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§Grupo de Quı́mica Teórica, Departamento de Quı́mica,
Universidad Nacional de Colombia, Bogotá, Colombia
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Abstract

RNA representation is one of the most important issues in bioinformatics. A challenge,

however, is achieving a correct representation that is able to encode the directionality, sec-

ondary and primary structure. One possible solution is the RNA graph representation and

its associate tree; however, it fails to encode the directionality of the RNA molecule. There-

fore, a succession based on the tree representation is proposed as an alternative. From this

novel succession, we have defined three metrics in order to compare the similarity between

RNAs. Finally, we have used the properties of pretopological spaces which were generated

from the metrics as a cluster tool. This methodology has allowed the classification of an

RNA hairpin, which was mutated in two different positions.

1 Introduction

Ribonucleic Acids (RNAs) are among the most important molecules in life chemistry [1, 2].

RNA is of great importance for protein synthesis since it functions as a regulatory molecule and

fulfills the same role as deoxyribonucleic acid (DNA) in some microorganisms, i.e., encoding

genetic information [3–5].
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One of the main challenges when working with systems involving biomolecules is to find

an accurate representation that allows the comparison of two or more biomolecules [6–8]. The

chosen representation must encode the information and the properties taken into account within

the concept of chemical structure [9, 10]. Comparisons are limited by the degree of indeter-

minacy introduced by the unique features defined to establish the differences and similarities

among the molecules of interest [11–13].

A previous model for both representing and comparing tRNAs has been developed by our

group. [14] In this work, Sections 2 and 3 are an overview of the most common RNA represen-

tations and similarity measurements. A new RNA representation model is proposed taking into

account the directionality and secondary structure of the molecule, as well as the electrostatic

environment for every base pair derived from quantum electronic structure calculations (Section

4). These quantum mechanical calculations indirectly allow to incorporate some local elements

of the tertiary structure, since the calculation that represent a particular nucleotide depends on

the molecular environment defined by its nucleotide neighbors in typical frames. For this new

representation, metric measurements were defined and proved, allowing the comparison of the

molecules represented as mathematical objects (Section 5). However, the metric measures only

allow comparisons between pairs of elements, and a comparison between more elements re-

quires the usual algorithms of clustering; therefore, the use of pretopological spaces associated

with the metrics is appropriated to establish a classification method, which yielded rigorous

criteria for setting up classification compared to the usual clustering techniques (Section 6).

Finally, an application assay is done in order to show the power of this novel methodology

(Section 7).

2 RNA Graph Representations

The graph theory has been used to address the challenge of modeling RNA structures and com-

paring them. Mathematically, a graph is seen as an object composed of a collection of points

(vertices or simplex) {Vi} and a set of unordered couples (links or edges) E(G) = {(Vi,Vj)} =
{ei j}, corresponding to the relationship between points Vi and Vj [15–18].

There are different graph representations depending on the type of vertices and edges as-

signed, ranging from a very simplified representation where the number of vertices is minimal

to those where each nucleotide is a vertex (Figure 1.).
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Figure 1: a. RNA secondary structure. b. RNA graph representation resulting from construction
1. Each nucleotide is a vertex and each hydrogen bond or phosphodiester bond corresponds
to an edge. c. Contact structure associated with the contact matrix for the secondary RNA
structure, obtained using construction 2. d. Secondary graph representation, where each edge
corresponds to a double helix region and each vertex corresponds to a loop.

Construction 1.

For any RNA sequence with n nucleotides, the set of vertices Vi is formed by each of the

nucleotides in the sequence and the set of edges is made up by the different types of bonds

between nucleotides (Figure 1b) [20].

The connectivity matrix is then formed as follows:

Let A be the matrix connectivity of graph G = {Vi,E}, where E = {(Vi,Vj)} is the set of

couples that:

ai, j = a j,i = 1 if (Vi,Vj) ∈ E ∀ 1 � i, j � n,

and the result is zero for all other cases. This representation is very accurate as it preserves most

elements forming RNA as well as its secondary structure features [19].
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Construction 2.

Another graph representation of the RNA structure can be obtained from the matrix of con-

tacts where the RNA-associated adjacency matrix only takes into account hydrogen bond inter-

actions and does not include the backbone region.

Let B be the matrix formed by the following elements:

ai,i+1 = ai+1,i = 1 for 1 � i � n,

hence, the matrix is formed by the backbone and all other elements will be equal to zero.

Therefore, the contact matrix C will then be:

C = A−B.

Consequently, the graph associated with this matrix will contain the vertices corresponding

to the hydrogen bonds and the edges will be related to the double helix areas that allow bonding

between the vertices [21, 22], (Figure 1c).

Construction 3.

This construction assigns a set of vertices {Vi} as the set of loops within the RNA secondary

structure. A loop is the region in the secondary structure similar in shape to a circle and consists

of five or more nucleotides. The edges of the graph correspond to the double helix regions that

allow bonding between loops (Figure 1d). This representation is the most simplified structure

presented here [23–26].

