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Abstract

Theorem 3 in [2] claims that the second Zagreb index My cannot be less than 11n — 27 for
a tree with n > 8 pendent vertices. Yet, a tree exists with n = 8 vertices (the two-sided broom)
violating this inequality. The reason is that the proof of Theorem 3 relays on a tacit assumption
that an index-minimizing tree contains no vertices of degree 2. This assumption appears to be
invalid in general. In this note we show that the inequality My > 11n — 27 still holds for trees
with n > 9 vertices and provide the valid proof of the (corrected) Theorem 3.

Let G be a simple connected undirected graph with the vertex set V(G) and the edge
set E(G). Denote by dg(v) the degree of a vertex v € V(G) in the graph G, i.e., the
number of vertices being incident to v in G. The second Zagreb index is defined as [1]

My(G) = > da(u)da(v) . (1)
weE(G)

The vertex v € V(G) with dg(v) = 1 is called a pendent vertex. All other vertices are
called internal vertices. A connected graph 7" with N vertices and N — 1 edges is called
a tree. An internal vertex is called a stem vertex if it has at most one incident internal
vertex.

In [2] the following theorem was stated.
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Theorem 3. For any tree T with n > 8 pendent vertices My(T) > 11n—27. The equality
holds if each stem vertex in T has degree 4 or 5, while the other internal vertices have

degree 3. At least one such tree exists for any n > 9.

However later a tree was found with n = 8 pendent vertices (the two-sided broom
D(4;3;4), see Fig. 1la) with My(D(4;3;4)) = 60 < 11ln — 27. The inaccuracy in the
proof of Theorem 3 is originated from the following statement: “...as before, we can
restrict attention to the trees where all internal vertices ... have degree at least 3...”. This
assumption is not valid in general. In particular, for 8 pendent vertices the My-minimizing

tree is depicted in Fig. la.

My=60<11n-27=61 My=n*-5n+36
a) b)

Figure 1: Two-sided brooms

Below we show that the statement of Theorem 3 is still valid for trees with n > 9

pendent vertices by proving the following corrected version of Theorem 3.

Theorem 3*. For any tree T with n > 9 pendent vertices My(T) > 11n — 27. The
equality holds if each stem wvertex in T has degree 4 or 5, while other internal vertices

having degree 3. At least one such tree exists for any n > 9.

We will need the below auxiliary results. In what follows, any tree with n pendent
vertices, which minimizes M, over the set of all trees with n pendent vertices, is called

optimal.
Lemma 1. For any edge vv' € E(T) in an optimal tree T with n > 3 pendent vertices,

either dr(v) > 3, or dr(v') > 3.

Proof. Assume that, by contradiction, dr(v) = d < 2 and dr(v') = d' < 2. Either d = 2
or d' = 2, as otherwise T' = K, and, thus, the tree 7' cannot have n > 3 pendent vertices.

With no loss of generality suppose that d’ = 2, and, consequently, d < d’. Let v" € V(T)
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be the second vertex incident to v/, and define d” := dr(v”). Let us consider the tree
T’ obtained from T' by deleting the internal vertex v with its incident edges and adding
the edge vv”. Obviously, My(T") — My(T) = dd" — dd' — d'd", and, from d < d’, we find
that My(T") — My(T) < —dd' < 0. The trees T and 7" have the same number of pendent

vertices, so, T cannot be optimal. This contradiction completes the proof. [ |

Lemma 2. In an optimal tree with n > 8 pendent vertices, any internal vertex has at

least one incident internal vertex.

Proof. If the lemma is not valid, then the optimal tree is a star K, with My(K7,,) = n?.

Consider a two-sided broom D(4;3;n — 4) (see Fig. 1b) with n pendent vertices and
My(D(4;3;n —4)) = n® —5n + 36. As n? — 5n + 36 < n? for n > 8, so, K;, cannot be

optimal. This contradiction completes the proof. [ |
Lemma 3. Any vertex degree is at most 6 in an optimal tree with n > 8 pendent vertices.

Proof. Assume, by contradiction, that in an optimal tree T’ some vertex v € V(T') has
degree dp(v) = p > 6. Let vq,...,v, be its incident vertices with degrees dy > --- > d,,
respectively. From Lemma 2, we know that d; > 2.

