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Abstract

The function of an RNA sequence is related to its tertiary structure. Since deal-
ing with RNA tertiary structure is very complicated, the RNA secondary structure
is used instead. RNA secondary structure denotes various considerable aspects of
RNA tertiary structure, and the biological function of an RNA sequence is assumed
to be related to its secondary structure. Another useful illustration of an RNA sec-
ondary structure is the RNA shape, where it is holding the vicinity and nesting of
structural components and shrinking their lengths to one. It would be significant to
analyze the relations between the RNA sequences and their structures. One of the
useful methods to perform these kinds of analysis is the neutral network. A neutral
network can be considered as a graph whose vertex set is a collection of RNA se-
quences, all coding the same secondary structure, in which two RNA sequences are
connected if one of them can be obtained from the other by a single base mutation.
In this paper, a novel concept, entitled variation network, over the set of all RNA
shapes is proposed to analyze the relation between the RNA sequences and their
shapes, as well as to discover different topological properties of the RNA shapes.
Based on the variation network, several topological properties, such as clustering
coefficient, topological coefficient, average shortest path distribution, and centrality
are calculated for natural RNA sequences. Also, the correlations between power-law
function and some distributions over the variation network are obtained. These cor-
relations indicate that the variation network is a kind of complex biological network,
having scale-free structure and small world property.
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1. Introduction

In any biological organism, the information flows from DNA to RNA (transcription) and

then from RNA to proteins (translation) [1, 2]. Hence, it seems that DNA, RNA, and

proteins are the essential features of any biological organism [3].

The function of an RNA molecule is related to its structure which is represented in

three levels: primary, secondary, and tertiary structures. Primary structure of an RNA

is a sequence of nucleotides which is composed of Adenine (A), Cytosine(C), Guanine

(G), and Uracil (U) [4]. A secondary structure of an RNA sequence is a set of pairing

links between bases in the sequence, where each base can pair with at most one another

base. A tertiary structure of an RNA is presented by the coordinates of its atoms in a

three-dimensional space.

As dealing with tertiary structure of an RNA is extremely complicated, many efforts

have been focused on RNA secondary structure in the literatures [5–7]. RNA secondary

structure establishes various considerable aspects of RNA tertiary structure and the bio-

logical function of an RNA is assumed to be related to its secondary structure [8,9]. RNA

shape is another valuable demonstration of an RNA secondary structure. RNA shape rep-

resents structure in a dense form, keeping vicinity and nesting of structural components

and reducing their lengths to one. Figure 1 denotes a small RNA sequence, its secondary

structure (in parenthesis representation), and its shape which is obtained by reducing the

length of each structural component to one.

Since the biological function of an RNA is inferred indirectly from its sequence, con-

sequently analyzing the relationships between the RNA sequences and their structures

would be of great interest. The neutral network is a very useful method to perform these

kinds of analysis [10–12]. A neutral network can be considered as a graph whose vertex

set is a collection of RNA sequences, all coding the same secondary structure, in which

two RNA sequences are connected if one of them can be obtained from the other by a

single base mutation [10]. Neutral networks are generated by common structures which

overfill the space of RNA sequences [11,12] and consequently they simplify the investiga-

tions of an enormous quantity of alternative structures. Since various neutral networks

are greatly meshed, all well-known structures can be reached within a few (mutational)

walks, starting from any arbitrary or random sequence [12].

Dynamical processes of networks are related to its topological properties. The topolog-
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Fig. 1. An example of RNA sequence, its corresponding secondary structure, and its shape
which is obtained by reducing the length of each structural component to one.

ical properties of biological networks have been studied in the literatures and reasonable

results have been obtained [13, 14]. As a kind of biological network, metabolic networks,

protein-protein interaction (PPI) networks, gene regulatory networks (GRN), and many

others have been studied previously [23, 24]. Surprisingly in these biological networks,

the degree distribution represents the scale-free connectivity [25, 26] as well as small-

world structure (high clustering and short-path between nodes) [23, 27, 28]. Networks

with scale-free connectivity are able to release any perturbation over the network in a few

steps, and hence they are very robust against random failures [24]. Over the past decades,

centrality has also became an acceptable strategy to deal with complex networks such as

biological networks [29].

