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Abstract

Using the database of scientific papers published in MATCH Communications in Math-

ematical and in Computer Chemistry from 2000 to 2012, by combining complex network

theory and social network analysis, we construct the network of collaboration between sci-

entists. In the network two scientists are connected if they have coauthored one or more

papers together. At the same time, we study a variety of statistical properties of the

network, including average path length between scientists, degree distribution, clustering

coefficient, betweenness, existence and size of a giant component of connected scientists.

The result shows that the scientific collaboration network is a non-connected network and

presents the network characteristic of scale–free and small–world.

1 Introduction

Complex networks represent an important area of multidisciplinary research, consist-

ing of sets of vertices or nodes joined together in pairs by edges or links, and appear fre-
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quently in various technological, social, and biological scenarios [1,7,9,17,21]. These

networks include the Internet [10], the World Wide Web [2, 8], social networks [18],

scientific collaboration networks [13, 16], food webs [24], and protein-protein inter-

action networks [25]. All in all, complex networks are everywhere. Therefore, the

qualitative and quantitative research of complex network has become a major theme

of today’s science. They have been shown to share global statistical features, such as

the “small world” [6, 26] and the “scale–free” [4] effects, as well as the “clustering”

property.

A social network is a set of people or groups, each of which has connections of

some kind to some or all of the others. In the language of social network analysis,

people or groups are called “actors” and the connections called “ties”. Both actors

and ties can be defined in different ways depending on the questions of interest. An

actor might be a single person, a team, or a company. A tie might be a friendship

between two people, a collaboration or common member between two teams, or a

business relationship between companies. Social network analysis [19,22] is an analy-

sis method to investigate the social relationship. The scientific collaboration network

is a relationship network formatted in the scientific collaboration practice between

the researchers, which is suitable to be investigated using the method social net-

work analysis. In fact, social network analysis has produced many results concerning

social influence, social groupings, inequality, disease propagation, communication of

information.

Based on the complex network theory and social network analysis, in this paper

we make a statistical analysis of the network according to the papers published in

MATCH Communications in Mathematical and in Computer Chemistry from January

2000 to December 2012, and we study the scientific collaboration network and discuss

the influence on the evolving network structure and the characteristic of the network.
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2 Relevant Characteristics

In this section, we introduce some relevant characteristics of the network as follows

[14,15].

2.1 Average path length

The average path length is one of the most important statistical characteristics of a

network. Let N = (V (N), E(N)) be a network with vertex set V (N) and edge set

E(N), its average path distance [12] is defined as:

L(N) =
1

|V (N)|(|V (N)| − 1)

∑
u,v∈V (N)

d(u, v)

where d(u, v) is the distance between vertices u and v in N . The maximum value of

the distance between any two vertices is called the diameter of the network, denote

by D = Max{d(i, j)|i, j ∈ V (N)}.

2.2 Clustering coefficient

The clustering coefficient [5,23] of a network is another parameter used to characterize

networks. The clustering coefficient of a vertex was introduced into quantify this

concept. Given a network N = (V (N), E(N)), for each vertex v ∈ V (N) with degree

δv, its clustering coefficient C(v) is defined as the fraction of the
(
δv
2

)
possible edges

among the neighbors of v that are present in N . More precisely, if Ev is the number

of edges between the δv vertices adjacent to vertex v, its clustering coefficient is:

Cv =
2Ev

δv(δv − 1)

whereas the clustering coefficient of N , denoted by C(N), is the average of C(v) over

all vertices v of N :

C(N) =
1

|V (N)|
∑

v∈V (N)

Cv .

Obviously, C ∈ [0, 1], when C=0, N has no any triangle, when C=1, any two

vertices in the network are directly connected. In completely random network with

N vertices, C ≈ N−1. However, the empirical result shows that the vertices tend to

come together in most of the large scale real network, although clustering coefficient

is less than 1, but far greater than N−1.
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2.3 Degree distribution and betweenness

The degree distribution [3] is also an important statistical characteristic of a network.

