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Abstract

Theorem 3 in [2] claims that the second Zagreb index M2 cannot be less than 11n− 27 for

a tree with n ≥ 8 pendent vertices. Yet, a tree exists with n = 8 vertices (the two-sided broom)

violating this inequality. The reason is that the proof of Theorem 3 relays on a tacit assumption

that an index–minimizing tree contains no vertices of degree 2. This assumption appears to be

invalid in general. In this note we show that the inequality M2 ≥ 11n− 27 still holds for trees

with n ≥ 9 vertices and provide the valid proof of the (corrected) Theorem 3.

Let G be a simple connected undirected graph with the vertex set V (G) and the edge

set E(G). Denote by dG(v) the degree of a vertex v ∈ V (G) in the graph G, i.e., the

number of vertices being incident to v in G. The second Zagreb index is defined as [1]

M2(G) :=
∑

uv∈E(G)

dG(u) dG(v) . (1)

The vertex v ∈ V (G) with dG(v) = 1 is called a pendent vertex. All other vertices are

called internal vertices. A connected graph T with N vertices and N − 1 edges is called

a tree. An internal vertex is called a stem vertex if it has at most one incident internal

vertex.

In [2] the following theorem was stated.
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Theorem 3. For any tree T with n ≥ 8 pendent vertices M2(T ) ≥ 11n−27. The equality

holds if each stem vertex in T has degree 4 or 5, while the other internal vertices have

degree 3. At least one such tree exists for any n ≥ 9.

However later a tree was found with n = 8 pendent vertices (the two-sided broom

D(4; 3; 4), see Fig. 1a) with M2(D(4; 3; 4)) = 60 < 11n − 27. The inaccuracy in the

proof of Theorem 3 is originated from the following statement: “...as before, we can

restrict attention to the trees where all internal vertices ... have degree at least 3...”. This

assumption is not valid in general. In particular, for 8 pendent vertices theM2-minimizing

tree is depicted in Fig. 1a.
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Figure 1: Two-sided brooms

Below we show that the statement of Theorem 3 is still valid for trees with n ≥ 9

pendent vertices by proving the following corrected version of Theorem 3.

Theorem 3∗. For any tree T with n ≥ 9 pendent vertices M2(T ) ≥ 11n − 27. The

equality holds if each stem vertex in T has degree 4 or 5, while other internal vertices

having degree 3. At least one such tree exists for any n ≥ 9.

We will need the below auxiliary results. In what follows, any tree with n pendent

vertices, which minimizes M2 over the set of all trees with n pendent vertices, is called

optimal.

Lemma 1. For any edge vv′ ∈ E(T ) in an optimal tree T with n ≥ 3 pendent vertices,

either dT (v) ≥ 3, or dT (v
′) ≥ 3.

Proof. Assume that, by contradiction, dT (v) = d ≤ 2 and dT (v
′) = d′ ≤ 2. Either d = 2

or d′ = 2, as otherwise T = K2 and, thus, the tree T cannot have n ≥ 3 pendent vertices.

With no loss of generality suppose that d′ = 2, and, consequently, d ≤ d′. Let v′′ ∈ V (T )
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be the second vertex incident to v′, and define d′′ := dT (v
′′). Let us consider the tree

T ′ obtained from T by deleting the internal vertex v′ with its incident edges and adding

the edge vv′′. Obviously, M2(T
′)−M2(T ) = dd′′ − dd′ − d′d′′, and, from d ≤ d′, we find

that M2(T
′)−M2(T ) ≤ −dd′ < 0. The trees T and T ′ have the same number of pendent

vertices, so, T cannot be optimal. This contradiction completes the proof.

Lemma 2. In an optimal tree with n ≥ 8 pendent vertices, any internal vertex has at

least one incident internal vertex.

Proof. If the lemma is not valid, then the optimal tree is a star K1,n with M2(K1,n) = n2.

Consider a two-sided broom D(4; 3;n − 4) (see Fig. 1b) with n pendent vertices and

M2(D(4; 3;n − 4)) = n2 − 5n + 36. As n2 − 5n + 36 < n2 for n ≥ 8, so, K1,n cannot be

optimal. This contradiction completes the proof.

Lemma 3. Any vertex degree is at most 6 in an optimal tree with n ≥ 8 pendent vertices.

Proof. Assume, by contradiction, that in an optimal tree T some vertex v ∈ V (T ) has

degree dT (v) = p > 6. Let v1, . . . , vp be its incident vertices with degrees d1 ≥ · · · ≥ dp ,

respectively. From Lemma 2, we know that d1 ≥ 2.