Construction 4.

Figure 2: Tree structure obtained using construction 4. The black vertices correspond to a pair
of nucleotides and the white ones correspond to unpaired nucleotides. The root vertex is virtual.

The tree representation was proposed by Schuster et al. [27]. In this representation, a pair of
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nucleotides corresponds to a black vertex, an unpaired nucleotide corresponds to a white one,

and the root vertex (black square) is virtual (Figure 2). Constructions 1 to 3 have been widely

used to study different aspects of RNA structure, [19] but for our proposal this last construction

has been employed.

3 Comparing Graphs

Having established a RNA representation, the next step is to establish ways of comparing them.

For such purpose, people have developed similarity measurements which are often metric mea-

surements taking into account that the smaller the distance between molecules, the higher their

degree of similarity.

Each distance depends on the type of representation used. One of the most frequently used

representations comes from bioinformatics and is based on molecular similarity. Taking the

RNA sequence into account, an editing metric reflects the number of operations necessary to

go from one sequence to another. These operations are sometimes weighted by giving a higher

value to one of them. These operations are known as nucleotide insertion, nucleotide deletion

and nucleotide substitution.

Other metrics have been developed over other types of secondary structure representations.

One of the most popular corresponds to the base pair metric. It is based on the bracket repre-

sentation and was introduced by Zuker [28]. This metric has been widely used for secondary

structure prediction. For tree-graph models a corresponding tree metric has been proposed [29],

and for the mountain representation a mountain metric was developed [30]. Both metrics have

also been used as a tool to predict the RNA secondary structures, but being less successful.

Some other important metrics can be found in the work of Reidys and Stadler [21], where

three different metric measurements are based on the structure of contacts, summarized as fol-

lows [22]:

• The dsrg metric given by:

dsgr(Γ1,Γ2) = (ln2)|Q1ΔQ2| .

• The dinv metric is equal to dmag, defined as:

dinv(Γ1,Γ2) = dmag(Γ1,Γ2) =
1

ln2
dsgr(Γ1,Γ2)−2Ω(Γ1,Γ2) .
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Where Γi corresponds to the contact structure associated with RNA, Qi corresponds to the

corners of the structures, |Q1ΔQ2| is the cardinality of the symmetrical difference |Q1 ∪Q2|−
|Q2 ∩Q1| and Ω(Γ1,Γ2) are the number of cycles in the graph Γ1ΔΓ2. It is worth highlighting

that the compared RNAs must have the same number of nucleotides.

It is also possible to find some other metrics [21,22,31,32] that can compare different RNAs,

but all of these metrics might be limited. One of their limitations is due to the way that they

have been constructed, since some of these do not differentiate between a pair of A-U and G-C

and thus simplify the graph to a collection of points.

4 From a Graph to a Succession
We started by considering the primary structure to keep RNA directionality in an explicit and

useful way. Since RNA is a succession of nucleotides, we expected that the RNA’s secondary

structure could also be represented as a succession of terms. In other words, we are proposing

to manage a Bi-dimensional problem, even a tertiary one, as a one dimensional problem. It can

be achieved without loosing the features associated with its secondary structure and including

quantum mechanical factor through the atomic partial charge distribution for each nucleotide.

Figure 3: Succession associated with tree structure

The tree representations that correspond to the fourth construction have a well-established

order, it is possible to further simplify them, giving rise to a succession of vertices as shown in
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Figure 3. The construction of this representation begins by assigning the leftmost vertex below

the first succession element. If the node is white, the next term of the succession corresponds to

the node on its right and so on until finding a black node. Once a black node is found, the next

term of the succession would correspond to the couple that is linked to it in the immediately

lower level. As explained in the previous case, if the node is white, the terms are assigned

by moving through the succession from left to right until reaching the next black node. The

procedure is repeated until finishing with each branch. The next term in the succession would

correspond to the node on the right side of the branch root.

In a previous representation developed by our group [14], each vertex was correlated to

a convenient linear combination of partial charges associated with the most affected atoms in

each nitrogenated base when its first neighbors are changed. This set of weights represents

fundamental information in the succession. Briefly, in the case of a pair of nucleotides, the first

four components corresponds to the combinations of partial atomic charges from the first four

main components associated with one of the nucleotides and the last four correspond to the

other nucleotide. This information represents the electrostatic environment of a particular base

pair and it also brings the possibility to include a chemical description in the representation.

To take this type of information into account over the new representation, each element in

the succession was assigned to an 8-tuple. For each black point in the tree representation (pair

of nucleotides), the xi succession element was:

xi = (xi1,xi2,xi3, . . . ,xi7,xi8).

