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Abstract

Three vertex–degree-based graph invariants are presented, that earlier have been consid-
ered in the chemical and/or mathematical literature, but that evaded the attention of most
mathematical chemists. These are the reciprocal Randić index (RR), the reduced second
Zagreb index RM2 , and the reduced reciprocal Randić index (RRR). If d1, d2, . . . , dn are
the degrees of the vertices of the graph G = (V,E), then

RR =
∑
ij∈E

√
di dj , RM2 =

∑
ij∈E

(di − 1)(dj − 1) , RRR =
∑
ij∈E

√
(di − 1)(dj − 1) .

We outline the literature sources of these topological indices, their main mathematical prop-

erties, and establish their correlating abilities w.r.t. characteristic physico–chemical proper-

ties of alkanes.

1 Introduction

Let G be a simple graph with n vertices and m edges, with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G). The edge connecting the vertices vi and vj will be

denoted by ij.

The degree of the vertex vi , denoted by di , is the number of first neighbors of vi

in the underlying graph.
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In the chemical literature, several dozens of vertex–degree–based topological indices

have been and are currently considered and applied in QSPR/QSAR studies. Three

oldest and most thoroughly investigated are the first Zagreb index M1 , the second

Zagreb index M2 , and the Randić (or connectivity) index R. These are defined as

M1 = M1(G) =
∑

vi∈V (G)

(di)
2 (1)

M2 = M2(G) =
∑

ij∈E(G)

di dj (2)

R = R(G) =
∑

ij∈E(G)

1√
di dj

. (3)

In addition, we mention here the geometric–arithmetic index GA

GA = GA(G) =
∑

ij∈E(G)

√
di dj

(di + dj)/2
. (4)

Details of these and other degree–based topological indices can be found in the

books [20, 21, 28], surveys [5–7, 19, 34–36], recent review [18], and the references cited

therein. Comparative studies of the chemical applicability of these indices were re-

cently reported [16, 23]. Three degree–based indices that we consider in the present

paper, although not truly new, have so far not been studied in mathematical chemistry.

In particular, these are not mentioned at all either in the works [5–7,16,19–21,23,28,

34–36] or in the handbooks [37, 38]. The aim of the present article is to contribute

towards filling this gap.

The new/old topological indices studied in the present paper are the following.

• The reciprocal Randić index is defined as

RR = RR(G) =
∑

ij∈E(G)

√
di dj . (5)

It is, of course, a special case of the earlier much examined “general Randić

index”
∑

ij∈E(G)

(di dj)
α, where α is a variable parameter (see [20, 28]). Yet, in the

theory of general Randić index, the choice α = 1/2 did not attract any particular

attention.

The invariant RR seems to be first encountered in a paper by Favaron, Mahéo,

and Saclé [15], but only in connection with a marginal result stated in their
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Proposition 2.8 (see Theorem 2 below). The usage of RR for measuring graph

irregularity [11] is outlined in the subsequent section.

• The reduced second Zagreb index is defined as

RM2 = RM2(G) =
∑

ij∈E(G)

(di − 1)(dj − 1) . (6)

Because of the identity

RM2(G) = M2(G)−M1(G) +m (7)

this graph invariant is necessarily encountered within studies of the difference

between the two Zagreb indices [3, 17, 32]. In addition, if the graph G is a tree,

then RM2(G) is equal to the number of pairs of vertices at distance 3 [9,27,29,40],

which in mathematical chemistry is often referred to as the “Wiener polarity

index”.

• In the same manner as the reduced second Zagreb index, Eq. (6), is related with

the ordinary second Zagreb index, Eq. (2), the reduced reciprocal Randić

index

RRR = RRR(G) =
∑

ij∈E(G)

√
(di − 1)(dj − 1) (8)

might be viewed as the reduced analogue of the reciprocal Randić index, Eq.

(5). However, short time ago, the invariant RRR has appeared in the physico–

chemical literature in a fully unrelated context [31]: within a novel approach for

modeling normal boiling points of hydrocarbons.

In the later parts of this paper we refer to three standard special graphs: the star

Sn , the path Pn , and the complete graph Kn. The star Sn is the n-vertex tree in

which one vertex has degree n− 1. The path Pn is the n-vertex tree in which exactly

two vertices have degree one. The complete graph Kn is the n-vertex graph in which

the degree of all vertices is n− 1.