By definition, the degree of the vertex v is the total number of edges incident from

v. We define p(k) to be the fraction of vertices in the network that have degree

k. Equivalently, p(k) is the probability that a vertex chosen uniformly at random

has degree k. In the network, the degree distribution function P (k) is equal to the

proportion of the number of the vertex which the degree is k in the network. In

the present study, there are some common degree distributions: One common forms

for the degree distribution are exponentials, such as railway networks [20]. Another

distribution is the distribution of power-law distribution, that is P (k) ∝ k−r, where

r is called the degree index. Furthermore, completely random networks obey Poisson

distribution and completely regular networks obey Delta distribution. In recent years,

a large number of the empirical researches showed that the degree distribution ofmany

of the networks is better described by using power law distribution. The degree index

r is generally between two to three, such as in the World Wide Web.

Betweenness [11] is a centrality measure of a vertex within a network. The bete-

weenness of the vertex v is defined as the total number of shortest paths between

pairs of authors that pass through vertex v in network. It shows the influence of the

vertex in the network.

2.4 Network entropy

The entropy of graph N , denoted by I(N), is a measure of graph structure. Entropy

is a term borrowed from information theory. It is a measure of the “amount of

information” or “surprise” communicated by amessage. The basic unit of information

is the bit, so entropy is the number of bits of “randomness” in a network. The higher

the entropy, the more random is the graph.

More formally, the “randomness” in network N is the entropy of its degree se-

quence distribution g′. The unit of measurement of entropy is a bit, so let I(N) be

the expected number of bits in g′, as follows:

I(N) = −
max∑
i=1

hi(log2(hi)), where g′ = [h1, h2, · · · , hmax] .
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3 Collaboration Network Based on MATCH

3.1 Data collection and arrangement

For this study, we collected all papers published in MATCH Communications in

Mathematical and in Computer Chemistry from 2000 to 2012 inclusive. There are

1000 papers and 961 authors. According to the title of the papers and the authors, we

constructed a collaboration network. In this network, a vertex represents an author,

the edges connect different authors if there is coauthor relation between them. In this

paper, we do not mark the number of coauthor papers between two authors.

The collaboration network is a self-organizing network. Table 1 shows the database

information.

Number of authors in a paper 1 2 3 4 5 6 7 8 9

Number of papers 243 381 244 92 22 9 1 5 3

Proportion 23.4 38.1 24.4 9.2 2.2 0.9 0.1 0.5 0.3

Table 1: The information of the database

In science metrology, coauthor rate is an index to measure a subject of coauthor,

which refers to the coauthored papers in proportion to the total number of papers.

From Table 1, papers with 1 ∼ 3 authors are 86.8% of all papers.

3.2 Analysis of scientific collaboration network

Analysis shows that the scientific collaboration network is highly non-connected.

First, we determined the statistics of hyperdegree and degree distribution of ver-

tices. Next, we analyzed the network’s characteristics of the giant component from

2000 to 2012, and the second largest connected component’s characteristics.

3.2.1 Degree distribution of vertices

In the network, the number of the edges which connecting a vertex to the network is

called the degree of the vertex. A vertex’s hyperdegree is the number of hyperedges,

that is, the number of the papers a author participated in.

In Tables 2 and 3 we give the degree and the hyperdegree of vertices in the network.

-581-



degree of vertices 0 1 2 3 4 5 6 7 8 9 10 11

number of vertices 49 203 238 178 87 62 30 31 27 10 10 9

degree of vertices 12 13 14 15 16 17 19 20 25 27 40 97

number of vertices 3 2 4 4 1 2 5 1 2 1 1 1

Table 2: The degree of the vertices in the collaboration network

hyperdegree 1 2 3 4 5 6 7 8 9 10 11 12 13

number of vertices 568 164 89 39 26 20 9 11 7 6 5 4 1

hyperdegree 15 17 18 23 24 27 29 30 35 37 44 79

number of vertices 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: The hyperdegree of the vertices in the collaboration network

Figures 1 and 2 show the degree distribution and the hyperdegree distribution.

We find that the degree distribution obeys power distribution P (k) ∝ k−r, where

r ≈ 2.45. The hyperdegree distribution also obeys power distribution P (k) ∝ k−r,

where r ≈ 2.03.