The structure of the RNA neutral networks have been also considered previously

[10–12, 15–22]. An upper bound Sl = 1.4848 × l−3/2 × (1.8488)l for the quantity of

different secondary structures for sequences of length l is achieved [10]. This indicates

that the anticipated volume of a neutral network is a huge quantity even for modest

values of l. Among the substantial parts of the efforts that have been examined, the local

characteristics of neutral networks are constrained in [30]. The analysis of the constraints

allows to extract proper analytical estimations to some topological properties of neutral

networks [30].

Using the RNAfold as a folding method, neutral networks over all RNA sequences of

length 12 are constructed and the topological properties of these neutral networks are

achieved [30]. Awkwardly, the obtained results for neutral networks in [30] can not be

generalized to the superior space (real space), and we still need to examine the same

specifications for longer sequences.

In this paper, the concept of RNA neutral network is extended over the space of RNA

shapes. Since any RNA shape is representative for many RNA secondary structures (via

reducing the length of components to 1 while preserving the vicinity and nestingness),
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the weights over the nodes and edges are considered as extensions. This new version of

neutral network, entitled variation network, is employed to analyze the relation between

the RNA sequences and their shapes. Different topological properties are obtained for

variation network of longer natural RNA sequences.

The rest of this paper is organized as follows. In Section 2., the basic definitions

behind the variation network are presented. In Section 3., the datasets construction and

different measures are discussed. The results and conclusions are presented in Sections 4.

and 5., respectively.

2. Basic Definitions

As mentioned in Section 1., an RNA sequence is composed of four kinds of nucleotides,

namely A, C, G, and U . Therefore an RNA sequence δ of length l can be considered as

a string over Σl, where Σ is the set of nucleotides (Σ = {A,C,G, U}). An RNA sequence

tends to fold to itself and forms pairs of bases by the formation of hydrogen bonds among

Watson-Crick base pairs (A−U and C−G) and Wobble base pair (G−U). This set of all

base pairs is called the RNA secondary structure. Let Δ, Λ, and Γ, denote the collection of

all RNA sequences, secondary structures, and shapes, respectively. The formal definition

of RNA secondary structure is as follows.

Definition 1. For an RNA sequence δ of length l, the RNA secondary structure λ is a

collection of pairs (i, j), where i, j ∈ {1, ..., l}, i < j, and for any two base pairs i1, j1 and

i2, j2 in λ, i1 = i2 ⇐⇒ j1 = j2 and either i1 < i2 < j2 < j1 (nested) or i1 < j1 < i2 < j2

(disjoined) holds.

Assume that ϕ : Δ �→ Λ maps any RNA sequence δ into its secondary structure

λ = ϕ(δ). Also, assume that ψ : Λ �→ Γ maps any RNA secondary structure λ into its

corresponding shape γ = ψ(λ). As a result, χ = ψ ◦ ϕ : Δ �→ Γ maps any RNA sequence

into its corresponding shape. Considering ϕ as a relation, two sequences δ1 and δ2 are

equivalence under ϕ, if and only if ϕ(δ1) = ϕ(δ2). Similarly, two sequences δ1 and δ2 are

equivalence under χ, if and only if χ(δ1) = χ(δ2). Based on these equivalence relations,

the generated equivalence classes of any structure and shape are defined as follows.

Definition 2. The equivalence class of a structure λ under the mapping ϕ, indicated

by [λ]ϕ, is the collection of RNA sequences having the same structure as λ, i.e. [λ]ϕ =
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{δ | δ ∈ Δ and ϕ(δ) = λ}. Similarly, the equivalence class of shape γ under the mapping

χ is [γ]χ = {δ | δ ∈ Δ and χ(δ) = γ}, i.e. this class is the collection of RNA sequences

having the same shape γ.

The graphical representation of the equivalence structure and shape classes are pre-

sented in Fig. 2.

ψ

γ

Sequences Structures Shapes

λ

λ′

δ′1
δ′2

δ2

δ1
[λ]ϕ

[λ′]ϕ

[γ]χ

ϕ
χ = ψ ◦ ϕ

(Δ) (Λ) (Γ)

Fig. 2. Equivalence class of structures and shapes.