Let T ′ be a tree obtained from T by adding vertices v′ and v′′, edges vv′ and v′v′′,

and redirecting edges vvi, i = 4, . . . , p, to the vertex v′′ instead of v (see Fig. 2).

v1

...v2

v3

v
v4

vp

v1

v2

v3

v
...

v4

vp

v' v''

Figure 2: Transformation of vertex v with degree d ≥ 6

Δ := M2(T
′)−M2(T ) =

3∑
i=1

4 di + 2 · 4 + 2 (p− 2) +

p∑
i=4

(p− 2) di −
p∑

i=1

p di

= 2 p+ 4− 2

p∑
i=4

di − (p− 4)
3∑

i=1

di . (2)

If p ≥ 7, then p − 4 > 0 in (2). From d1 ≥ 2, di ≥ 1, i = 2, · · · , p, it follows that∑3
i=1 di ≥ 4. Thus, Δ ≤ 2 p+4− 2 (p− 3)− 4 (p− 4) = 26− 4 p < 0. The trees T and T ′
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have the same number of pendent vertices, so T cannot be optimal. This contradiction

completes the proof.

An attached tree is a rooted tree with a root being a pendent vertex parameterized

with some “virtual degree” (degree of the vertex this tree is “attached” to). The vertex

incident to the root is called a sub-root. It will be convenient to consider the root as a

non-pendent vertex.

The cost of an attached tree T with some root w of “virtual degree” p and a sub-root

m of degree d is defined as

Ca(T,w, p) := p d+
∑

uv∈E(T )\{wm}
dT (u) dT (v). (3)

Consider a tree T and fix any vertex v ∈ V (T ). If it has degree p and incident vertices

v1, . . . , vp, then T is a union of p attached trees T1, . . . , Tp with the common root v and

sub-roots v1, . . . , vp, and M2(T ) =
∑p

i=1 Ca(Ti, v, p). Below we limit attention to the

attached trees, which can be a part of an optimal tree, so Lemmas 1-3 are supposed to

be valid for every attached tree in hand.

Let Ta(n, p) be the collection of all attached trees with n pendent vertices where the

root (denoted with w) has degree p ≥ 2 (remember the root is not considered pendent),

and introduce the cost of an optimal attached tree

C∗
a(n, p) = min

T∈Ta(n,p)
Ca(T,w, p) .

Lemma 4. C∗
a(1, p) = p, while for n ≥ 2

C∗
a(n, p) = min

d=2,...,6
min

n1,...,nd−1

{
pd+

d−1∑
i=1

C∗
a(ni, d)|ni ∈ N ,

d−1∑
i=1

ni = n

}
. (4)

Proof. The case of n = 1 is obvious. For n ≥ 2 each combination of d and n1, . . . , nd−1 on

the right–hand side of (4) gives rise to an attached tree with n pendent vertices, the sub-

root enjoying degree d and being a root of d− 1 optimal attached trees with n1, . . . , nd−1

pendent vertices respectively. So, C∗
a(n, p) cannot exceed the right–hand side in (4).

Let an optimal attached tree T with n pendent vertices have a root w and a sub-rootm

of some degree d∗. Then T is a union of the edge wm and d∗ − 1 ≥ 1 attached sub-trees

T1, . . . , Td∗−1 with the common root m. Let the trees T1, . . . , Td∗−1 have n∗
1, . . . , n

∗
d∗−1
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pendent vertices respectively. By definition, Ca(Ti,m, d∗) ≥ C∗
a(n

∗
i , d

∗). So,

C∗
a(n, p) = p d∗ +

d∗−1∑
i=1

Ca(T
∗
i ,m, d∗) ≥ p d∗ +

d∗−1∑
i=1

C∗
a(n

∗
i , d

∗)

which is obviously not less than the right-hand side in (4).

Let us rewrite (4) as C∗
a(n, p) = min [C>2(n, p), C2(n, p)], where

C>2(n, p) := min
d=3,...,6

min
n1,...,nd−1

{
pd+

d−1∑
i=1

C∗
a(ni, d)|ni ∈ N ,

d−1∑
i=1

ni = n

}
(5)

and

C2(n, p) := 2p+ C∗
a(n, 2) . (6)

From Lemma 1, the vertices of degree 2 cannot be incident in an optimal tree. So, if

the root has degree 2 in an optimal attached tree, the sub-root must have some degree

d ≥ 3, and, thus, C∗
a(n, 2) = C>2(n, 2).

Now we are ready to prove Theorem 3∗.

Proof. Let us justify the following lower bound estimate for the cost of an optimal at-

tached tree, which is valid for p = 3, . . . , 6:

C∗
a(n, p) ≥ Ca(n, p) :=

⎧⎨⎩p if n = 1

11n+ 3p− 18 + E(n, p) if n ≥ 2
(7)

where E(4, 6) = −2, E(4, 5) = E(3, 6) = E(5, 6) = −1, and E(n, p) = 0 otherwise.

The inequality (7) trivially holds for n = 1. Assume it holds for all n′ < n. Let us

prove that it also holds for n. As d ≥ 3 and ni ≥ 1 in (5), we have ni < n, i = 1, . . . , d−1,

and, by the induction hypothesis, C∗
a(ni, d) ≥ Ca(ni, d) in (5). Thus, we can estimate

C2(n, p) and C>2(n, p) from below by replacing C∗
a(ni, d) with Ca(ni, d). Rewriting (5)

and (6) using the shorthand notation

C(n, p, d) := min
n1,...,nd−1

{
pd+

d−1∑
i=1

Ca(ni, d)|ni ∈ N ,

d−1∑
i=1

ni = n

}
(8)

we see, that justifying inequality (7) is equivalent to proving that for p = 3, . . . , 6:

min
d=3,...,6

C(n, p, d) ≥ Ca(n, p) (9)

2p+ min
d=3,...,6

C(n, 2, d) ≥ Ca(n, p) . (10)
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For n = 2, . . . , 7, p = 2, . . . , 6, we use (8) to calculate numerically C(n, p, d), so inequali-

ties (9) and (10) are directly validated. E(n, p) �= 0 when the optimal attached tree with

n pendent vertices and degree p of a root is a broom B(3, n) with sub-root of degree 2.