Let T" be a tree obtained from T by adding vertices v' and v”, edges vv’ and v'v”,

and redirecting edges vv;, i =4, ..., p, to the vertex v” instead of v (see Fig. 2).
Vi V4
v
V2
V3 Vp

Figure 2: Transformation of vertex v with degree d > 6

3 P P
A= My(T) = My(T) = > 4di+2-442(p—-2)+> (p—2)di— > pd;
=1

i=1 i=4
p 3
= 2p+4—22di—(p—4)2di. (2)
i=4 i=1

Ifp>7 thenp—4>0in(2). Fromd, > 2,d; > 1,1 =2,---,p, it follows that
S di >4 Thus, A <2p+4—2(p—3)—4(p—4) =26 —4p < 0. The trees T and T"
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have the same number of pendent vertices, so T cannot be optimal. This contradiction

completes the proof. [ |

An attached tree is a rooted tree with a root being a pendent vertex parameterized
with some “virtual degree” (degree of the vertex this tree is “attached” to). The vertex
incident to the root is called a sub-root. It will be convenient to consider the root as a
non-pendent vertex.

The cost of an attached tree T with some root w of “virtual degree” p and a sub-root

m of degree d is defined as

ColTyw,p) i=pd+ > dr(u)dr(v). (3)

weB(T)\{wm}

Consider a tree T and fix any vertex v € V(T). If it has degree p and incident vertices
v1,...,Vp, then T is a union of p attached trees 77, ..., T, with the common root v and
sub-roots vy, ...,v,, and Ms(T) = Y7 Co(Ti,v,p). Below we limit attention to the
attached trees, which can be a part of an optimal tree, so Lemmas 1-3 are supposed to
be valid for every attached tree in hand.

Let 7,(n,p) be the collection of all attached trees with n pendent vertices where the
root (denoted with w) has degree p > 2 (remember the root is not considered pendent),
and introduce the cost of an optimal attached tree

Cr(n,p) = Ter%i(%m Co(T,w,p) .

Lemma 4. C¥(1,p) = p, while for n > 2

-1 -1
C(n,p) = dix%in min {pd+ ZCH"(nhdHni eN, an = n} . (4)
i=1 i—1

R (ST P}

Proof. The case of n = 1 is obvious. For n > 2 each combination of d and ny,...,ns1 on
the right-hand side of (4) gives rise to an attached tree with n pendent vertices, the sub-
root enjoying degree d and being a root of d — 1 optimal attached trees with ny,...,n41
pendent vertices respectively. So, C#(n, p) cannot exceed the right-hand side in (4).

Let an optimal attached tree 7" with n pendent vertices have a root w and a sub-root m
of some degree d*. Then T is a union of the edge wm and d* — 1 > 1 attached sub-trees

Ty,...,T4-—; with the common root m. Let the trees Ti,...,Ty-—; have nj,...,nj._,
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pendent vertices respectively. By definition, C, (T}, m, d*) > C(n},d*). So,

a -1 d—1
Ci(n,p) =pd" + Z Co(T7,m,d*) > pd" + Z Cx(n;,d")
i=1 i=1
which is obviously not less than the right-hand side in (4). |

Let us rewrite (4) as C(n, p) = min [Cso(n, p), Ca(n, p)], where

a1 a1
Co(n, p) 1= 256 m, mln {der ;Ca(nivd”ni eN, ;nz = n} (5)

and

Cy(n,p) :=2p+C;(n,2) . (6)

From Lemma 1, the vertices of degree 2 cannot be incident in an optimal tree. So, if
the root has degree 2 in an optimal attached tree, the sub-root must have some degree
d > 3, and, thus, C*(n,2) = Csa(n,2).

Now we are ready to prove Theorem 3*.

Proof. Let us justify the following lower bound estimate for the cost of an optimal at-
tached tree, which is valid for p =3,...,6:
p ifn=1
Ca(n,p) = Cy(n, p) = (7)
1ln+3p— 18+ E(n,p) ifn>2
where E(4,6) = —2, E(4,5) = E(3,6) = E(5,6) = —1, and E(n,p) = 0 otherwise.