The formal definition of neutral network is defined as follows.

Definition 3. For the mapping ϕ and structure λ, the neutral network is a graph NNλ =

(V,E) where,

- The vertex set is a collection of RNA sequences, all coding the same secondary

structure λ, i.e. V = {δ | δ ∈ Σl, ϕ(δ) = λ},

- Two RNA sequences δ1 and δ2 are connected if one of them can be obtained from

the other by performing a single base mutation, i.e. E = {(δ1, δ2) | δ1, δ2 ∈
V, dist(δ1, δ2) = 1}.

Fig. 3 demonstrates an example of neutral network for a set of five RNA sequences

δi (1 ≤ i ≤ 5), all coding the secondary structure λ. Let N : Σl �→ 2Σ
l
be a neigh-

borhood function, where for an RNA sequence δ, N(δ) denotes the set of all RNA se-

quences obtained from δ by performing a single mutation in different positions. This

neighborhood function could be easily extended for the equivalence shape classes as

N∗([γ]χ) = ∪δ∈[γ]χN(δ). The neutral network does not take into account the amount

of sequences that are converted from [λ1]
ϕ to [λ2]

ϕ by performing a single mutation. Con-

sidering the equivalence classes of RNA shapes, the transformation cardinality form [γ1]
χ

to [γ2]
χ by performing a single mutation could be calculated via variation rate which is

defined as follows.
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Definition 4. Variation rate for two equivalence shape classes [γ1]
χ and [γ2]

χ, denoted

by ω(γ1, γ2), is defined as:

ω(γ1, γ2) = |N∗([γ1]χ) ∩ [γ2]
χ| = |[γ1]χ ∩N∗([γ2]χ)|, (1)

where N∗(·) denotes the extended neighborhood function.

Sequences Structures

δ1 = ACGCAUAAGCG

δ2 = UCGCAUAAGCG

δ3 = UCGCUUAAGCG

δ4 = UCGCUAAAGCG

δ5 = ACGCAUAUGCG

λ = . ( ( ( . . . . ) ) )

ϕ

λ

[λ]ϕ
δ1

δ2

δ3 δ4

δ5

(Λ)(Δ)

Fig. 3. An example of neutral network.

Based on the above definitions, the variation network can be expressed over the col-

lection of all shapes as follows.

Definition 5. For the collection of all shapes Γ, the variation network is a weighted graph

V N = (V,E,W ), where

- V = {γ | γ ∈ Γ},

- E = {(γ1, γ2) | γ1, γ2 ∈ V and ω(γ1, γ2) > 0},

- For each (γ1, γ2) ∈ E,W (γ1, γ2) = ω(γ1, γ2).

The variation network denotes the imposed relations between the collection of all

shapes under the mapping χ as it is shown in Fig. 4. Regarding the above definitions, to

illustrate the relations among RNA sequences and their shapes, many efforts have been

done in this paper. The variation networks are constructed for natural RNA sequences

and several topological measures are calculated for them. The details of our efforts as

well as the results are described in the next sections.
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Fig. 4. An example of variation network.

3. Materials and Methods

3..1 Datasets

In order to analyze the different properties of variation networks, four datasets of RNA

sequences, each of length between 1 to 50, 25 to 75, 50 to 100, and 75 to 125 nucleotides

are selected from RNA STRAND server 1 [39]. Then all nucleotides appeared in different

positions in each RNA sequence of length l are mutated (to three other nucleotides) to

produce 3l more sequences (each of length l). After that the RNAShape software [31] is

employed to determine their minimum free energy structures as well as their shapes. The

length of sequences as well as the number of original and mutated sequences, structures,

and shapes are presented in Table 1

Table 1. Constructed datasets and their characteristics.

dataset length number of number of sequences number of number of
name original sequences after mutation structures shapes

RDS01-50 1 to 50 530 48, 014 9, 200 520
RDS25-75 25 to 75 685 107, 695 27, 490 2, 653
RDS50-100 50 to 100 901 190, 966 56, 928 6, 961
RDS75-125 75 to 125 858 219, 270 67, 221 13, 399

3..2 Measurements

In this subsection, we review the primary concepts and different available measures con-

cerning the biological properties of networks.