And for the white point (one nucleotide) within the tree representation, the element x j was:

x j = (x j1, . . . ,x j4,0,0,0,0),

for each succession element, we took the weighting factors from Galindo et al. [33], thus:

xi = (PC1k,PC2k,PC3k,PC4k,PC1l,PC2l,PC3l,PC4l),

where k and l are the nucleotides forming a pair. In the case of a single nucleotide, the assigna-

tion would be:

xi = (PC1k,PC2k,PC3k,PC4k,0,0,0,0).
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Each secondary structure (Figure 3) would have an 8-tuple associated succession, i.e., for

each RNA secondary structure we associated a succession whose size depended on the size of

the RNA molecule. If a family of molecules was taken into account, then it would be possible to

associate a succession set as T = {x1,x2, . . .} where x j = x1,x2, . . . ,xi, . . . ,xn and each element

within the succession would correspond to an 8-tuple of positive real numbers.

5 Metrics as similarity measurements

One of the main points in the study of molecular reactivity is making comparisons amongst

molecules to establish chemical similarity. Thus, if the molecular structure is represented as

a succession, then molecules can be compared by analyzing these mathematical objects. We,

thus, propose two new metrics, which are in turn compared to a standard one.

Since each term of the succession corresponds an 8-tuple of positive values, it is possible to

associate a quantity between two 8-tuples, thus giving the possibility of capturing differences

between them. For this purpose, we defined the following inner product:

Definition 1. Let xi, x j be elements of either one or two different successions. The inner product

〈xi|x j〉 between these elements is defined as:

〈xi|x j〉 :=
8

∑
k=1

xikx jk ,

which is normalized to [0,1] by taking the maximum inner product value and dividing each

inner product by it.

Now, with the succession representation obtained from the graph associated with the sec-

ondary RNA structure, the comparison or molecular similarity problem is addressed.

Proposition 1. Let x = (xi)
n
i=1 and y = (yi)

n
i=1 be two successions in T , then the map dsuc :

T ×T → R defined as:

dsuc(x,y) :=

⎧⎨⎩ 1
k+〈xk|yk〉 , if x �= y,

0, if x = y,

where k ∈ {1,2, . . . ,n} is the ordinal of the first term in which the successions differ and 〈xk|xk〉
is the xk and yk 8-tuples’ inner product, then dsuc is a metric over T .
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Proof. i. dsuc(x,y)� 0.

Given that 〈xk|yk〉� 0 and k > 0, then

dsuc(x,y) =
1

k+ 〈xk|yk〉 > 0.

When x = y, dsuc(x,y) is equal to zero by definition.

ii. dsuc(x,y) = 0 ⇐⇒ x = y. By definition.

iii. dsuc(x,y) = dsuc(y,x) for each x, y ∈ T .

Given that the product between two real numbers is commutative, then xki · yki = yki · xki

and thus:

〈xk|yk〉=
8

∑
i=1

xki · yki =
8

∑
i=1

yki · xki = 〈yk|xk〉,

therefore,

dsuc(x,y) =
1

k+ 〈xk|yk〉 =
1

k+ 〈yk|xk〉 = dsuc(y,x).

iv. Triangle inequality dsuc(x,y)� dsuc(x,z)+dsuc(z,y) .

It is possible to assume without losing generality, that dsuc(x,z) = 1
r+〈xr|zr〉 , dsuc(z,y) =

1
q+〈zq|yq〉 and that 1

r+〈xr|zr〉 �
1

q+〈zq|yq〉 . Given this initial condition, then

q+ 〈zq|yq〉� r+ 〈xr|zr〉.

(a) Case 1. If q+ 〈zq|yq〉< r+ 〈xr|zr〉, then q � r and we have zi = yi = xi for each i < q;

therefore, dsuc(x,y)� 1
q+〈xq|yq〉 and we need to prove that:

1

q+ 〈xq|yq〉 �
1

q+ 〈xq|zq〉 +
1

r+ 〈zr|yr〉 .

When q < r, it can be guaranteed that xi = zi for each i < r, then 〈zi|yi〉= 〈xi|yi〉 for

each i < r; and as q < r, then 〈zq|yq〉= 〈xq|yq〉, and thus:

1

q+ 〈xq|yq〉 �
1

r+ 〈xr|zr〉 +
1

q+ 〈xq|yq〉 ,

which is an inequality that is always satisfied.
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When q = r, we have 1
q+1 � 1

q+〈xq|yq〉 �
1
q given that 〈xq|yq〉 ∈ [0,1]. And the same

holds true for 1
q+〈xq|zq〉 and 1

q+〈zq|yq〉 . Assuming that 1
q+〈xq|yq〉 =

1
q (the maximum

possible value) and that 1
q+〈xq|zq〉 as well as 1

q+〈zq|yq〉 take the minimum possible value

( 1
q+1), then:

1

q
� 1

q+1
+

1

q+1
,

which is always satisfied because of q � 1.

(b) Case 2. If q+ 〈zq|yq〉 = r + 〈xr|zr〉, then q = r, the same as in the previous case,

except when 〈zq|yq〉= 0 and 〈xr|zr〉= 1 or vice-versa.