2 Measuring Irregularity of Graphs

If G is a graph of order n with vertex degrees d1, d2, . . . , dn and if

d1 = d2 = · · · = dn (9)
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then G is said to be regular. If, in addition, d1 = d2 = · · · = dn = r , then G is regular

of degree r. If condition (9) is not satisfied, then G is said to be irregular . In order

to establish “how irregular” a given graph is, several irregularity measures, denoted

here by irr(G), have been proposed. Each of such measures is required to have the

property irr(G) ≥ 0 and irr(G) = 0 if the graph G is regular.

In chemical applications, quantifying the irregularity of molecular graphs and of

biomolecular networks seems to be of marginal importance. Yet, some results along

these lines have been achieved [12,16, 22].

The oldest measure of graph irregularity is that of Collatz and Sinogowitz [4],

namely μ− d, where μ is the largest eigenvalue of the (n,m)-graph G, and d = 2m/n

is its average vertex degree. It is based on the relation [4]

μ ≥ 2m

n

in which equality holds if and only if the graph G is regular. Therefore, it is convenient

to write the Collatz–Sinogowitz measure as

irr
CS
(G) =

nμ

2m
− 1 . (10)

Other proposed irregularity measures are in terms of vertex degrees, which indeed

is the natural option. Edwards [10] considered the measure irr
E
defined via

ν = ν(G) := 1 + irr
E
(G)2 =

n

4m2

∑
vi∈V (G)

(di)
2 . (11)

We immediately recognize its close relation with the first Zagreb index, Eq. (1):

irr
E
(G) =

√
nM1(G)

4m2
− 1 .

Condition irr
E
(G) ≥ 0 is equivalent to the well-known inequality M1(G) ≥ 4m2/n in

which equality holds if and only if G is regular.

A mathematically equivalent approach to Edwards’ irregularity is that of Bell [2],

whose measure is the variance of the vertex degrees:

irr
B
(G) =

1

n

∑
vi∈V (G)

(di)
2 −

⎛⎝ 1

n

∑
vi∈V (G)

di

⎞⎠2

.

Consequently,

irr
B
(G) =

M1(G)

n
−
(
2m

n

)2

.
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Albertson’s measure [1] is defined as

irr
A
(G) =

∑
ij∈E(G)

|di − dj| . (12)

Various classes of graphs whose irr
A
-value is extremal have been studied [14,30,41]. It

is worth noting that, not being aware of Albertson’s work [1], Fath–Tabar proposed [13]

that the quantity on the right–hand side of Eq. (12) be called the “third Zagreb index”.

The papers [22, 24] report comparative studies of the irregularity measures irr
B

and irr
A
.

Wocjan and one of the present authors [11] considered the edge-variant of Edwards’

measure, Eq. (11), and introduced

ε = ε(G) := 1 + irr
EW

(G)2 =
n

2m2

∑
ij∈E(G)

√
di dj . (13)

which in view of Eq. (5) is tantamount to

irr
EW

(G) =

√
nRR(G)

2m2
− 1 . (14)

The Elphick–Wocjan measure of irregularity is based on Theorem 5, proven in Sub-

section 3.1.

We see that some of the measures of graph irregularity are intimately connected

with degree–based topological indices. This observation could be further strengthened

by pointing out that the Randić index, Eq. (3), and the geometric–arithmetic index,

Eq. (4), could serve for constructing irregularity measures.

For a connected graph G with n vertices, R(G) ≤ n/2, with equality if and only if

G is regular [15,28]. For a connected graph with m edges, GA(G) ≤ m, with equality

if and only if G is regular [39]. Therefore,

irr
R
(G) = 1− 2R(G)

n

irr
GA

(G) = 1− GA(G)

m

could be viewed as measures of graph irregularity. Analogous irregularity measures

could be designed by means of any other degree–based topological index.
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3 Mathematical Properties of Topological

Indices RR, RRR, and RM2

3.1 Bounds

As before, by μ we denote the largest eigenvalue of the adjacency matrix of the graph

G. The following result seems to have been first reported by Hofmeister in 1988 [25].

Theorem 1. [25] Let the first Zagreb index M1(G) be defined via Eq. (1), and let μ

be the largest eigenvalue of the (n,m)-graph G. Then,

μ ≥
√

M1(G)

n

with equality if and only if G is regular.

