑

v1vj∈E(G)

d1 dj +
∑

vivj∈E(G), 2≤i<j≤n

di dj

= d1

n∑
i=2

di +
∑

vivj∈E(G∗)

(d∗i + 1) (d∗j + 1)

= (n− 1)
(
k2 + n− 3k + 1

)
+

∑
vivj∈E(G∗)

(d∗i + 1) (d∗j + 1) .

Now we have to find the maximum value of∑
vivj∈E(G∗)

(d∗i + 1) (d∗j + 1)

where

|V (G∗)| = n− 1, and m(G∗) =
1

2
(k − 1)(k − 2) .

By Lemma 2.11, we have∑
vivj∈E(G∗)

(d∗i + 1) (d∗j + 1) ≤ (k − 1)(k − 2)

2
(k − 1)2 ,
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with equality if and only if

G∗ ∼= Kk−1 ∪ (n− k)K1 .

Therefore we arrive at G = (Kk−1 ∪ (n − k)K1) ∨K1
∼= Kn−k

k , completing the proof

of this theorem.

Now we consider the extremal graph, which maximizes the second Zagreb index, from

Gn,m with m = n+
(
k
2

)
− k + t where 1 ≤ t ≤ k − 1. Note that the complement of graph

G of order n and with m = n +
(
k
2

)
− k + t edges where 1 ≤ t ≤ k − 1 is a forest of

order n and with
(
n
2

)
− m = n − 2 − t edges. For the case when m = n +

(
k
2

)
− k + t

with k = n− 1, we know, from Theorem 10 in [8], that the graph from Gn,m maximizing

the second Zagreb index is obtained by joining one isolated vertex with complete graph

Kn−1 by t edges, which is just Kn−1
1 (t). But this problem is still open for the case when

4 ≤ k ≤ n− 2. Therefore we would like to end this paper with following conjecture.

Conjecture 1. Assume that n + 3 ≤ m. Let G ∈ Gn,m with maximum second Zagreb

index. Then G ∼= Kn−k
k (t) if m− n =

(
k
2

)
− k + t with 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n− 2.
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