When 〈xr|zr〉= 1 and 〈zq|yq〉= 0, we have r+1 = q, therefore xi = zi and yi = zi for

each i < r. Guaranteeing xi = yi for each i < r, thus dsuc(x,y)� 1
r+〈xr|yr〉 . Therefore,

we need to prove that:
1

r+ 〈xr|yr〉 �
1

q
+

1

r+1
.

As yi = zi for each i < q, we have 〈zi|xi〉 = 〈xi|yi〉 for each i < q, and since r < q,

〈xr|yr〉= 〈xr|zr〉= 1 this leads to

1

r+1
� 1

q
+

1

r+1
.

And since q = r+1 then
1

r+1
� 1

r+1
+

1

r+1
,

an inequality that is always satisfied when r >−1. In our case r is either greater than

or equal to 1.

To obtain a similarity measurement suitable for comparing two successions in all their exten-

sions, the previous metric was modified by building a new metric denoted Msuc(x,y) as follows:

Proposition 2. Let x = (xi)
n
i=1 and y = (yi)

n
i=1 be two successions in T , then the map Msuc :

T ×T → R built as:

Msuc(x,y) :=

⎧⎨⎩∑n
i

1
i+〈xi|yi〉δxiyi , if x �= y,

0 if x = y,

where δxiyi = 0 if xi = yi and δxiyi = 1 whenever xi �= yi , 0� i� n and 〈xi|yi〉 is the inner product,

then Msuc is a metric over T .
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Proof. i. Msuc(x,y)� 0.

Since δxiyi only represents the elements that are different between both successions then

the same conditions applied in the previous proof are maintained for each element in the

addition, i.e., each term is greater than zero. Therefore,

Msuc(x,y) =
n

∑
i

1

i+ 〈xi|yi〉δxiyi � 0.

ii. Msuc(x,y) = 0 if and only if x = y. By definition.

iii. Msuc(x,y) = Msuc(y,x) for every x, y ∈ T .

From the previous metric, we have 1
p+〈xp|yp〉 =

1
p+〈yp|xp〉 , then adding these terms is sym-

metrical, which leads to:

Msuc(x,y) =
n

∑
i

1

i+ 〈xi|yi〉δxiyi =
n

∑
i

1

i+ 〈yi|xi〉δyixi = Msuc(y,x).

iv. Triangle inequality Msuc(x,y)� Msuc(x,z)+Msuc(z,y).

To prove this inequality, we will show that if one term is in Msuc(x,y), then it will be either

in Msuc(x,z) or in Msuc(z,y) or the three successions will differ in the same position, hence

adding of these two terms is greater than a single term. However, if δxiyi = 1 then either

δxizi = 1 or δziyi = 1, because if xi �= yi, then xi �= zi or zi �= yi. Similarly, if xi = zi and

zi = yi then xi = yi.

Supposing that δxizi = 1 and δziyi = 0, the opposite case is equivalent by symmetry. As

δziyi = 0 then zi = yi, which leads to

1

i+ 〈xi|zi〉 =
1

i+ 〈xi|yi〉 ,

and consequently, the term in which x and y differ is equal to one of the terms in which x

and z differ.

On the other hand, when δxizi = 1 and δziyi = 1, we obtain:

1

i+ 〈xi|yi〉 �
1

i+ 〈xi|zi〉 +
1

i+ 〈zi|yi〉 ,

As it was proved in the previous metric, this inequality is satisfied for all ordinal i-values

and since it is an addition of terms, the triangular inequality is also satisfied by the addition.
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The last metric option is analogous to an Euclidean metric.

Proposition 3. Let x=(xi)
n
i=1 and y=(yi)

n
i=1 be two successions in T , the map Nsuc : T ×T →R

defines as:

Nsuc(x,y) =

(
n

∑
k

8

∑
i=1

(xki − yki)
2

)1/2

,

is a metric.

Proof. This proof is the same as the proof for a Euclidean metric in a R
8n space.

6 Chemical Space

In the previous section, we approached comparing molecules by using metrics as similarity

measures, allowing us to quantify such similarity.

The concept of chemical structure acquires its importance only when molecules are com-

pared as a whole set. We consider that chemical structure is an emergent property manifested

as the possibility of establishing relationships of similarity, order, complementariness and re-

activity among molecules [34, 35]. Thus, the chemical structure concept allows us to establish

classifications and/or equivalence relationships representing these kinds of relationships [12].

Molecular classifications use to be done by mean of clustering techniques that depends on

the algorithm employed to cluster, here we propose an alternative well founded on the properties

of the space defined by the representation of the molecules and the metric to compare them.

Thus, we have codified the molecular secondary structure as mathematical objects within a set

T , and a metric over this set. The next stage consists of exploring the (T,d) space that could be

called the chemical space. For such consideration, we can classify the set T into classes using

pretopologies.