The next two theorems were obtained by Favaron, Mahéo, Saclé [15] as early as in

1993.

Theorem 2. [15] Let the reciprocal Randić index RR(G) be defined via Eq. (5), and

let μ be the largest eigenvalue of the (n,m)-graph G. Then,

μ ≥ RR(G)

m
.

Equality is attained in the case of regular graphs, but the necessary and sufficient

conditions for equality are much more complicated, see Proposition 2.8 in [15].

Theorem 3. [15] Let the Randić index R(G) and the reciprocal Randić index RR(G)

of the (n,m)-graph G be defined via Eqs. (3) and (5) . Then,

R(G)·RR(G) ≥ m2

with equality if and only if G is regular.

Proof. Replace R(G) ·RR(G) by the right–hand sides of Eqs. (3) and (5), use the

Cauchy–Schwartz inequality, and recall that |E(G)| = m.

We now consider three measures of irregularity, irr
CS

, ν, and ε, as defined by Eqs.

(10), (11), and (13), respectively.
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Theorem 4. Let G be a graph of order n, with no isolated vertices. Then,(
irr

CS
(G) + 1

)2

≤ n2

4(n− 1)
(15)

ν(G) ≤ n2

4(n− 1)
(16)

ε(G)2 ≤ n2

4(n− 1)
(17)

with equality in all three cases if G ∼= Sn .

Proof.

Upper bound (15): Hong [26] proved that μ2 ≤ 2m − n + 1 for connected graphs.

Therefore,

(irr
CS

+ 1)2 =
n2 μ2

4m2
≤ n2 (2m− n+ 1)

4m2
≤ n2

4(n− 1)

because of

0 ≤ m2 − 2m(n− 1) + (n− 1)2 = (m− (n− 1))2

which is true for all m and n.

Upper bound (16): In [11] it has been shown that ν ≤ [nμ/(2m)]2, so (16) immediately

follows from the bound (15).

Upper bound (17): In [11] it also has been shown that ε ≤ nμ/(2m), so (17) immedi-

ately follows from the bound (15).

It is straightforward to show that all three bounds (15)–(17) are exact for the star

graph.

For a graph with clique number ω, Nikiforov has proved that [33]

μ2 ≤ 2m(ω − 1)/ω .

Bearing this result in mind, we get

(irr
CS

+ 1)2 =
n2 μ2

4m2
≤ 2n2 m(ω − 1)

4m2 ω
=

n2 (ω − 1)

2mω
≤ n2

2m
.

Therefore for triangle–free graphs, irr
CS

≤
√
n2/4m− 1.
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Theorem 5. Let G be a graph with n vertices and m edges. Let ε(G) and irr
EW

(G)

be the quantities defined via Eqs. (13) and (14). Then ε(G) ≥ 1 and, equivalently,

irr
EW

(G) ≥ 0 holds, with equalities if and only if the graph G is regular.

Proof. Bearing in mind Theorem 3, we get

ε =
nRR

2m2
=

nR ·RR

2Rm2
≥ nm2

2Rm2
=

n

2R
.

For every edge ij ∈ E(G), (
1√
di

− 1√
dj

)2

≥ 0

from which it follows
2√
di dj

≤ 1

di
+

1

dj
.

Therefore, by Eq. (3),

n

2R
=

n

2

⎡⎣ ∑
ij∈E(G)

1√
di dj

⎤⎦−1

≥ n

⎡⎣ ∑
ij∈E(G)

(
1

di
+

1

dj

)⎤⎦−1

= 1

because of ∑
ij∈E(G)

(
1

di
+

1

dj

)
= n . (18)

Recall that (18) is just a special case of a more general identity, recently reported

in [8].

The fact that ε(G) = 1 and irr
EW

(G) = 0 for regular graphs is directly verified

from Eqs. (13) and (14).