Expressly, an undirected network could be represented by a symmetric adjacency

matrix A = [aij], where 0 ≤ aij ≤ 1. The following notations are used in the rest of this

paper:

• n denotes the number of vertices in the network,

1http://www.rnasoft.ca/strand/
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• u, v, and w denote vertices,

• ev denotes the number of joined pairs between all neighbors of v,

• η denotes the degree of the network,

• L(u, v) denotes the length of the shortest path between two vertices u and v,

• J(u, v) denotes the number of neighbors shared between the vertices u and v.

In order to achieve the results, several topological measures have been employed in

our analysis for each dataset as follows.

• Average Shortest Paths Length (ASPL) gives the average value of shortest

paths length in the network.

• Network Diameter (D) of a network is marked out as the length of maximum

shortest paths between any two nodes in the network.

• Shortest Paths Distribution gives the number of pairs (u, v) such that L(u, v) =

k, for all k ∈ {1, 2, ..., D}.

The shortest path length distribution and the network diameter might show small-

world properties of the analyzed network [32]. Barabasi and Oltvai [33] hypothesized

that the occurrence of small-world networks in biological systems may display an

evolutionary advantage of such architecture.

• Connectivity of Node v (kv) is the weighted sum over the neighbors of v, i.e.

kv =
∑
v �=u

avu. (2)

The neighbors of node v is the collection of all nodes that are close to v involving

v itself. In an unweighted network, the connectivity kv of node v is the number of

directly linked neighbors (degree of v).

• Network Density (Nd) is the normalized variety of average connectivity of nodes,

i.e.,

Nd =

∑
i

∑
j �=i aij

n(n−1)
2

. (3)
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Nd displays how densely the network is populated with edges. A network which

comprises of no edges has a density of 0, and in contrast, the density of a clique is

1.

• Network Centralization (Nc) is given by:

Nc =
n

n− 2
(

η

n− 1
−Nd), (4)

where a network whose topology look likes a star, has Nc close to 1, whereas a

decentralized network is characterized by Nc close to 0.

• Network Heterogeneity (Nh) is the coefficient of variation of the connectivity

distribution, i.e.

Nh =

√
variance(k)

mean(k)
. (5)

This measure reflects the trend of a network to have highly connected nodes.

• Clustering Coefficient of v (Cv) is defined as

Cv =
2ev

(kv(kv − 1))
, (6)

where Cv ∈ [0, 1] and it reflects the trend of nodes to cluster together. Evidence

implies that in the majority of real-world networks, nodes tend to form closely knit

groups characterized by a comparatively high density of ties [32, 33].

• Average Clustering Coefficient Distribution (ACCD) gives the average value

of the clustering coefficients for every node v with i neighbors (i ∈ {1, 2, ..., η}).

• Degree Distribution (DD) gives the number of nodes with degree i (i ∈ {1, 2, ..., η}).

Barabasi and Oltvai [33] used this property to differentiate between scale-free net-

works and random networks (as defined in [34, 35]).

• Topological Coefficients of v (Tv) is computed as:

Tv =
1

kv
· averageu(J(v, u)) = 1

kv
· 1

nJ

·
∑

u∈V−{v}
J(v, u), (7)

where nJ denotes the number of nodes, say u, that share at least one neighbor with

v and J(v, u) is defined for these kinds of nodes. Tv could be used to show the trend

of the nodes to have shared neighbors.
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• Stress Centrality of v (Cs(v)) is the number of shortest paths passing through

the node v [13, 36].

• Stress Centrality Distribution (SCD) gives the number of nodes having the

stress centrality i, for various values of i.

A node has an extreme stress if it is traversed by a great number of shortest paths

(vital vertex).

• Betweenness Centrality of v (Cb(v)) is calculated as:

Cb(v) =
∑

u �=w �=v

σuw(v)

σuw

, (8)

where u and w are nodes, σuw indicates the number of shortest paths from u to w,

and σuw(v) is the number shortest paths from u to w passing through v [41]. Cb(v)

denotes the amount of control that node v exerts over the connections of other nodes

in the network.