The basic pretopological definitions found in the next subsection, show how a pretopological

structure can be given to each metric space obtained in the previous section. These new spaces

will be called pretopological chemical spaces.
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6.1 Pretopological spaces

Being T a set of molecular secondary structures represented as mathematical objects and P(T )

the power set of T , it is possible to build a pretopological space as follows:

Definition 2. A pseudoclosure is a map a( ) from :P(T ) → P(T ) satisfying the following

two conditions:

1. a( /0) = /0.

2. For each A ∈ P(T ), A ⊆ a(A).

A pretopological space is a pair (T,a( )) where T is endowed with pseudoclosure a( ).

Subset a(A) is also called pseudoclosure of A. The pseudoclosure of a set may not be idempo-

tent.

Definition 3. Let (T,a( )) be a pretopological space. (T,a( )) is a D-pretopological space if

the application a( ) satisfies not only 1. and 2. but the following as well:

3. For all A,B ∈ P(T ), a(A∪B) = a(A)∪a(B).

Definition 4. A V-pretopological space (T,a( )) is a pretopological space that satisfies 4.:

4. For all A,B ∈ P(T ), A ⊆ B ⇒ a(A)⊆ a(B).

Lemma 1. A D-pretopological space is necessarily a V-pretopological space but the converse

property is false (3.⇒ 4.).

Definition 5. A subset F of E such as a(F) = F is called a closed subset of T for a( ).

Let ℑ(T,a( )) be the family of closed subsets of T for a( ):

ℑ(T,a( )) = {F ⊆ T : a(F) = F} and ℑ(T,a( ))∗ = ℑ(T,a( ))−{ /0} .

Property 1. The intersection of closed subsets is a closed subset in a V-pretopological space.

Definition 6. Let P be a subset of T . The closure of F is the smallest closed subset in terms of

inclusion in family ℑ(T,a( )) containing P.

A closed subset noted as Fx is the closure of a single element set {x} of T .

Property 2. In a type V-pretopological space, each subset of T has a closure.

Property 3. Two distinct elementary closed subsets Fx and Fy are either disjoint (Fx
⋂

Fy = /0) or

contain a non-empty intersection so that for all Fz ∈ Fx
⋂

Fy we have Fz ⊆ Fx
⋂

Fy.
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Definition 7. A minimal closed subset of T regarding a( ) is an element of ℑ(T,a( ))∗ minimal

in terms of inclusion in ℑ(T,a( ))∗.

Let ℑm(T,a( )) represent the set of minimal closed subsets of T : ℑm(T,a( ))= {F ∈ℑ(T,a( ))∗,

¬(G ∈ ℑ(T,a( ))∗ −{F},G ⊂ F)}

The proofs and definitions presented in this section come from Bonnevay et al. [36]; Larg-

eron and Bonnevay [37].

6.2 Pretopological space of the chemical structure

The classifications and comparisons of molecule set T come from pretopologies in molecular

space (T,d). To do this, it is necessary to build a( ) and one way is:

Proposition 4. Let r be a real number. For each element x ∈ T , we define Br(x) = {y ∈ T :

d(x,y)� r}, i.e., a ball with center x and radius r. Given Br(x), the map ar( ) is:

ar(A) =: {x ∈ T |Br(x)∩A �= /0}.

And ar( ) is a pseudoclosure over T .

Proof. 1. ar( /0) = /0.

In the case of A= /0, the intersection of Br(x)∩ /0= /0, for all x∈ T , since at least x∈Br(x),

therefore, ar( /0) = /0.

2. For every A ∈ P(T ), A ⊆ ar(A).

For all x ∈ A, x ∈ Br(x) and therefore x ∈ Br(x)∩A. Then, at least every x ∈ A belongs to

ar(A).

By construction, each r-value has a possible pretopological space. Therefore, it is necessary

to choose a criteria for assigning values to r and then generating families of pretopological

chemical spaces. To avoid choosing a subjective criteria, all values of r must be analyzed to get

all possible pretopological spaces (complete spectrum).

Since the number of elements in T is finite, the number of unitary subsets is also finite,

and thus it is possible to affirm that the number of different pretopological spaces is also finite,

although the radius takes real positive values.

-466-



It is possible to get all the different pretopological spaces by increasing the radius. There-

fore, when r is very small a pretopological space analogous to the discrete topological space,

where each unitary subset is a closed subset, will be obtained. For the case of a large value of

r, the pretopological space with T and /0 as the only closed subsets will be obtained. These two

cases correspond to the extreme cases.

One of the advantages of the use of pretopological spaces over topological structures cor-

responds to the possibility of generating different intermediate spaces by modulating r. The

topological structure of the molecular space is finite and, with the metrics defined in this work,

corresponds to discrete topological spaces without relevance to compared molecules.