The inequality (7) trivially holds for n = 1. Assume it holds for all n’ < n. Let us
prove that it also holds for n. Asd >3 andn; > 1in (5), we haven; <n,i=1,...,d—1,
and, by the induction hypothesis, C(n;,d) > C,(n;,d) in (5). Thus, we can estimate
Cy(n,p) and Csa(n,p) from below by replacing C(n;, d) with C,(n;,d). Rewriting (5)

and (6) using the shorthand notation

C(n,p,d) = mln {pd-ﬁ-zc ni,d)n; € N, Zn,n} (8)

we see, that justifying inequality (7) is equivalent to proving that for p = 3,...,6:

dn;ln C(n,p,d) > C,(n,p) )

2p +d£I§iIlGC(7L’2’d) >C,(n,p). (10)
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Forn=2,...,7,p=2,...,6, we use (8) to calculate numerically C(n,p,d), so inequali-

ties (9) and (10) are directly validated. E(n,p) # 0 when the optimal attached tree with

n pendent vertices and degree p of a root is a broom B(3,n) with sub-root of degree 2.
Consider n > 8 and an arbitrary natural vector (ni,...,n4_1), such that Z?;ll n; =n.

Define 6; :==#{j:n; =i,5=1,...,d — 1} and rewrite (8) as

1y-e30n—1

n—1
C(n,p,d) = Jm%n {pd+z5,¢Qa(i,d)}
[)

n—1
= 61,1..1.1,}5271 {[)d + Z(Si(ll/l, +3d— 18+ E(i, d))}

i=1

1590 —1

=, win {pd+11n+(72p)61+(3V18)(d1)+TL2:51-E(¢,d)}4 (11)

i=1
We minimize here over all d,...,0,_; € Np, such that
n—1 n—1
 Gi=d—1,> idi=n. (12)
i=1 i=1

,,,,,

which is never less than 11n + 3p — 18.

For d = 4, expression (11) gives

,,,,,

As we consider only p > 2, inequality 11n + 4p — 18 — §; < 11n + 3p — 18 holds only for
07 > 3. From (12), it implies n = 3. Thus, for n > 8, C'(n,p,4) > 11n+ 3p — 18.

For d = 5, we write (11) as

Inequality 11n+5p—12—30; —d4 < 11n+3p—18 holds only when 30; + 04 > 2p+6 > 10.
From (12), the latter implies §; = 4,84 = 0, and, thus, n = 4. Consequently, for n > 8,
C(n,p,5) > 1ln+ 3p — 18.

For d = 6, expression (11) gives

C(n,p,6) = N I.?%sn,l{nn + 6p — 501 — 0320, — 05} .
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Inequality 11n+6p — 50, — 05204 — 65 < 11n+3p— 18 holds only when 58, + 03+ 20, + 5 >
3p + 18 > 24. From (12), the latter implies §; = 5,03 = 0, = 5 = 0, and, thus, n = 5.
Consequently, for n > 8, C'(n,p,6) > 11n+ 3p — 18.

The obtained estimates for C(n, p, d) justify inequality (9). Then we write

for p < 6, so, inequality (10) also holds for n > 8. Thus, we proved inequality (7).

Let us prove that M; > 11n — 27 for every tree with n > 9 pendent vertices. By
Lemma 2, any internal vertex in an optimal tree 7" has an incident internal vertex. At
least one internal vertex is a stem vertex m. Let its degree be d. From Lemmas 1 and 3,
de{3,...,6}.

The vertex m has d — 1 incident pendent vertices and one incident internal vertex.
So, the value of My(T') adds up from the total contribution (d — 1)d of d — 1 pendent

vertices and the cost of an attached sub-tree T;:
My(T) = (d—1)d+ Co(Ty,m,d) > (d—1)d+ C,(n—d+1,d) .

Consider n > 11, so that n —d+ 1 > 6 and C,(n — d + 1,d) is always equal to
11(n —d+ 1)+ 3d — 18. In this case, My(T) > 11n+ (d — 9)d — 7. The minimum in the
right-hand side is attained at d = 4,5 and is equal to 11n — 27.

For n =9, 10 we also need to check that the double brooms D(d—1,3,n—d+1) (they
originate from the cases when E(n,p) # 0 in (7)) do not violate inequality My(D(d —
1,3,n—d+1)) > 11ln — 27. For example,

My(D(5,3,4)) > 56+ C,(4,6) = 11n — 27 = 72
My(D(5,3,5)) >5-6+C,(5,6) =84 > 11n — 27 =83 .

The existence of the optimal tree is proved as in Theorem 3 in [2]. |
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