It should be noted that the result of Theorem 5 is equivalent to the relation

RR(G) ≥ 2m2

n

in which, again, equality holds if and only if G is regular.
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3.2 An identity for reduced second Zagreb index

The reduced second Zagreb index RM2 is defined via Eq. (6). By taking into ac-

count the definitions of the first and second Zagreb indices, Eqs. (1) and (2), one

straightforwardly arrives at the equality (7).

Several authors [9,27,29,32,40] have recognized that if the edge ij does not belong

to a triangle, then the term (di−1)(dj−1) is equal to the number of pairs of vertices of

which one is adjacent to vi and the other to vj . In other words, (di−1)(dj−1) is equal

to the number of P4–subgraphs of the graph G, whose central edge is ij. Consequently,

RM2 is equal to the total number of 4-vertex path–subgraphs of G. This implies:

Theorem 6. If G is a triangle–free graph (which includes the case of trees), then

RM2(G) = p4, there p4 is the number of subgraphs of G isomorphic to P4 .

The above theorem is stated in several papers [9, 27, 29, 40]. If, in addition, the

graph G does not possess cycles whose size is smaller than 7 (which, again, includes

the case of trees), then p4 coincides with the number of vertex pairs at distance 3 (the

“Wiener polarity number”) [29].

In the general case, when the graph possesses triangles, Theorem 6 has to be

modified as [32]:

Theorem 7. If G is a graph with t triangles, then RM2(G) = p4 + 3t.

3.3 Graphs and trees with extremal RR, RRR, and RM2 in-
dices

Theorem 8. Let G be a connected graph of order n. Then

RR(Pn) ≤ RR(G) ≤ RR(Kn) (19)

RM2(Sn) ≤ RM2(G) ≤ RM2(Kn) (20)

RRR(Sn) ≤ RRR(G) ≤ RRR(Kn). (21)

Equalities in (19) are attained if and only if G ∼= Pn and G ∼= Kn , respectively.

Analogous conditions apply also for equalities in (20) and (21).
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Proof. All inequalities in (19)–(21), except the left one in (19), are immediate and

obvious consequences of the definitions (5), (6), and (8).

From Eq. (5), it is evident that by deleting an edge from the graph G, its RR-value

will diminish. By deleting from G as many edges as possible, so that the subgraph thus

obtained remains connected, we arrive at a tree. In Theorem 3.3.6 in the book [28]

it is proven that in the case of n-vertex trees, n ≥ 5, and for α > 0, the quantity∑
ij∈E(G)

(di dj)
α attains its minimal value for G ∼= Pn. The left–hand side bound in (19)

is the special case of this result for α = 1/2.

Theorem 9. If T is a tree of order n, then

RR(Pn) ≤ RR(T ) ≤ RR(Sn) .

Equality is attained if and only if, T ∼= Pn and T ∼= Sn , respectively.

Proof. The left inequality is a special case of (19). The right inequality is a special

case of Theorem 3.3.2 in the book [28], according to which the star is the n-vertex tree

with maximal
∑

ij∈E(G)

(di dj)
α for all 0 < α < 1.

If T is a tree of order n, then, evidently, the star Sn has minimal RM2– and RRR-

values, both equal to zero. The case of trees with maximal RM2– and RRR-values is

somewhat more complicated.

Let n and Δ be fixed integers, n ≥ 4, 2 ≤ Δ ≤ n − 2. Construct the set T (n,Δ)

of n-vertex trees by attaching (in any possible way) n−Δ− 1 pendent vertices to the

pendent vertices of the star SΔ+1.

Theorem 10. Let n be a fixed integer, n ≥ 4.

(a) If n is even, then the n-vertex trees with greatest RM2-value are the elements of

T (n, n/2). For all T ∈ T (n, n/2), this maximal value is RM2(T ) =
1
4
(n− 2)2.

(b) If n is odd, then the n-vertex trees with greatest RM2-value are the elements

T (n, 
n/2�)⋃ T (n, �n/2). For all T ∈ T (n, 
n/2�)⋃ T (n, �n/2), this maximal

value is RM2(T ) =
1
4
(n− 1)(n− 3).

The proof of Theorem 10 is lengthy and has been communicated elsewhere [17].