Each of the closed sets defines an equivalence class in the pretopological spaces, where an

equivalence class could be defined as: Let X be a set, then each element in X is an element class

representation, i.e., only one element is necessary to characterize or describe the behavior of the

elements within this set.

The intermediate pretopological spaces and the evolution of the equivalence classes are go-

ing to be of great importance, since the modulation of r makes that one class link to another

class in order to get a new equivalence class by increasing its value.

Due to the direct dependence of the different pretopological spaces with parameter r, this pa-

rameter can be understood as a dynamic variable. In the appearance or fusion of a closed set, it

could be similar to either an evolutionary process or a molecular transformation. It could also

be set as a resolution measurement regarding the degree for establishing relationships without

an a priori definition of the process.

7 Application: Graph Directionality

Our previous model [14] uses elements that can be understood as local, due to their nature. As

a consequence, this model is not able to encode all the possible differences of RNA chemical

structures; for instance, in a particular nucleotide mutation where the first neighbors have a

similar structure the model does not distinguish between them. This example is presented in

Figure 4: a fragment of RNA (RNA 0) is mutated by substituting G-C pair by a U-A pair in

the positions 3 and 17 for RNA A, and 4 and 16 for RNA B, generating two slightly different

RNAs. These differences are based on the fact that RNA is not completely symmetric and it

also has a directionality which gives a particular behavior in these two different positions inside

of the molecule.
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Figure 4: The mutation of RNA 0 in two different positions gives RNA A and RNA B.

To compare these three RNAs is possible to employ the graph-theoretical indices defined in

Galindo et al. [14],

• Randić index χλ .

χλ
a,c,d = ∑

paths
(Bi

a,c,d ×·· ·×Bk
a,c,d)

1/2,

where λ corresponds to the path length (a value between 0 to 4) and Ba,c,d is the modified

valence.

• Charge-valence index μ .

μ =
∑N

n=1 ∑4
i=1 νn ·qi,n

V

where ν is the standard graph-theoretical valence, V = ∑n νn, N is the total number of

vertices and qi is the quantum weight vector component associated to a particular vertex.

• Sum of areas σ .

σ =
n

∑
i
D

2
i, j

where D
2 is the area generated by two i and j vectors, which correspond to the weight

factors of two adjacent nucleotides.

However, the decomposition analysis in motifs of 3 to 6 nucleotides, which were used in our

initial model [14], causes RNA A and RNA B to have the same set of fragments. Therefore,

the graph-theoretical indices, depending on the first neighbors, will be the same or very similar

(see Table 1).

Within the first neighbors approach it is possible to affirm that both molecules are the same,
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Table 1: Graph theoretical indices calculated for the three RNA molecules in Figure 4. The
definition of these indices can be found in Galindo et al. [14].

Index RNA 0 RNA A RNA B Index RNA 0 RNA A RNA B
μ 0.41951 0.44979 0.44979 χ0

c 83.2876 87.5807 87.5807

σ 21.1581 29.0294 29.0581 χ1
c 87.1268 91.7395 91.7408

χ0
a 12.8741 12.9952 12.9952 χ0

d 18.6832 18.6790 18.6790

χ1
a 8.2400 8.4109 8.4109 χ1

d 18.5236 18.5132 18.5113

χ2
a 6.4774 6.7302 6.7321 χ2

d 23.7577 23.7323 23.7312

χ3
a 6.7302 5.7314 5.7458 χ3

d 32.6468 32.5937 32.5959

χ4
a 6.7321 4.4024 4.3724 χ4

d 39.2112 39.1289 39.1377

Table 2: Molecular euclidean distance matrix using the vector built with the 14 graph theoretical
indices.

RNA 0 RNA A RNA B

RNA 0 0.000

RNA A 10.402 0.000

RNA B 10.430 0.045 0.000

which is false, because it is well known that mutations in different positions give the molecule

particular characteristics, and sometimes these mutations can cause a partial or total loss of

the biological activity. Thus, although we can consider graph theoretical indices with higher

molecular environments, i.e. including second and four neighbors, the values for the system

will change from thousandths to tenths and this change will not be enough to establish structure

activity relationships. Furthermore, the numbers are similar enough to make the molecules

almost indistinguishable, implying a high similitude between them.

This phenomenon is shown if we use the graph theoretical indices set as a vector to represent

the molecule and the euclidean distance as a similarity measure. It is possible to observe in Table

2, that the distance between the RNA 0 molecule and the two mutated molecules is of the order

of tens, while the distance between RNA A and B is 0.045. Therefore, the latter has negligible

value in comparison to the former, leading to conclude that RNA A and RNA B are the same.

The advantage of using the succession representation, that comes from the tree representa-

tion, is to recover the digraph character intrinsic in RNA molecules. In Table 3 the 8-tuples for

every succession element are shown. Every term in the tuples comes from a quantum weight

factor based on the Principal Component (PC) analysis of the partial atomic charges, [33] and,

as it was mentioned before, the 8-tuple representing a hydrogen bond pair of nucleotides will

have four PCs coming from every nucleotide, while the 8-tuple for a single strand nucleotide

will have four components that are zero.
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Table 3: 8-Tuples of positive real numbers for every succession element of the two mutated
RNA examples.