Consider n ≥ 8 and an arbitrary natural vector (n1, . . . , nd−1), such that
∑d−1

i=1 ni = n.

Define δi := # {j : nj = i, j = 1, . . . , d− 1} and rewrite (8) as

C(n, p, d) = min
δ1,...,δn−1

{
pd+

n−1∑
i=1

δiCa(i, d)

}

= min
δ1,...,δn−1

{
pd+

n−1∑
i=1

δi(11i+ 3d− 18 + E(i, d))

}

= min
δ1,...,δn−1

{
pd+11n+(7−2p)δ1+(3p−18)(d−1)+

n−1∑
i=1

δiE(i, d)

}
. (11)

We minimize here over all δ1, . . . , δn−1 ∈ N0, such that

n−1∑
i=1

δi = d− 1,
n−1∑
i=1

i δi = n . (12)

Let us estimate C(n, p, 3) from below. Substituting d = 3 into (11), we have

C(n, p, 3) = min
δ1,...,δn−1

{11n+ 3p− 18 + δ1}

which is never less than 11n+ 3p− 18.

For d = 4, expression (11) gives

C(n, p, 4) = min
δ1,...,δn−1

{11n+ 4p− 18− δ1}

As we consider only p ≥ 2, inequality 11n+ 4p− 18− δ1 < 11n+ 3p− 18 holds only for

δ1 ≥ 3. From (12), it implies n = 3. Thus, for n ≥ 8, C(n, p, 4) ≥ 11n+ 3p− 18.

For d = 5, we write (11) as

C(n, p, 5) = min
δ1,...,δn−1

{11n+ 5p− 12− 3δ1 − δ4} .

Inequality 11n+5p−12−3δ1−δ4 < 11n+3p−18 holds only when 3δ1+δ4 > 2p+6 ≥ 10.

From (12), the latter implies δ1 = 4, δ4 = 0, and, thus, n = 4. Consequently, for n ≥ 8,

C(n, p, 5) ≥ 11n+ 3p− 18.

For d = 6, expression (11) gives

C(n, p, 6) = min
δ1,...,δn−1

{11n+ 6p− 5δ1 − δ32δ4 − δ5} .
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Inequality 11n+6p−5δ1−δ32δ4−δ5 < 11n+3p−18 holds only when 5δ1+δ3+2δ4+δ5 >

3p + 18 ≥ 24. From (12), the latter implies δ1 = 5, δ3 = δ4 = δ5 = 0, and, thus, n = 5.

Consequently, for n ≥ 8, C(n, p, 6) ≥ 11n+ 3p− 18.

The obtained estimates for C(n, p, d) justify inequality (9). Then we write

2p+ min
d=3,...,6

C(n, 2, d) ≥ 2p+ 11n+ 2 · 3− 18 = 11n+ 2p− 12 ≥ 11n+ 3p− 18

for p ≤ 6, so, inequality (10) also holds for n ≥ 8. Thus, we proved inequality (7).

Let us prove that M2 ≥ 11n − 27 for every tree with n ≥ 9 pendent vertices. By

Lemma 2, any internal vertex in an optimal tree T has an incident internal vertex. At

least one internal vertex is a stem vertex m. Let its degree be d. From Lemmas 1 and 3,

d ∈ {3, . . . , 6}.
The vertex m has d − 1 incident pendent vertices and one incident internal vertex.

So, the value of M2(T ) adds up from the total contribution (d − 1)d of d − 1 pendent

vertices and the cost of an attached sub-tree T1:

M2(T ) = (d− 1)d+ Ca(T1,m, d) ≥ (d− 1)d+ Ca(n− d+ 1, d) .

Consider n ≥ 11, so that n − d + 1 ≥ 6 and Ca(n − d + 1, d) is always equal to

11(n− d+ 1) + 3d− 18. In this case, M2(T ) ≥ 11n+ (d− 9)d− 7. The minimum in the

right-hand side is attained at d = 4, 5 and is equal to 11n− 27.

For n = 9, 10 we also need to check that the double brooms D(d−1, 3, n−d+1) (they

originate from the cases when E(n, p) �= 0 in (7)) do not violate inequality M2(D(d −
1, 3, n− d+ 1)) ≥ 11n− 27. For example,

M2(D(5, 3, 4)) ≥ 5 · 6 + Ca(4, 6) = 11n− 27 = 72

M2(D(5, 3, 5)) ≥ 5 · 6 + Ca(5, 6) = 84 > 11n− 27 = 83 .

The existence of the optimal tree is proved as in Theorem 3 in [2].
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