Figure 1: Vertex-degree distribution Figure 2: Vertex-hyperdegree distribution

The entropy of the degree and the hyperdegree is 3.110236 and 2.087196, respec-

tively.
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3.2.2 Some characteristics of the network

In this section, we analyze some characteristics of the largest component in the col-

laboration network from 2000 to 2012, including its average path length, diameter of

network, and clustering coefficient, the maximum betweenness, given in Table 4.

year node L(N) diameter C(N) maximum betweenness

2000-2001 18 2.765 7 0.613 95.000

2000-2002 26 3.274 6 0.555 181.500

2000-2003 50 3.991 8 0.591 712.000

2000-2004 57 4.002 9 0.577 919.000

2000-2005 88 4.379 10 0.573 2607.167

2000-2006 108 4.558 12 0.585 3483.333

2000-2007 142 4.679 12 0.597 5646.267

2000-2008 201 4.266 11 0.590 73012.699

2000-2009 263 4.678 14 0.599 21793.688

2000-2010 378 4.662 14 0.613 29087.387

2000-2011 408 4.974 16 0.619 49388.363

2000-2012 563 5.687 18 0.597 99128.938

Table 4: Main properties of the largest component

From Table 4, we find that our network has the following characteristics.

(1) With the increasing of the number of vertices in the network, the diameter

shows a rising tendency, but the average path length is very small, ranges from 2.765

to 5.687.

(2) The greatest betweenness shows a rising tendency, while the clustering coeffi-

cient ranges from 0.555 to 0.619, but it is much more than N−1.

In brief, the network has obvious small world network characteristics, that is

smaller average path length and larger clustering coefficient.

3.2.3 Largest component

The scientific collaboration network based on papers from 2000 to 2012 is a non-

connected network. In Table 5, we give the number of all its components and their
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vertex number.

# vertices 1 2 3 4 5 6 7 9 10 11 12 13 20 563

# components 49 36 26 13 3 6 3 1 1 1 1 1 1 1

Table 5: The number of connect components of the network and their vertex number

The statistics shows that more than 5.09 % of the authors are independent, maybe

due to the author’s work background or region caused and so on. However, there is

also a super research team, the number of the team is 563, and a greater team’s num-

ber is 20, these big research teams play an important role spreading new knowledge

and new thought.

Figure 3: The giant component Figure 4: Vertex-degree distribu-
tion

The giant component is a connected component with δ × N vertices at least,

where δ is a positive constant. Figure 3 is the giant component, it contains 563

vertices with δ > 1
2
, entropy 3.127, average path length 5.687, clustering coefficient

0.597, which is about 336 times than N−1. The result shows the network has obvious

clustering features (small world characteristics), the hub vertex’s degree (the largest

degree of nodes) is 97 and has the largest betweenness 99128.938, which is Gutman,

whose influence is the greatest. Second, the degree of is Diudea 40 with the between-

ness 45298.160. Then Li’s degree is 27, betweenness 10033.384, Zhou’s degree is 25,

betweenness 29181.273.
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These data imply that the authors with large betweenness, such as Prof. Gutman

from University of Kragujevac, Prof. Diudea from Babes–Bolyai University, Prof.

Xueliang Li from Nankai University and Prof. Bo Zhou from South China Normal

University, are well-known scholars and have an effect to spread new knowledge. From

Figure 4, we can find this network’s degree distribution which also has the obvious

scale-free characteristics, power law index r ≈ 2.49. Thus, the network possesses the

characteristics of a scale-free network.

Figure 5: A large component with 20 vertices

Figure 5 is the second largest component with average path length 1.416, clustering

coefficient is 0.849, which is about 17 times than N−1. The result shows that the

network has obvious clustering features (small world characteristics), the hub vertex’s

degree of is 19 (R. Varon, F. Garcia–Sevilla, E. Arribas, M. Garcia–Moreno), the

largest betweenness is 16.043 (R. Varon, F. Garcia–Sevilla, E. Arribas, M. Garcia–

Moreno). In this sub-network, researchers are concentrated comparatively, contacted

closely, which plays an important role in spreadin knowledge.