RNA A RNA B Motif PC1k PC2k PC3k PC4k PC1l PC2l PC3l PC4l

x1 x1
5’- GG-3’
3’-GCC-5’

1.24010 1.05118 0.41770 0.39401 1.04050 1.55828 0.13912 0.75109

x2 x3
5’-GGU-3’
3’-CCA-5’

1.19733 0.94704 0.32115 0.29314 1.06064 1.60006 0.23383 0.64446

x3 x4
5’-GUG-3’
3’-CAC-5’

0.30197 1.13813 0.22830 0.72278 1.37867 1.16706 0.34749 0.68019

x4 x5
5’-UGG-3’
3’-ACC-5’

1.26737 1.05100 0.38354 0.38226 1.03928 1.62765 0.24149 0.65505

x5 x2
5’-GGG-3’
3’-CCC-5’

1.21895 0.99706 0.36996 0.35165 1.06227 1.60546 0.24010 0.65335

x6 x6
5’-GGA-3’
3’-CC -5’

1.06525 1.59848 0.24748 0.66327 0.00000 0.00000 0.00000 0.00000

x7 x7
5’-GAU-3’
3’-C -5’

0.22471 1.04005 0.25452 0.57245 0.00000 0.00000 0.00000 0.00000

x8 x8 5’-AUU-3’ 1.34780 1.08047 0.28851 0.59910 0.00000 0.00000 0.00000 0.00000

x9 x9 5’-UUG-3’ 1.36323 1.09136 0.30995 0.61224 0.00000 0.00000 0.00000 0.00000

x10 x10 5’-UGC-3’ 1.04245 1.50557 0.19985 0.58359 0.00000 0.00000 0.00000 0.00000

x11 x11 5’-ACG-3’ 1.07897 0.86268 0.22218 0.45961 0.00000 0.00000 0.00000 0.00000

x12 x12 5’-CAU-3’ 0.20933 1.08871 0.30624 0.52344 0.00000 0.00000 0.00000 0.00000

x13 x13
5’-C -3’
3’-CUA-5’

1.33970 1.07317 0.23220 0.64923 0.00000 0.00000 0.00000 0.00000

x14 x14
5’- G-3’
3’-CGC-5’

1.03067 1.52105 0.14538 0.64691 0.00000 0.00000 0.00000 0.00000

x15 x15 5’-GCC-3’ 1.06026 0.82388 0.19157 0.42897 0.00000 0.00000 0.00000 0.00000

x16 x16 5’-CCA-3’ 1.11606 0.89724 0.27969 0.52429 0.00000 0.00000 0.00000 0.00000

x17 x17 5’-CCA-3’ 10.24648 1.11871 0.34481 0.57572 0.00000 0.00000 0.00000 0.00000

Having defined the successions we applied the similarity measures defined in Section 3. The

results are presented in Table 4. In contrast to the case of graph theoretical indices, the succes-

Table 4: Distance measure results over the three different RNAs

dsuc Msuc Nsuc

(RNA A,RNA B) 0.272 0.484 1.659

(RNA A,RNA 0) 0.270 0.2702 1.150

(RNA B,RNA 0) 0.213 0.213 1.150

sion representation makes the RNA A and RNA B distances be different than zero. Hence, we

can conclude that the molecules are different. Analyzing values from dsuc is possible to see that

the difference among the three molecules is very small, and the distance between RNA A and

B is similar to the distance between RNA 0 and RNA A. From this point of view, this metric

encodes information about the first secondary structure mutation in the RNA 0 molecule: if the

first terms of the succession are the same, i.e., the mutation is made in a far nucleotide, the

more similar the molecules will be. This statement will be correct if we consider the tRNAs

case, where one of the most important nucleotides corresponds to the discriminator base and its

environment [38, 39].

The Msuc metric, besides encoding the same information as dsuc, also includes information
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Figure 5: Pretopological spaces generated by the different metrics, changing the variational pa-
rameter r. a. Two pretopological spaces obtained using the Nsuc metric. b. Three pretopological
spaces obtained for the Msuc metric as well as the dsuc metric.

about all the differences between the molecules, being more appropriate when a comparison

between systems is done. Comparing RNA A and B, we expect to have a higher distance, since

they differ in two positions, than each of them with RNA 0. In this sense, the Msuc distance is

more appropriate because the difference between them is two times higher than difference of

each one with respect to the non-mutated RNA.

Finally, the Nsuc metric shows that the comparison done nucleotide by nucleotide could be

problematic because the value of the distance between RNA A and RNA 0; and RNA B and

RNA 0 is exactly the same and it is pretty similar to the value for the two mutated RNAs.