An illustrative example is given in Fig. 1.
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T

T

TT T

T
1 2 3 4 5

6 7 8 9 10

13 14 1715 16

11 12

Fig. 1. Trees of order n = 10 and n = 11 with maximal reduced second Za-
greb indices: T (10, 5) = {T1, T2, T3, T4, T5}; T (11, 5) = {T6, T7, T8, T9, T10, T11, T12};
T (11, 6) = {T13, T14, T15, T16, T17}. Note that T6 and T13 are isomorphic; therefore
there is a total of 11 mutually non-isomorphic trees of order 11, with maximal RM2.

Let n be a fixed integer, n ≥ 3. If n = 2k, construct the tree TRRR(n) by attaching

one pendent vertex to k − 1 pendent vertices of Sk+1, not attaching anything to a

single pendent vertex of Sk+1 , see Fig. 2. If n = 2k + 1, construct the tree TRRR(n)

by attaching one pendent vertex to each of the k pendent vertices of the star Sk+1 ,

see Fig. 2.

kk-1 }}
n=2k n=2k+1

Fig. 2. The tree TRRR(n) which by Theorem 11 has greatest reduced reciprocal
Randić index.

The following result was obtained by an extensive computer search (embracing

trees up to n = 20). At the present moment its exact proof is not known. We,
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nevertheless, state it in the form of a theorem.

Theorem 11. The tree of order 6 with maximal RRR-value is P6 . The tree of order

8 with maximal RRR-value is the tree obtained by attaching a pendent vertex to a

pendent vertex of TRRR(7). For n ≥ 3, n �= 6, 8, the tree of order n with maximal

RRR-value is TRRR(n).

4 Correlation of Topological Indices RR, RRR, and

RM2 with Physico–Chemical Parameters of Alka-

nes

In order to get some preliminary information on whether the three new/old topological

indices possess any potential applicability in chemistry (especially in QSPR/QSAR

studies), we have correlated them with two characteristic physico–chemical properties.

The standard enthalpy of formation (ΔH◦
f ) was chosen to represent thermodynamic

(energetic) molecular properties. The normal boiling point (b.p.) was chosen as a

feature reflecting intermolecular (van der Waals type) interactions. As in our earlier

studies [16,23], the set consisting of all isomeric octanes was used, for which molecular–

size–based effects, as well as effects caused by polar groups can be disregarded.

In Table 1 are given the correlation coefficients (r) of the studied correlations.

In addition to RR, RM2 and RRR, we report r-values also for the Randić index

(R), geometric–arithmetic index (GA), atom–bond connectivity index (ABC), and

augmented Zagreb index (AZI). The latter two topological indices were included into

the test because according to earlier studies [16,23], these possess the best correlating

abilities. (More details on ABC and AZI can be found in the recent review [18].)

index r(ΔH◦
f ) r(b.p.)

RR −0.640 −0.609
RM2 0.059 0.086
RRR 0.898 0.877
R 0.850 0.821
GA 0.858 0.823
ABC −0.894 −0.863
AZI 0.922 0.923
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Table 1. Correlation coefficients (r) of correlations between selected degree–based
topological indices and two physico–chemical properties of octane isomers. For details
see text.

As expected [16, 23], also in this case, AZI was found to possess the best cor-

relating ability among the examined degree–based topological indices. As a sort of

promising surprise, the new RRR-index performed slightly better than the previously

second–ranked ABC-index. Thus, the reduced reciprocal Randić index qualifies to

be included among structure–descriptors deserving attention of colleagues performing

QSPR/QSAR studies. The present results also corroborate the work of Manso et

al. [31], whose correlations pertain to sets of non-isomers, in which case the effect of

molecular size usually screens any other topology–based influence.

In contrast to this, the reciprocal Randić index and, especially, the reduced second

Zagreb index did not pass our tests. These were found to be inferior to the standard

and most frequently employed molecular structure descriptors (such as the Randić in-

dex), and their further utilization for QSPR/QSAR purposes cannot be recommended.

Acknowledgement. B. F. thanks the Ministry of Science and Education of Serbia for

financial support through the project No. 174033.

References

[1] M. O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219–225.

[2] F. K. Bell, A note on the irregularity of graphs, Lin. Algebra Appl. 161 (1992)

45–54.
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