4 Summary

In this paper, we established the network based on the papers published in MATCH

Communications in Mathematical and in Computer Chemistry from January 2000 to

December 2012. By using the tool SATI and UCINET, we found that the scientific

collaboration network is a non-connected network. We established a large number of
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statistics for our network, including the average path length, clustering coefficient,

degree distribution and betweenness. We note that the distance between pairs of

authors in each connected component is very small and the network is “small-world”

and “scale-free”. Besides, the distributions of these quantities roughly follow a power-

law form, although there are some deviations which may be due to the finite time

window used for the study.

Acknowledgements. The authors are greatly indebted to Professor Gutman and the

referees for their valuable comments and suggestions, which were very helpful for

improving the presentation of the paper.

References

[1] R. Albert, A. L. Barabási, Statistical mechanics of complex networks, Rev. Mod-

ern Phys. 74 (2002) 47–97.

[2] R. Albert, H. Jeong, A. L. Barabási, Diameter of the world–wide web, Science

401 (1999) 130–131.

[3] F. M. Atay, T. Biyikoglu, J. Jost, Synchoronization of networks with prescribed

degree distributions, IEEE Trans. Circuits 53 (2006) 92–98.

[4] A. L. Barabási, E. Bonabeau, Scale-free networks, Sci. Amer. 288 (2003) 60-69.

[5] A. Barrat, M.Weigt, On the properties of small-world networks, Europ. Phys. J.

B 13 (2000) 547–560.

[6] M. Barthelemy, L. A. N. Amaral, Small-world networks: Evidence for a crossover

picture, Phys. Rev. Lett. 82 (1999) 3180–3183.

[7] S. Boccaletti, V. Latora, Y. Moreno, Complex network: Structure and dynaimcs,

Phys. Rep. 424 (2006) 175–308.

[8] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.

Tomkins, J. Wiener, Graph structure in the web, J. Compt. Networks 33 (2000)

309–320.

-586-



[9] S. N. Dorogovstev, J. F. F. Mendes, Evolving of networks, Adv. Phys. 51 (2002)

1079–1187.

[10] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the in-

ternet topology, Comp. Commum. Rev. 29 (1999) 251–262.

[11] L. C. Freeman, A set of measure of centrality based on betweenness, Sociometry

40 (1977) 35–41.

[12] A. Fronczak, P. Fronczak, J. A. Holyst, Average path length in random networks,

Phys. Rev. E 70 (2004) 056110.

[13] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, Y. Aberg, The web of

human sexual contacts, Nature 411 (2001) 907–907.

[14] M. E. J. Newman, Scientific collaboration networks. I. Network construction and

fundamental results, Phys. Rev. E 64 (2001) 016131.

[15] M. E. J. Newman, Scientific Collaboration Networks. II. Shortest paths, weighted

networks, and centrality, Phys. Rev. E 64 (2001) 016132.

[16] M. E. J. Newman, The structure of scientic collaboration networks, Proc. Natl.

Acad. Sci. U.S.A. 98 (2001) 404–409.

[17] M. E. J. Newman, The structure and function of complex networks, SIAM Review

45 (2003) 167–256.

[18] M. E. J. Newman, D. J. Watts, S. H. Strogatz, Random graph models of social

networks, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 2566–2572.

[19] J. G. Scott, Social Network Analysis – A Handbook , Sage, London, 2000.

[20] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, S. S. Manna,

Small–world properties of the Indian railway network, Phys. Rev. E 67 (2003)

036106.

[21] S. H. Strogatz, Exploring complex networks, Nature 410 (2001) 268–276.

[22] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications,

Cambridge Univ. Press, Cambridge, 1994.

-587-



[23] D. J. Watts, S. H. Strogatz, Collective dynamics of “small world” networks,

Nature 293 (1998) 440–442.

[24] R. J. Williams, N. D. Martinez, Simple rules yield complex food webs, Nature

404 (2000) 180–182.

[25] S. Wuchty, Scale–free behavior in protein domain networks, Mol. Biol. Evol 18

(2001) 1694–1702.

[26] X. S. Yang, Small–world networks in geophysics, Geophys. Res. Lett. 28 (2001)

2549–2552.

-588-