Therefore, Nsuc is unable to encode the directionality of RNA molecules, i.e. every nucleotide

has the same weight no matters their position in the sequence.

We would like to point out that, unlike the graph theoretical indices, the metric measures

proposed do not consider RNA A and RNA B to be the same. Moreover, the values obtained

are consistent with the observation that the mutated RNAs are more similar to RNA 0 than each

other. The proposed distances are able to encode the mutation’s position and the directionality

associated to RNA molecules.

Besides the differences among the metrics, we want to illustrate the use of pretopologies as a

molecular classification tool, allowing the understanding of this process in a more general way.

Considering the various pretopologies obtained for each metric due to the variational parameter

r; it is possible to observe that in the case of the pretopologies associated to Nsuc the situation

is not very rich from the structural point of view. We have an initial scenario, where the three

molecules correspond to a closed set, i.e., every molecule is a different class. On the other hand,

if the level of resolution decreases all molecules are in the same class (Figure 5a).

In the case of the other two metrics, the result is richer. When the value of r is very small,

every molecule corresponds to a closed set; however, by increasing the r value it is possible to

reorder the molecules in a new and different pretopological space, which has two equivalence

classes: the pair {RNA 0, RNA B} and {RNA A}. Finally, increasing the parameter r further, a

condensed pretopological classification is observed where every molecule belongs to the same
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class (Figure 5b). The generation of this intermediate pretopological space is very interesting

especially for the tRNA molecules. For instance, if we analyze RNA A, it is closer to a hypo-

thetical discriminator base position, affecting the chemical environment in a more decisive way

than for RNA B, and therefore its biological activity.

This simple example shows that using pretopological spaces as a classification tool enriches

the comparison between molecules, extending the concept of similarity beyond a pair compari-

son. It also allows the classification in different levels of similarity, evidencing an evolutionary

process.

8 Conclusion
This work proposes a new representation that is able to encode basic information about the

directionality of RNA, as well as the chemical environment, since the weight factors for ev-

ery element of the new succession arrive from statistical variables derived from quantum par-

tial charges. Successions preserve the information associated with the connectivity of the

molecules, i.e. encoding the secondary structure information of the RNA.

In the same way, the use of metrics as chemical similarity measures have shown to be a

good option, since the results obtained correlated well with the similarity expected based on

informal arguments. Finally, in this work we defined a mathematical space for representation

and classification of RNA molecules, where the classification was performed using properties

derived from pretopological spaces, resulting in different levels of similarity.
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Clara I. Bermúdez for her helpful discussions and contributions to this paper, as well as some

templates for the graphics.

References
[1] P. Clote, Introduction to special issue on RNA, J. Math. Biol. 56 (2008) 3–13.

[2] C. Laing, T. Schlick, Computational approaches to RNA structure prediction, analysis and

design, Curr. Opin. Struc. Biol. 21 (2011) 306–318.

[3] M. Shimizu, H. Asahara, K. Tamura, T. Hasegawa, H. Himeno, The role of anticodon

bases and discriminator nucleotide in the recognition of E. Coli tRNAs by their aminoacyl-

tRNA synthetases, J. Mol. Evol. 35 (1992) 436–443.

[4] A. R. Srinivasan, W. K. Olson, Molecular models of nucleic acid triple helixes. II. PNA

and 2′ −5′ backbone complexes, J. Am. Chem. Soc. 120 (1998) 492–499.

-472-



[5] D. L. Nelson, A. L. Lehninger, M. M. Cox, Lehninger Principles of Biochemistry, Free-

man, New York, 2008.

[6] N. B Leontis, A. Lescoute, E. Westhof, The building blocks and motifs of RNA architec-

ture, Curr. Opin. Struc. Biol. 16 (2006) 279–287.

[7] M. Bon, G. Vernizzi, H. Orland, A. Z., Topological classification of RNA structures, J.
Mol. Biol. 379 (2008) 900–911.

[8] J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, Topological classification

and enumeration of RNA structures by genus, J. Math. Biol. 67 (2013) 1261–1278.

[9] J. Villaveces, E. E. Daza, On the topological approach to the concept of chemical structure,

Int. J. Quantum Chem. 24 (1990) 97–106.

[10] J. Villaveces, E. E. Daza, The concept of chemical structure, in: D. H. Rouvray (Ed.),

Concepts in Chemistry: A Contemporary Challenge, Wiley, New York, 1997, pp. 101–

132.

[11] C. Li, I. Xing, X. Wang, Analysis of similarity of RNA secondary structures based on a

2d graphical representation, Chem. Phys. Lett. 458 (2008) 249–252.

[12] A. Bernal, E. E. Daza, On the epistemological and ontological status of chemical relations,

HYLE 16 (2010) 80–103.

[13] D. R. Koessler, D. J Knisley, J. Knisley, T. Haynes, A predictive model for secondary RNA

structure using graph theory and a neural network, BMC Bioinformatics 11 (2010) S21.
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