• Closeness Centrality of v (Cc(v)) is calculated as:

Cc(v) =
1

averageu(L(v, u))
=

nL∑
u∈V L(v, u)

, (9)

where nL denotes the number of nodes that are accessible from v and L(v, u) is

defined for these kinds of nodes. Here, Cc(v) is a metric that represents how fast

the information is distributed from node v to other accessible nodes [37].

• power-law (f(x)) is a function which has exponentially relation with x. i.e.,

f(x) ∼ axb. (10)

This function generally explains a system where the larger events are more infrequent

than smaller events.

All the above mentioned measures are evaluated on the variation networks corresponding

to different datasets and the obtained results are presented in the next section.

4. Results and Discussions

As mentioned, the RNAshape software [31] is employed to determine the minimum free

energy structures of all RNA sequences appeared in the constructed datasets and their
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corresponding shapes. Then the variation networks over the resulting shapes of each

dataset is constructed separately. After that, the clustering coefficient distribution, node

degree distribution, shortest path length distribution, topological coefficient, stress cen-

trality distribution, betweenness centrality distribution, and closeness centrality of these

variation networks are calculated and presented in Figs. 5 to 11, respectively. All these

figures are provided by the cytoscape software [38, 42].

For each constructed variation network, the related properties are shown in Table 2.

Since the Nd (network density) of each variation network is very low (between 0.0002 and

0.011), the Cv, D and number of components are considerable. Except the last variation

network, the low number of connected components proposes a stronger connectivity in the

constructed variation networks. By ignoring the small clusters in all variation networks,

they are mostly connected. In the worse case, each node in these variation networks

is accessible from other nodes by a path of length between seven to seventeen (D ∈
{7, 8, 11, 17}).

Although Nd is low, the robustness of these networks does not corrupt by deleting a

random node. It is happened because of the relatively high value of Cv. By omitting

a random node from a network, it is not divided into two separate subnetworks. As

presented in Table 2, Nc is lower than 0.25, and therefore the variation network is a kind

of a decentralized network.

Variation network as a kind of biological network attends to be very heterogeneous.

In other words, while some nodes are highly connected, the popular nodes attend to have

very few connections. As indicated in Table 2, Nh reflects the trend of a network to have

highly connected nodes [40].

The clustering coefficient for every node in each variation network is also computed.

The power-law function is calculated (by fitting the curve over the data points) for this

property and it is highly correlated with it as presented in Fig. 5 and Table 3.

For each variation network, the node degree distribution is calculated and presented

in Fig. 6. As it is understood, the variation network is a kind of scale-free network.

Evidence for this claim is the dense path length distribution and its highly correlation

with power-law function as presented in Fig. 7 and Table 3.

According to Table 3 and Fig. 7, ASPL of each variation network is also correlated

with the power-law function. Considering this correlation, removal of an accidental node
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hardly ever causes a dramatic increase in ASPL (or a dramatic decrease in the Cv).

Because of a huge number of shortest paths run through highly connected nodes, if an

unimportant node is omitted, it is doubtful to affect the other paths between the remaining

nodes.

Tv is also calculated for each node in these variation network and planned against the

number of neighbors (Fig. 8). As indicated in Table 3, this measure is also correlated

with the power-law function. As illustrated in Fig. 8, Tv is reduced with respect to the

number of neighbors, and hence the nodes with highest degree are not artificially clustered

together. Furthermore, it verifies the modular network organization specified by the Cv.

For each variation network, stress centrality distribution is calculated and presented

in Fig. 9. To calculate the stress centrality, the obtained values are grouped into bins

whose sizes grow exponentially by a factor of 10. In all variation networks, the majority

of nodes (about a thousand nodes) have an extreme stress, i.e. 103 ≤ Cs(v) ≤ 107. Hence,

they are traversed by a great number of shortest paths in the variation networks.

Cb is also calculated and presented in Fig. 10 for each variation network. Although

Cb raises against the number of neighbors, it is low in most of the cases. As mentioned in

Subsection 3..2, Cb(v) denotes the ratio of the number of shortest path passing through

node v to the number of all shortest paths, i.e., Cb is the amount of control that this node

exerts over the connections of other nodes in the network. As presented in Fig. 10, the

control of each variation network is distributed in all nodes. As network RDS01 − 50 is

composed of one component, Cb(v) < 0.15 holds for all its nodes . Therefore, all the nodes

lie in a community (dense subnetworks), rather than join communities. By omitting tiny

components, this fact could be generalized to the other three variation networks.

The closeness centrality of all nodes is also calculated and drawn against the amount

of neighbors (Fig. 11). Cc is a metric that show how fast information distributed from

a given node to other accessible nodes [37]. As shown in Fig. 11, for majority of nodes,

Cc varies between 0.1 and 0.3.

5. Conclusion

In this paper, a novel concept, entitled variation network, is introduced to analyze the

relationships between RNA sequences and their shapes. Although the function of an RNA

molecule is related to its tertiary structure, the RNA shape shows the higher order of its
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Table 2. Summery of measurements corresponding to the constructed variation networks. Cv,
D, Nh, Nc, aspl, and Nd denote the clustering coefficient, network diameter, network hetero-
geneity, network centralization, average shortest path length, and network density, respectively.

Name Cv #Connected D Nh Nc #Shortest ASPL #Nodes Nd

Components Path
RDS01− 50 0.243 1 7 2.072 0.249 269, 880 3.378 520 0.011
RDS25− 75 0.137 6 8 2.898 0.098 6, 706, 324 4.081 2, 653 0.002
RDS50− 100 0.111 16 11 3.941 0.094 42, 781, 838 4.595 6, 961 0.001
RDS75− 125 0.078 43 17 4.100 0.047 129, 759, 980 6.730 13, 399 0.0002

Table 3. The parameter of power-law function f(x) ∼ axb obtained by fitting the curve over
the data points. The correlation among the specified data points and the related points on the
fitted curve is represented by corr. Additionally, the R-squared value is reported as rs.

Dataset Node Degree Distribution Clustering Coefficient Distribution Topological Coefficient
Name a b corr rs a b corr rs a b corr rs

RDS01− 50 100.84 −1.171 0.987 0.874 1.441 −0.664 0.761 0.574 0.902 −0.7 0.978 0.946
RDS25− 75 385.44 −1.318 0.972 0.876 0.964 −0.64 0.848 0.553 0.934 −0.81 0.987 0.977
RDS50− 100 653.58 −1.331 0.96 0.859 0.737 −0.608 0.838 0.43 0.947 −0.852 0.99 0.983
RDS75− 125 650.62 −1.287 0.929 0.84 0.83 −0.828 0.851 0.342 0.998 −0.902 0.985 0.984
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Fig. 5. The clustering coefficient distribution of the constructed variation networks.
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Fig. 6. The node degree distribution of the constructed variation networks.

functionality inside the cell. Based on natural RNA sequences, variation networks are

constructed and some topological properties are evaluated. Correlation between degree

distribution and power-law function makes evidence that the obtained variation network is

a kind of scale free networks. As diameters of obtained networks are lower than seventeen,

each RNA shape equivalence classes is accessible with in most seventeen mutational steps.
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Fig. 7. The shortest path length distribution of the constructed variation networks.
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Fig. 8. The topological coefficient of the constructed variation networks.
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Fig. 9. Stress centrality distribution of the constructed variation networks.
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Fig. 10. Betweenness centrality distribution of the constructed variation networks.
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Fig. 11. Closeness centrality of the constructed variation networks.

It means that the variation network is a small-word network. Also, topological coefficient

shows that the nodes with many neighbors are not artificially clustered together in varia-

tion network. Furthermore, it demonstrates the modular network organization defined by

the clustering coefficient. Finally, some centrality measures are calculated for each RNA

shape equivalence class in each network. Although betweenness centrality raises against

the number of neighbors, this measure is low in most of the results. Obtained closeness

centrality is lower than 0.4 and it raises slowly by increasing the number of neighbors.

With respect to the obtained results, we could decide that the variation network is a

complex network and it has some dynamic information for further researches.
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